A Massive Parallel Processing Genetic Algorithm for
ROBDD Construction

Josep M. Garrell i Guipy Department of Computer Science,
Enginyeria La Salle, Universitat Ramon Llull, Barcelona, Spain ,
andMiquel Bertran i SalvansDepartment of Computer Science,
Enginyeria La Salle, Universitat Ramon Llull, Barcelona, Spain

ABSTRACT: A Reduced Ordered Binary Decision Di-
agram (ROBDD) is a data structure that has been widely
used in CAD tools for VLSI logic synthesis design. ROB-
DDs have some good properties and some drawbacks. The
most important drawback is that the size of a ROBDD de-
pends on input variable ordering.

The problem of finding the best input variable ordering
can be modeled as a Travelling Salesman Problem (TSP).
In order to find such optimum ordering, Genetic Algo-
rithms (GAs) are used. Due to the high computational cost,
a parallel approach to GAs on a Massive Parallel Process-
ing (MPP) system is followed.

1 Introduction

In most CAD tools for synthesis and verification of VLSI
systems, one finds a common problem: the high computa-
tional complexity when manipulating logic functions. For
this reason, it is necessary to find a way of simplifying the
representation of logic expressions. Recently, the scientific
community began to use a data structure known as Binary
Decision Diagram (BDD). The main idea is relatively old,
and could be traced back in 1959 with the work of Lee [11].
After that, in 1978, BDDs are found in the work of Akers
[1]. Since the publication of Bryant’s work in 1986 [3] [2]
the scientific comunity began to use BDDs widely.
Reduced Ordered BDDs (ROBDDs) are a kind of BDDs
that will be covered later on. Representation of logic func-
tions with ROBDDs has many advantages, but there are
also some drawbacks. The most important one is that the
number of nodes of a ROBDD (and its size) depends on
logic function input variable ordering. Obviosly, we are
interested in finding the ROBDD with minimum size that
represents a given logic expression. So, we are interested
in finding a permutation of the input variables that mini-
mizes ROBDD size. From this point of view, the problem
can be modeled as a Travelling Salesman Problem (TSP).
One of the methodologies that can solve the TSP is Ge-

68 CUG 1996 SpringProceedings

netic Algorithms (GAs). Since the time for building a
ROBDD can be relatively high, a parallel implementation
of GAs has been used. In such a way, and thanks to a spe-
cific MPP developement system, execution time has been
reduced considerably.

This paper is organized as follows. First, the ROBDD
data structure will be introduced, together with its advan-
tages and drawbacks. Next, a brief introduction to GAs
will be given. After that, some different versions of GAs
will be discussed. Next, the chromosomic representation
and the genetic operators we chose will be explained. Fi-
nally, some different results obtained from our optimiza-
tions will be presented.

2 Reduced Ordered Binary Deci-
sion Diagrams

Let us introduce ROBDD through examples. Supose we
have a logic function represented by the following sum-of-

products:
f=abc+bd+c'd

In figure 1 a posible BDD representing this logic function
can be seen.

In order to evaluate this logic function for a set of values
of its input variables @, b, ¢ and d, it is necessary to follow
a path from the initial node (the square one labeled),
into another square node, the zero' or the one” node. For
instance, supose we want the evaluation of function f at
a=1,b=0,c=1and d =0. We will begin the path at
the root node (the initial one). After that, we will reach
a node with the a label. This means that we must ezplore
the value of variable a. Depending on this value, we must
choose one of its two output edges. Since a = 1, we choose
the edge with label T' (T'rue). In this way, we can continue
creating a path until we reach a terminal node. If this

1False.
2True.

Figure 1: BDD corresponding to logic function f = abe +
b'd + ¢'d. The input variable ordering is a < b < ¢ < d.

terminal node is labeled with a zero, the value of the logic
function will be False. In the other case, the terminal node
is labeled with a one, and the value of the function will be
True.

BDDs used up to now are Ordered BDDs (OBDDs). The
reason for this name is that if one follows any path from
the root to a terminal node, the input variables are found
in the same order. In our example the order is

a<b<c<d

The shape and size of a BDD (in the sense of number
of nodes), depends on the exploration order of the input
variables strongly. Supose, for example, that we build the
BDD corresponding to the same logic function but using
the following exploration order: b < ¢ < a < d. Figure 2
shows the result. The resulting BDD is as small as it can
be for that logic function.

