

6

CUG 1996 Spring

 Proceedings

High Performance Applications: State-of-the-Art and
Future Requirements*

Barbara Chapman,

Institute for Software Technology and
Parallel Systems, University of Vienna, Liechtensteinstr. 22,
A-1090 Vienna, Austria;

 Piyush Mehrotra,

ICASE, MS 132C;
NASA Langley Research Center, Hampton VA. 23681 USA

;

and

 Hans Zima,

Institute for Software Technology and Parallel
Systems, University of Vienna, Liechtensteinstr. 22, A-1090
Vienna, Austria

ABSTRACT:

In the past, most high performance applications dealt with numerical simulation,
and parallel machines were essentially used only by a relatively small group of dedicated
professionals which had to cope with the idiosyncrasies of the machine at a low level of abstrac-
tion. This situation is changing quickly, driven by enhanced hardware and software support
offered by a new generation of parallel computers, and the rapid expansion of global networks
that lead to the feasibility of applications distributed over geographically widely distant areas.

In this paper, we discuss the language support required for the efficient handling of advanced
applications. We will outline the major features of Vienna Fortran and compare the language
to High Performance Fortran (HPF), a de-facto standard in this area. A significant weakness
of HPF is its lack of support for many advanced applications, which require irregular data
distributions and dynamic load balancing. We introduce HPF+, an extension of HPF based on
Vienna Fortran, that provides the required functionality.

1 Introduction

The continued demand for increased computing power has
led to the development of

highly parallel scalable multipro-
cessing systems (HMPs)

, which are now offered by all major
vendors and have rapidly gained user acceptance. These
machines are relatively inexpensive to build, and are potentially
scalable to large numbers of processors. However, they are
difficult to program: most of the architectures exhibit
non-uniformity of memory access which implies that the
locality of algorithms must be exploited in order to achieve high
performance, and the management of data becomes of para-
mount importance.

Traditionally, HMPs have been programmed using a stan-
dard sequential programming language (Fortran or C),
augmented with message passing constructs. In this paradigm,
the user is forced to deal with all aspects of the distribution of
data and work to the processors, and to control the program's
execution by explicitly inserting message passing operations.
The resulting programming style can be compared to assembly
language programming for a sequential machine; it has led to
slow software development cycles and high costs for software
production. Moreover, although MPI is evolving as a standard
for message passing, the portability of MPI-based programs is
limited since the characteristics of the target architectures may
require extensive restructuring from

the code.

As a consequence, much research and development activity
has been concentrated in recent years on providing higher-level
programming paradigms for HMPS. Vienna Fortran, building
upon the KALL programming language [8] and experiences
from the SUPERB parallelization system [12], was the first
fully specified data-parallel language for HMPS. It provides

' The work described in this paper was partially supported by the Austrian
Research Foundation (FWF) and by the Austrian Ministry for Science and Re-
search (BMWFK). This research was also supported by the National Aeronautics
and Space Administration under NASA Contract No. NASI-18605, while the au-
thors were in residence at ICASE, NASA Langley Research Center, Hampton,
VA 23681.

CUG 1996 Spring

 Proceedings

7

language features for the high-level specification of data distri-
bution and alignment, as well as explicitly parallel loops. High
Performance Fortran (HPF) [7], a de-facto standard developed
by a consortium including participants from industry, academia
and research laboratories, is based on concepts of CM Fortran
[11], Vienna Fortran, and Fortran D [6]. It provides support for
regular applications, alleviating the task of the programmer for a
certain segment of applications. However, it is generally agreed
that the current version of the language,

HPF-1

, is not adequate
to handle many advanced applications, such as multiblock
codes, unstructured meshes, adaptive grid codes, or sparse
matrix computations, without incurring significant overheads
with respect to memory or execution time. This fact has been
acknowledged by the HPF Forum in its decision to start the
development of HPF-2 at the beginning of 1995.

In this paper, we outline the major features of Vienna Fortran
and compare the language to

HPF-1

. We then identify some of
the weaknesses of HPF-1 by considering language requirements
posed by irregular algorithms and dynamic load balancing. This
study leads to the description of an HPF extension, "

HPF+

",
which, based upon Vienna Fortran, solves many of these prob-
lems by introducing proper extensions, and thus contributes to
the present effort of the HPF Forum for defining a suitable
successor to

HPF-1

.

2 Vienna Fortran: A Short Overview

Vienna Fortran is based on the

SPMD

(Single Program
Multiple Data) or data parallel model of computation. With this
method, the data arrays in the original program are each parti-
tioned and mapped to the processors. This is known as

distrib-
uting

the arrays. The specification of the mapping of the
elements of the arrays to the set of processors is called the

data
distribution

of that program. A processor is then thought of as

owning

the data assigned to it; these data elements are stored in
its local memory. Now the work is distributed, in general
according to the data distribution: computations which define
the data elements owned by a processor are performed by it - this
is known as the

owner computes

 paradigm. The processors then
execute essentially the same code in parallel, each on the data
stored locally.

The compiler analyzes the source code, translating global
data references into local and non-local data references based on
the distributions specified by the user. The non-local references
are satisfied by inserting appropriate message-passing state-
ments in the generated code. Finally, the communication is opti-
mized where possible, in particular by combining messages and
by sending data at the earliest possible point in time.

A major characteristic of this style of programming is that the
performance of the resulting code depends to a very large extent
on the data distribution selected by the programmer. The data
distribution determines not only where computation will take
place, it is also the main factor in deciding what communication
is necessary. If, in a given scope, the association between an

array and a distribution is invariant, we speak of a statically,
otherwise of a dynamically distributed array.

'The Vienna Fortran language extensions provide the user
with the following features:

• The

processors

which execute the program may be explic-
itly specified and referred to. It is possible to impose one or
more structures, or

views

, upon them.

• The

distributions

of arrays can be specified using annota-
tions. These annotations may use processor references
related to processor structures introduced by the user.

- Intrinsic functions are provided to specify the most com-
mon distributions.

- Distributions may be defined indirectly via a map array.

- Data may be replicated to all or a subset of processors.

- The user may define new distribution functions.

• An array may be

aligned

with another array, providing an
implicit distribution. Alignment functions may also be
defined by the user.

• The distribution of arrays may be changed

dynamically.

However, a. clear distinction is made between arrays which
are statically distributed and those whose distribution may be
changed at runtime.

• In

procedures

, formal array parameters may

- inherit the distribution of the actual argument, or

- be explicitly distributed, possibly causing some data
motion.

• A

forall

loop permits explicitly parallel loops to be written.
Intrinsic reduction operations are provided, and others may
be defined by the user. Loop iterations may be executed

- on a specified processor,

- where a particular data object is stored, or

- as determined by the compiler.

• Arrays in

common blocks

may be distributed.

•

Allocatable

 arrays may be used in much the same way as in
Fortran 90. Array sections are permitted as actual arguments
to procedures.

Vienna Fortran does not introduce a large number of new
constructs, but those it does have are supplemented by a number
of options and intrinsic functions, each of which serves a
specific purpose. They enable the user to exert additional control
over the manner in which data is mapped or moved, or the code
is executed. A full specification of the language is given in [13];
its use for solving a range of typical application problems is
described in [1].

3 A Comparison of Vienna Fortran and HPF

The main concepts in HPF have been derived from a number
of predecessor languages, including mainly CM Fortran [11],
Kali [8], Fortran D [6], and Vienna Fortran, with the last two
languages having the largest impact.

8

CUG 1996 Spring

 Proceedings

The basic elements of HPF's language model are - similarly
to Vienna Fortran -

abstract processors, distributions,

and

align-
ments

. In addition, HPF has introduced the concept of a
template, which is essentially a named index domain that can be
used as an alignment base. The implications of this construct
which significantly complicates the underlying semantic model
are discussed in [2].

HPF follows Vienna Fortran closely in a number of features.
This includes in particular

• abstract processor arrays

• direct distribution and alignment of arrays

• distinction between static and dynamic distributions

• definition of the procedure interface, in particular inherited
and enforced distributions

• FORALL loops (called

INDEPENDENT

loops in HPF)

On the other hand, a number of advanced concepts of Vienna
Fortran have not been included in HPF. Among them are

• different

processor views

• distribution of arrays to

processor sections

• GENERAL-BLOCK distributions

• INDIRECT distributions

• user-defined distribution functions

These omissions, in particular the absence of language
features for the formulation of more general distribution func-
tions, significantly impairs the applicability of HPF to advanced
algorithms using, for example, irregular or adaptive grids.