Due to all that, it is absolutely necessary to find a
method for searching the best input variable ordering. In
this paper we present the results of aplying Genetic Algo-
rithms to solve that problem.

In order to construct the BDD of a logic function, we will
use the Shannon Expansion®. The Shannon Expansion of

3Sometimes this expansion is named Boole Ezpansion.

Figure 2: BDD corresponding to logic function f = abc +
b'd + c'd. The input variable ordering is b < ¢ < a < d.

CUG 1996 SpringProceedings 69

[~

T

/\@/
3

gl 1

Figure 3: Non-reduced BDD. The presence of some redun-
dant nodes and some isomorfic subgraphs can observed.

a logic function is:
f=xife, +Tifs,

for any input variable z;.

A recursive method for constructing BDDs can be found
directly from this expansion. The BDD of a logic function
contains a node labeled with the first variable we explore.
This node has two output edges. Each edge going to the
BDD corresponding to its cofactors in the above expansion.

We are interested in a special kind of OBDD, the Re-
duced OBDD (ROBDD). This kind of BDD represents a
logic function canonically. This is the main advantage of
using ROBDDs for this representation. A OBDD is Re-
duced, if it has neither isomorfic subgraphs nor redundant
nodes. A non-reduced BDD can be seen in figure 3. Some
isomorfic subgraphs and some redundant nodes may be
seen. Our construction method guarantees that the result-
ing BDD will be Reduced.

3 Fundamentals of Genetic Algo-
rithms

Genetic Algorithms (GA) amount to an optimization tech-
nique introduced by John Holland [10] in 1975. It is based
on the natural evolution of species and Mendel’s genetic
theory.

As Dorigo [4] said, it is possible to establish an analogy
between GAs and natural evolution. It is posible to view
an individual as a solution to one problem: the existence
problem. From this point of view, when we work with

70 CUG 1996 SpringProceedings

G As, the solution to a problem will be called an individual
or a chromosome. A set of individuals forms a population.

Natural evolution may be viewed as a selective force that
explores potential solutions. Through generations, the se-
lective force will bring the population of individuals to-
wards regions of the search space where the average fitness
of the population is better. This will be possible because
the selective force favours the survival of the fitest individ-
uals, and penalizes the worst ones.

When talking about GAs, people use many words from
biology, like chromosomes, genes, individuals, crossover,
mutation, etc.

The typical structure of a GA is the following:

Genetic Algorithm

t:=0;

init_population_P(t);

evaluation_P(t);

WHILE (not end-condition) DO
t:=t+1;
select_P(t)_from_P(t-1);
crossover_P(t);
mutation_P(t);
evaluation_P(t);

END_WHILE

It is easy to observe that the algorithm works with a
population P that varies in time. This population is ini-
tialized and evaluated before entering the loop. The loop
will be repeated until an end-condition is satisfied. Inside
the loop, the process is very simple: a new population from
the old one is selected (this process simulates the natural
death of some individuals), the individuals will be crossed,
then the mutation that takes place during the reproduction
phase we will be simulated, and, finally, the new popula-
tion obtained will be evaluated.

The end-condition of the loop, can be either a maxi-
mum number of iterations or a convergence measure. This
process is represented graphically in figure 4.

4 Parallel Genetic Algorithms

Given their inspiring principle of parallel evolution of a
population of individuals[4], GAs are good candidates for
effective parallelization. However, one must be carefull
with the traditional method (the Holland algorithm), be-
cause it needs a centralized control process. This central-
ization is particularly required during the selection pro-
cedure. For that reason several methods have been intro-
duced, with the main goal of exploiting its intrinsic parallel
nature. We will briefly review three possible ways of par-
allelization: the Holland Approach, the Island Approach
and the Neighbourhood Model.

Init

Evaluation

Population 1 Population |

Mutation
UoNIIRS

Mark

Population 3 Population 2

Figure 4: The Genetic Algorithm main cycle.