4 HPF+

The above discussion has indicated that the use of HPF-1 for
advanced applications leads to problems related to expressivity
and performance. In this section we discuss extensions to HPF-1
that are needed to address these problems. The discussion infor-
mally introduces an HPF extension, called "

HPF+

", using an
ad-hoc HPF-like syntax. The extensions to HPF-1 incorporated
into HPF+ are of two sorts: first, a generalization of the data
distribution mechanisms, and, secondly, control facilities
providing coarse-grain task parallelism integrated with the
data-parallel HPF computation model. They will be discussed in
individual subsections below.

4.1 Distribution to Processor Subsets and Subobject Distri-
bution

The HPF-1

DISTRIBUTE

directive specifies the distribu-
tion of data to a processor array which has been declared by the
user. It does not permit distribution to a part of the processor
array. Also, HPF-1 allows only the distribution of top-level
objects - components of a derived type cannot be distributed.
Here, we show that multiblock problems need both features, and
describe simple extensions to HPF-1 which provide these func-
tionalities. This will be illustrated by a program skeleton
creating a corresponding grid structure.

Scientific and engineering codes from diverse application
areas may use multiple grids to model the underlying problem
domain. These grids may be structured, unstructured or a
mixture of both types, individually chosen to match the under-
lying physical structure and allocate the computational resources
efficiently with high node densities in selected areas. A typical
application may use anywhere from 10 to 100 grids of widely
varying sizes and shapes. Each sweep over the domain involves
computation on the individual grids before data is exchanged
between them. Thus, these types of applications exhibit at least
two levels of parallelism. At the outer level, there is coarse grain
parallelism, since the computation can be performed on each
grid simultaneously. The internal computation on each grid, on
the other hand, exhibits the typical loosely synchronous data
parallelism of structured grid codes.

Distributing the array of grids to the processors so that each
grid is mapped to exactly one processor offers limited paral-
lelism since it only exploits the outer level, the number of grids
may be too small to allow the use of all processors, and the grids
may vary significantly in size resulting in an uneven workload.
Another strategy is to distribute each grid independently to all
processors, enabling the parallelism within a grid to be
exploited. This will lead to a more even workload; however, the
grids may not all be large enough for this to be a reasonable solu-
tion.

Both of the above distribution strategies are likely to be inef-
ficient, particularly on machines with a large number of proces-
sors. A flexible alternative is to permit grids to be separately
distributed to a suitably sized subset of the available processors.
This approach allows both levels of parallelism to be exploited
while providing the opportunity to balance the workload.

HPF-1 does not, however, permit data arrays to be distributed
directly to subsets of processors. In HPF-1 this can be expressed
indirectly by using templates and alignment, but these solutions
are difficult to achieve and will generally require a priori precise
knowledge of the size of both the grid and the processor array,
and must be reimplemented for each modification of the
problem. A simpler solution is to adopt a direct approach, which
permits a processor subsection to be the target of a distribution.
An example of this is shown in Figure 1.

Consider the case of a multiblock problem where the number
of grids and their sizes are not known until runtime. Each grid
can be declared as a pointer within a derived type and the set of
all grids can be an allocatable array, where each element is a
grid. HPF-1 allows us to distribute the array of grids to the
processors. However, we may not distribute the individual grids
across processors, since these are subobjects and their distribu-
tion is explicitly prohibited. This is necessary for exploiting the
parallelism present within the individual grids. The algorithm in
Figure 1 illustrates a solution for this problem, by providing a
notation for the distribution of subobjects. We assume that at
most one level in a nested structure can be distributed in this
way.

CUG 1996 Spring

 Proceedings

9

4.2 General Block Distributions

Dimensions of data arrays or templates can be mapped in
HPF-1 by specifying either block or cyclic distributions. There
are a number of problems for which these regular mappings do
not result in an adequate balance of the workload across the
processors of the target machine, but which can be handled by
general block distributions, a relatively simple extension of
HPF-l's regular block distributions.

General block distributions were initially implemented in
SUPERB and Vienna Fortran. They are similar to the regular
block distributions of HPF-1 in that the index domain of an array
dimension is partitioned into contiguous blocks which are
mapped to the processors; however, the blocks are not required
to be of the same size. Thus, general block distributions provide
more generality than regular blocks while retaining the conti-
guity property, which plays an important role in achieving target
code efficiency.

Consider a one-dimensional array

A

 declared as

REAL

A

[

I

 :

u

], and assume that there are

N

 processors

pi

,

1

≤

i

≤

N.

If we
distribute

A

 using a general block distribution

GENERAL-BLOCK(B),

where

 B

 is a one-dimensional integer
array with

N

 elements, and

B

(

i

)

= si

(with

si

>

0 for all

i

) denotes
the size of the

i-

th block, then processor

p

1

owns the local

segment

A

[

l

 :

l

+ si -

1],

p

2

owns

A

[

l

 +

s

1

 :

l

 +

s

1

 +

s

2

- 1] and so

on.

B

, together with the index domain of

A

 completely deter-

mines the distribution of

A,

 and provides all the information
required to handle accesses to

A

 including the organization of the
required communication. The above scheme can be readily
generalized to multi-dimensional arrays, each dimension of
which is distributed by regular or general block.

The following code fragment illustrates an array

A

 whose
rows are distributed in blocks of sizes
400,400,200,100,100,100,500, and 800.

!HPF$ PROCESSORS R(8)

INTEGER :: B(8) =
(/400,400,200,100,100,100,500,800/)

REAL A(2600,100)

!HPF+$ DISTRIBUTE (GENERAL_BLOCK(B),*)::A

Although the representation of general block distribution
requires on the order of the number of processors to describe the
entire distribution, optimization often permits a local description
of the distribution to be limited to just a few processors, with
which there will be communication. Also, the space overhead
due to this representation is not large in general, since most prob-
lems do not require a large number of distinct general block
distributions.

Arrays distributed in this way can also be efficiently managed
at runtime, allowing the use of the

overlap

[15] concept to opti-
mize communication related to regular accesses. Finally, codes
can be easily parameterized with such distributions: for

Figure 1: Creation of the grid structure for a multiblock code

10

CUG 1996 Spring

 Proceedings

example, a procedure with a transcriptive formal argument1 that
is supplied with differently distributed actual arguments can be
efficiently compiled if the representation of the argument's
distribution is passed along as a set of additional implicit argu-
ments created by the compiler.

4.3 Irregular Distributions

General block distributions provide enough flexibility to
meet the demands of some irregular computations: if, for
instance, the nodes of a simple unstructured mesh are partitioned
prior to execution and then appropriately renumbered, the
resulting distribution can be described in this manner. This
renumbering process is similar to domain decomposition and
can be a complex and computationally demanding task.
However, this approach is not appropriate for all irregular prob-
lems. A general block distribution, even with two or three
dimensions, may not be able to provide an equal workload per
processor. Also, block distributions are always constrained by
the adjacency of data. The single workspaces typically used in
Fortran programs cannot necessarily be renumbered in such a
way as to produce a sequential group of regions. Irregular distri-
butions offer the ability to express totally unstructured or irreg-
ular data structures but at some cost in terms of the code the
compiler must generate.

We will here introduce two different mechanisms to handle
general data distributions. We begin with

indirect distribution

functions, which allow the specification of a distribution via

a
mapping array and continue with

user-defined distribution func-
tions.

4.3.1 Indirect Distributions

Indirect distribution functions

can express any distribution
of an array dimension that does not

involve replication. Consider
the following program fragment in HPF+:

!HPF$ PROCESSORS R(M)
REAL A(N)
INTEGER MAP(N)
...
!HPF,$ DYNAMIC, DISTRIBUTE(BLOCK)::A
!HPF$ DISTRIBUTE (BLOCK)::MAP
...
!

 Compute

a

new distribution for A and save it
in the

mapping array

MAP: the j-th

 element

of
A is mapped to the processor whose number is
stored in

MAP(j)

CALL PARTITIONER(MAP, A,)
!

Redistribute A as specified by

MAP.
!HPF+$ REDISTRIBUTE A(INDIRECT(MAP))

Array

A

 is dynamic and initially distributed by block. MAP is
a statically distributed integer array that is of the same size as

A

and used as a

mapping array

for A; we specify a reference to an

indirect distribution function in the form INDIRECT(MAP).
When the reference is evaluated, all elements of MAP must be
defined and represent valid indices for the one-dimensional
processor array R, i.e., they must be numbers in the range
between 1 and M. A is then distributed such that for each j, 1
≤j ≤N, A(j) is mapped to R(MAP(j)). In this example, MAP is
defined by a partitioner, which will compute a new distribution
for A and assign values to the elements of MAP accordingly.
(This distribution will often be used for a number of arrays in the
program).

The example in Figure 2 illustrates the use of indirect distri-
butions in the context of a sweep over an unstructured mesh.