Crossover

Holland Approach

The idea is very simple. The operations that can be
carried out in parallel are: evaluation of individuals,
crossover an mutation. We will only do in parallel the
evaluation phase. The resulting parallel structure is
the typical leader-servers structure. The leader pro-
cess runs all the GA, while the servers only receive
evaluation orders, execute them and, finally, return
the result to the leader. If the number of servers is
zero, the leader will behave as a server, and one has a
sequential running. If the number of servers is greater
than zero, the leader will order the different evalua-
tions to them.

Distributed models for genetic evolution: the Island
Approach

In this approach we will have several isolated subpop-
ulations evolving in parallel. Periodically, the different
isolated subpopulations interchange the best individ-
uals using a process called migration.

The idea comes from the observation, reported in bi-
ology, that isolated environtments, such as islands,
often produce animal species that are more specifi-
cally adapted to the peculiarities of their environt-
ments than to corresponding areas of wider surfaces.
This observation has given rise to the so-called nich-
ing and specification theory [8] and has inspired the
GA community with new operators and architectural
issues.

Distributed models for genetic evolution: the Neigh-
bourhood Model

In this model only one population evolves. Each in-
dividual of the population will be placed in a cell of
a toroidal bidimensional grid. The genetic operators
selection and crossover can be applied between indi-
viduals placed in neighbour cells of the grid only. A

distributed model results, with no need of a central-
ized control process.

For each cell of the grid, the algorithm will apply the
selection process to the individuals assigned to this
grid plus the individuals assigned to the neighbour
cells. The crossover operation will create couples of
individuals from the individuals of the cell and its
neighbours. Finally, the mutation process will take
place locally as it happens in any other model.

We have tested the Holland and Island approaches.

5 Chromosomic Representation
and Genetic Operators

Since our problem can be modelled as a Travelling Sales-
man Problem (TSP), we must apply a modified GA for
solving TSP problems. This means that the chromosomic
representation and the genetic operators will be special.

The chromosomic representation we use is the Path Rep-
resentation [12]. This representation is the easiest one we
can choose. For instance, the path:

5-1-7-8-9-4-6-2-3

will be represented by the list (5178946 2 3).

There are three posible standard crossover operators for
that chromosomic representation[12], although it is possi-
ble to find a bigger set in Syswerda[16], Goldberg[7}, Fox[5],
Oliver[13], Starkweather[14] and Syswerda[15]. We have
chosen the PMX (Partially-Maped Crossover)[9]. This
crossover builds an offspring by choosing a subsequence
of a tour from one parent and preserving the order and
position of as many cities as possible from the other par-
ent.

6 Simulation Results

In the problem of finding the best input variable ordering
for a ROBDD, the evaluation of the individual’s fitness
reduces to constructing the ROBDD corresponding to a
logic function whose input variable ordering is represented
by the individual. It is easy to observe that the prob-
lem has a high computational cost. Due to this fact, we
solve the problem using a parallel approach to GAs on a
Massive Parallel Processing (MPP) system. In particular
we have been using the Cray T3D MPP system from the
Pittsburgh Supercomputing Center (Carnegie Mellon Uni-
versity, University of Pittsburgh). The code is written in
ANSI C using standard and portable PVM. The work at
the Pittsburgh Supercomputing Center was published at

[6].

CUG 1996 SpringProceedings 71

rPEs I Execution Time I Speedup [Efﬁciench

1 440.765 1

2 244.835 1.8 90%
4 143.033 3.081 7%
8 96.001 4.591 57.38%

Table 1: Execution time (in seconds),speedup and effi-
ciency corresponding to the Holland version of a GA with
50 individuals in the population.

ﬁ’Es] Execution Time | Speedup [Efficiency |

1 563.688 1

2 293.601 1.919 95.95%
4 158.674 3.552 88.8%
8 87.708 6.426 80.32%

Table 2: Execution time (in seconds) speedup and effi-
ciency corresponding to the Holland version of a GA with
400 individuals in the population.

Next the results obtained with several executions is go-
ing to be presented, together with the speedup and conver-
gence of the algorithms. We will also present some results
of tunning the convergence of the Holland approach.

6.1 Speedup

We will begin analysing the results of the Holland ap-
proach. Tables 1 and 2 show the execution time, speedup
and efficiency obtained solving a problem with 15 input
variables. Table 1 corresponds to a execution with 50 indi-
viduals in the population, while table 2 corresponds to an
execution with 400 individuals in the population. It is im-
portant to observe that the algorithm behaves as expected:
the speedup improves as the population grows. This hap-
pens because, as the population grows, the percentatge of
parallelizable code also grows, so that there is more work
for the servers. Figure 5 shows the speedup from tables 1
and 2.