Indirectly distributed arrays must be supported by a runtime
system which manages the internal representation of the
mapping array and handles accesses to the indirectly distributed
array. The mapping array is used to construct a translation table,
recording the owner of each datum and its local index. Note that
this representation has O(N) elements, on the same order as the
size of the array; however, most codes require only a very small
number of distinct indirect mappings. The PARTI routines
developed by J. Saltz and collaborators [91 represent a runtime
library which directly supports indirect distribution functions, in
connection with irregular array accesses.

4.3.2 User-Defined Distribution Functions
Indirect distribution functions incur a considerable overhead

both at compile time and at runtime. A difficulty with this
approach is that when a distribution is described by means of a
mapping array, any regularity or structure that may have existed
in the distribution is lost. Thus the compiler cannot optimize the
code based on this complex but possibly regular distribution.
User-defined distribution functions (UDDFS) provide a
facility for extending the set of intrinsic mappings defined in the
language in a structured way. The specification of a UDDF
establishes a mapping from (data) arrays to processor arrays,
using a syntax similar to Fortran functions. UDDFs have two
implicit formal arguments, representing the data array to be
distributed and the processor array to which the distribution is
targeted. Specification statements for these arguments can be
given using the keywords TARGET_ARRAY and
PROCESSOR_ARRAY, respectively. UDDFs may contain
local data structures and executable statements along with at
least one distribution mapping statement which maps the
elements of the target array to the processors.

UDDFs constitute the most general mechanism for speci-
fying distributions: any arbitrary mapping between array indices
and processors can be expressed, including partial or total repli-
cation. We illustrate their use by an example, representing indi-
rect distributions. For simplicity we assume here that A and MAP
have the same shape.

!HPF+$ DFUNCTION INDIRECT(MAP)
!HPF+$ TARGET_ARRAY A(*)
!HPF+$ PROCESSOR_ARRAY R(:)
!HPF+$ INTEGER MAP(*)

1 If such an argument is passed by reference, the distribution is left intact, and
thus no movement of data will be necessary.

CUG 1996 Spring Proceedings 11

!HPF+$ Do I=1,SIZE(A)
!HPF+$ A(l) DISTRIBUTE TO R(MAP(I))
!HPF+$ ENDDO
!HPF+$ END DFUNCTION INDIRECT

4.4 Extensions of the INDEPENDENT Loop Concept
Whenever a do loop contains an assignment to an array

involving an indirect access, the compiler will not be able to
determine whether the iterations of the loop may be executed in
parallel. Since such loops are common in irregular problems,
and may contain the bulk of the computation, the user must
assert the independence of its iterations.

For this purpose, HPF-1 provides the INDEPENDENT
directive, which asserts that a subsequent do loop does not
contain any loop-carried dependencies, allowing the loop itera-
tions to be executed in parallel. A NEW clause introduces
private variables that are conceptually local in each iteration, and
therefore cannot cause loop-carried dependencies.

There are two problems with this feature:

• There is no language support to specify the work distribu-
tion for the loop, i.e., the mapping of iterations to proces-
sors. This decision is left to the compiler/runtime system.

• Reductions, which perform global operations across a set of
iterations, and assign the result to a scalar variable, violate
the restriction on dependencies and cannot be used in the

loop.2

The first problem can be solved by extending the INDEPEN-
DENT directive with an ON clause that specifies the mapping,
either by naming a processor explicitly or referring to the owner
of an element. For example, in Figure 2 INDEPENDENT is
used for the I loop over edges so that the loop is executed on the
processor that owns the array element EDGE(I,1).

The second problem can be solved by extending the language
with a REDUCTION directive—which is to be permitted
within independent loops—and imposing suitable constraints on
the statement which immediately follows it. It could be
augmented by a directive specifying the order in which values
are to be accumulated. Note that simple reductions could be
detected by most compilers.

In Figure 2, many proposed features of HPF+ are illustrated
for a simple unstructured mesh code. The mesh for this code
consists of triangles; values for the flow variables are stored at
their vertices. The computation is implemented as a loop over
the edges: the contribution of each edge is subtracted from the
value at one node and added to the value at the other node. The
mesh is represented by the array EDGE, where EDGE(I, 1) and
EDGE(I, 2) are the node numbers at the two ends of the I-th
edge. The arrays X and Y represent the flow variables, which
associate a value with each of the NNODE nodes.

Consider the distribution of the data across the one-dimen-
sional array of processors, R(M). The array X is declared to be

dynamically distributed with an initial block distribution. At
runtime this array is distributed indirectly, as defined in the
mapping array MAP obtained from the user-specified routine
PARTITIONER. Y is also declared with the keyword
DYNAMIC and is aligned to X. Whenever X is redistributed, Y
is automatically redistributed with exactly the same distribution
function.

Since the elements of EDGE are pointers to flow variables—
in iteration I, X(EDGE(I, 1)), X(EDGE(I,2)) and the corre-
sponding components of X and Y are accessed—we relate the
distribution of EDGE to the distribution of X and Y in such a way
that EDGE(I,:) is mapped to the same processor as
X(EDGE(I,1)).

This kind of relationship between data structures occurs in
many codes, since a mesh is frequently described in terms of
elements, and values are likely to be accumulated at the vertices.
It can be simply expressed if we extend the REDISTRIBUTE
directive as shown in the example.

The computation is specified using an extended INDEPEN-
DENT loop. The work distribution is specified by the ON
clause: the I-th iteration is to be performed on the processor that
owns EDGE(I, 1). The variables NI, N2 and DELTAX are
private, so, conceptually, each iteration is allocated a private
copy of each of them. Hence assignments to these variables do
not cause loop-carried dependencies [14].

For each edge, the X values at the two incident nodes are read
and used to compute the contribution DELTAX for the edge. This
contribution is then accumulated into the values of Y for the two
nodes. But since multiple iterations will accumulate Y values at
each node, different iterations may write to the same array
elements. As a consequence, we have indicated that these are
reductions.

The dominating characteristic of this code, from the point of
view of compilation, is that the values of X and Y are accessed
via the edges, hence a level of indirection is involved. In such
situations, either the mesh partition must be available to and
exploitable by the compiler, or runtime techniques such as those
developed in the framework of the inspector-executor paradigm,
[9] are needed to generate and exploit the communication
pattern.

4.5 Data Distribution and Alignment —Other Issues

There are a number of other issues with the specification of
data distribution and alignment in HPF-1 which we have not
discussed here. These include processor views, control of
dynamic data distributions, library interfaces, and the procedure
boundary; they are discussed in [4].

4.6 Integration of Task With Data Parallelism

With the rapidly growing computing power of parallel archi-
tectures, the complexity of simulations developed by scientists
and engineers is increasing fast. Many advanced applications are
of a multidisciplinary and heterogeneous nature and thus do not
fit into the data-parallel paradigm.

2 Note however that HPF-1 and Fortran 90 provide intrinsics for some impor-
tant reductions.

12 CUG 1996 Spring Proceedings

Multidisciplinary programs are formed by pasting together
modules from a variety of related scientific disciplines. For
example, the design of a modern aircraft involves a variety of
interacting disciplines such as aerodynamics, structural analysis
and design, propulsion, and control. These disciplines, each of
which is initially represented by a separate program, must be
interconnected to form a single multidisciplinary model
subsuming the original models and their interactions. For task
parallelism to be useful, the parallelism both within and between
the discipline models needs to be exposed and effectively
exploited.

In this section, we propose language features that address this
issue. These extensions provide a software layer on top of
data-parallel languages, designed to address the "programming

in the large" issues as well as the parallel performance issues
arising in complex multidisciplinary applications. A program
executes as a system of tasks which interact by sharing access to
a set of Shared Data Abstractions (SDAs). SDAs generalize
Fortran 90 modules by including features from object-oriented
data bases and monitors in shared-memory languages. They can
be used to create persistent shared "objects" for communication
and synchronization between coarse-grained parallel tasks, at a
much higher level than simple communication channels trans-
ferring bytes between tasks.

A task is spawned by activating a subroutine with a list of
arguments all of which must be of intent IN. Tasks are asynchro-
nously executing autonomous activities to which resources of
the system may be allocated. For example, the physical machine

Figure 2: Code for Unstructured Mesh in HF+

CUG 1996 Spring Proceedings 13

on which a task is to be executed, along with additional require-
ments pertaining to this machine, may be specified at the time a
task is created.

Tasks may embody nested parallelism, for example by
executing a data-parallel HPF program, or by coordinating a. set
of threads performing different functions on a shared data set.