Table 3 shows the execution time, speedup and efficiency
obtained solving a problem with 15 input variables and
using the Island approach of a GA. Due to the high number
of PEs used (up to 128), and with respect the results of
the Holland approach, the results obtained here can be
considered as MPP. Figure 6 shows the speedup from table
3. Obviosly, the algorithm is a good candidate for runing
in a MPP environtment. It shows a high efficiency for very
different numbers of PEs. It is important to observe that
the efficiency is, more or less, constant from 16 to 128 PEs.

Finally, table 4 and figure 7, shows the best speedups

72 CUG 1996 SpringProceedings

—e— 50 individuals
~—a— 400 individuals
------ Theoretical

Number of PEs

Figure 5: Speedup from the Holland version of a GA.

[PEs | Execution Time | Speedup [Efficiency |

1 538.790 1

2 257.543 2.09 104.5%

4 128.453 4.19 104.75%
8 71.912 7.49 93.6%
16 45.096 11.94 74.6%
32 24.843 21.68 67.75%
64 11.087 48.59 75.92%
128 5.766 93.44 73%

Table 3: Execution time (in seconds), speedup and effi-
ciency corresponding to the Island version of a GA.

—o— Real
------ Theoretical

Speedup

0 r —
0 50 100

Number of PEs

Figure 6: Speedup from the Island version of a GA.

I PEs l Holland’s Speedup] Island Speedup |

1 1 1

2 1.919 2.09
4 3.552 4.19
8 6.426 7.49

Table 4: Comparison between the speedup of the Holland
version and the Island version of a GA.

of the Holland and Island approaches. We have used the
same scale in order to compare both approaches.

6.2 Convergence

In order to show the convergence of the algorithm, we will
use the same logic function we have been using for the
speedup. It is a logic function with 15 input variables.
Figure 8 shows the number of nodes needed for the logic
function using the Holland approach of a GA. The conver-
gence of the algorithm is better as we use populations with
a higher number of individuals.

Figure 9 shows the behaivor of the Island approach to
GAs. It can be seen that, normally, as the number of
islands grows (and also the number of PEs), convergence
improves.

6.3 Tunning

One of the first things that GA users realize is that the
behaivour of the algorithms strictly depends on its con-
trol parameters. The highest dependence is on crossover

—e— Holland’s GA
—a— Island’s GA
...... Theoretical

M T M T
0 2 4 6
Number of PEs

o =

Figure 7: Comparison between the speedup of the Holland
version and the Island version of a GA.

—— 50 individuals
------ 4K} individuals

Number of nodes

T T T T T 1
0 20 40 60 80 100
Number of iterations

Figure 8: Evolution of the number of nodes needed for
synthesizing a logic function, versus population size. Using
a Holland version of GAs.

CUG 1996 SpringProceedings 73

150t

100 4

Number of nodes

50+

Number of iterations

Figure 9: Evolution of the number of nodes needed for
synthesizing a logic function, versus population size. Using
an Island version of a GA.

and mutation rate values. For that reason we decided to
test the convergence of the algorithm with different values
of crossover and mutation rates. We chose a very simple
problem for doing the optimization, and we chose the Hol-
land approach of the GA. The crossover rate values are
taken from the interval [0.1,0.9], and the mutation rate
values from the interval [0.001,0.05]. For each couple of
values we ran the algorithms until a solution 80% off the
best one was reached. If the algorithm did not find the
solution, it was halted at 10.000 iterations.

Figures 10 and 11, show the obtained results. The x-axis
represents a combination of crossover and mutation rates.
The first two digits are the crossover rate, and the last two
ones the mutation rates. The y-axis reprents the number of
iterations needed for reaching the solution. If the number
of iterations needed reach 10.000, it means that the algo-
rithm does not converge and the runing has been stoped.
The second figure is a zoom of the first one, corresponding
to the values of crossover rate from the interval [0.25,0.26].

It is possible to see that for finding a good convergence,
we must chose a value of crossover rate relatively high.
Also, the mutation rate must not be too small.