An SDA consists of a set of data structures along with the
methods (procedures) which manipulate this data. A set of tasks
may share data by creating an SDA instance of appropriate type,
and making it accessible to all tasks in the set. Tasks may then
asynchronously call the methods of the SDA, with each call
providing exclusive access. Condition clauses associated with
methods and synchronization facilities embodied in the methods
allow the formulation of a range of coordination strategies for
tasks. The state of an SDA can be saved on external storage for
later reuse. This facility can be seen as providing an 1/0 capa-
bility for SDAs, where in contrast to conventional byte-oriented
1/0 the structure of the object is preserved.

Other Fortran-based approaches to the problem of combining
task with data parallelism include the programming languages
Fortran M [5], which provides a message-passing facility in the
context of a discipline enforcing determinism, and Fx [10],
which allows the creation of parallel tasks that can communicate
at the time of task creation and task termination by sharing argu-
ments. These approaches address a small grain of parallelism.

5 Conclusion

In this paper, we have outlined the features of Vienna Fortran,
and compared the language to HPF1. After an analysis of weak-
nesses of HPF-1 in the context of advanced algorithms, we
proposed an extension, HPF+, which is based on Vienna Fortran
and addresses these problems. HPF+ can be seen as a contribu-
tion to the work of the HPF Forum towards the standardization
of parallel languages for scalable High Performance architec-
tures.

6 References

[1] B. Chapman, P. Mehrotra and H. Zima. Programming in Vienna For-
tran. Scientific Programming l(l):31-50, Fall 1992.

[2] B. Chapman, P. Mehrotra, and H. Zima. High Performance Fortran
Without Templates: A New Model for Data Distribution and Alignment.
Proc. Fourth ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, San Diego (May 19-22, 1993), ACM SIGPLAN Notices
Vol. 28, No.7, pp. 92-101, July 1993.
[3] B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A Soft-
ware Architecture for Multidisciplinary Applications: Integrating Task and
Data Parallelism. Proc. CONPAR'94, Linz, Austria, September 1994. Also:
Technical Report TR 94-1, Institute for Software Technology and Parallel
Systems, University of Vienna, Austria, March 1994 and Technical Report
94-18, ICASE, NASA Langley Research Center, Hampton VA 23681.
[4] B. Chapman, P. Mehrotra, and H. Zima. Extending HPF for Ad-
vanced Data-Parallel Applications. IEEE Parallel & Distributed Technology
2(3):59-70, Fall 1994.
[5] 1. T. Foster and K. M. Chandy. Fortran M: A Language for Modular
Parallel Programming. Technical Report MCS-P327-0992 Revision 1. Math-
ematics and Computer Science Division, Argonne National Laboratory, June
1993.
[6] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.
Tseng, and M. Wu. Fortran D language specification. Department of Com-
puter Science Rice COMP TR90079, Rice University, March 1991.
[7] High Performance Fortran Forum. High Performance Fortran Lan-
guage Specification Version I.O. Technical Report, Rice University, Hous-
ton, TX, May 3, 1993. Also available as Scientific Programming
2(1-2):I-170, Spring and Summer 1993.
[8] P. Mehrotra and J. Van Rosendale. Programming distributed memory
architectures using Kali. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua,
editors, Advances in Languages and Compilers for Parallel Processing, pp.
364-384. Pitman/MIT-Press, 1991.
[9] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time
scheduling and execution of loops on message passing machines. Journal of
Parallel and Distributed Computing 8(2):303-312, 1990.
[10] J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting
Task and Data Parallelism on a Multicomputer. Proc. Fourth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, San
Diego (May 19-22, 1993), ACM SIGPLAN Notices Vol.28, No. 7, July
1993.
[11] Thinking Machines Corporation. CM Fortran Reference Manual,
Version 5.2. Thinking Machines Corporation, Cambridge, MA, September
1989.
[12] H. Zima. H. Bast, and M. Gerndt. Superb: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1 18, 1988.
[131 H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vi-
enna Fortran—a language specification. ICASE Internal Report 21, ICASE,
Hampton, VA, 1992.
[14] H. Zima and B. Chapman. Supercompilers for Parallel and Vector
Computers. ACM Press Frontier Series, Addison-Wesley, 1990.
[15] H. Zima and B. Chapman. Compiling for Distributed Memory Sys-
tems. Proceedings of the I-EEE, Special Section on Languages and Compil-
ers for Parallel Machines, pp. 264-287, February 1993. Also: Technical
Report ACPC/TR 92-16, Austrian Center for Parallel Computation, Novem-
ber 1992.