7 Conclusions

In this paper we have presented a study of the efficiency
and adaptation of different versions of GAs in a MPP envi-
rontment optimizing the size of ROBDD. We showed how
the Island approach to GAs is better than the Holland ap-
proach when using a MPP system. This version attains

74 CUG 1996 SpringProceedings

10000

8000 —

6000

Iterations needed

2000 4000 6000 8000
Combination of the crossover and mutation rates.

Figure 10: Convergence of the Holland version of a GA
depending on the crossover and mutation rates.

10000
8000
=
[}
T 6000
%
=
2
2
]
S 4000
]
L]
2000

e
2550 2600 2650
Combination of the crossover and mutation rates.

Figure 11: Convergence of the Holland version of a GA
depending on crossover and mutation rates.

efficiencies of 70% for different and high number of PEs.

From the convergence point of view, we showed that if
the number of individuals and islands grows, the conver-
gence improves. We also have shown that the convergence
will be better if we chose some relatively high value of the
crossover and mutation rates.

Finally, we would like to point out the high decrease
in the execution time we observe using parallel algorithms
instead of sequential ones. For instance, in some cases we
presented, the execution time goes from 8 minutes and 59
seconds to 5.7 seconds.

8 Acknowledgements

We would like to thank Cray, Inc., Fundacié Catalana per
la Recerca and Enginyeria La Salle (Universitat Ramon
Llull) for all their support.

References

[1] S.B. Akers. Binary decisions diagrams. I[EEE Trans-
actions on Computers, 27:509-516, 6 1978.

[2] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient
implementation of a BDD package. In Proceedings of
the 27th. Design Automation Conference, pages 40-
45, 1990.

[3] R.E. Bryant. Binary decisions diagrams. [EEE Trans-
actions on Computers, 35:677-691, 8 1986.

[4] M. Dorigo and V. Maniezzo. Parallel Genetic Algo-
rithms, chapter Parallel Genetic Algorithms: Intro-
duction and Overview of Current Research, pages 5—
42. T10S Press, 1993.

[5] B.R. Fox and M.B. McMahon. Genetic operators
for sequencing problems. In Proceedings of the First
Workshop on the Foundations of genetic Algorithms
and Classifier Systems, pages 284-300, 1991.

[6] J.M. Garrell. Microelectronic circuit synthesis tool for
VLSI technology using switch-level logic synthesis. In
Directory of Cray Sponsored University Research and
Development Grants, page 97, 1 1995.

[7) D.E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison Wesley,
1989.

[8] D.E. Goldberg. A note on boltzmann tournament se-
lection for genetic algorithms and population-oriented
simulated annealing. Complex Systems, 6:445-460,
1990.

[9] D.E. Goldberg and R. Lingle. Alleles, Loci and the
TSP. In Proceedings of the First International Confer-
ence on Genetic Algorithms, pages 154-159. Lawrence
Erlbaum Associates, 1985.

[10] John H. Holland. Adaptation in Natural and Artificial
Systems. The MIT Press, 1992.

[11] C.Y. Lee. Binary decisions diagrams. Bell Systems
Technical Journal, 38:985-999, 4 1959.

[12] Zbigniew Michalewicz.
Structures = Ewvolution Programs.
1992.

Genetic Algorithms + Data
Springer-Verlag,

[13] .M. Oliver, D.J. Smith, and J.R.C. Holland. A study
of permutation crossover operations on the traveling
salesman problem. In Proceedings of the Second In-
ternational Conference on Genetic Algorithms, pages
924-230. Lawrence Erlbaum Associates, 1987.

[14] T. Starkweather, S. McDaniel, K. Mathias, C. Whit-
ley, and D. Whitley. A comparision on genetic se-
quencing operators. In Proceedings of the Fourth In-

ternational Conference on Genetic Algorithms, pages
230-236. Morgan Kaufmann Publishers, 1991.

[15] G.Syswerda. Uniform crossover in genetic algorithms.
In Proceedings of the Third International Conference
on Genetic Algorithms, pages 2-9. Morgan Kaufmann
Publishers, Inc., 1989.

[16] G. Syswerda. Handbook of Genetic Algorithms, chap-
ter Schedule Optimization Using Genetic Algorithms,
pages 332-349. Van Nostrand Reinhold, 1991.

CUG 1996 SpringProceedings 75

