
 

76

 

CUG 1996 Spring 

 

 Proceedings

 

Numerical Analysis of the Flow Between a Pair of 
Corotating Enclosed Disks

 

Joan Herrero 

 

and

 

 Francesc Giralt

 

, Universitat Rovira i Virgili
de Tarragona,  Departament d’Enginyeria Química, Tarragona,
Catalunya, Spain, and 

 

Joseph A. C. Humphrey

 

, University of
Arizona, Department of Aerospace and Mechanical Engineering,
Tucson, Arizona, USA

 

Introduction

 

Many mechanical devices involving engineering applica-
tions contain rotating disks. The presence of a large, flat surface
together with a rotation-induced fluid motion makes this
geometrical system suitable for the transfer of heat, mass and
momentum. The problem is relevant not only at a fundamental
level in fields such as geophysics but in engineering practice as
well. Rotating disks are present, for example, in turboma-
chinery, reactors for the manufacture of semi-conductors by
chemical vapour deposition (CVD), rotating disk contactors for
liquid-liquid extraction, rotating disk electrodes, etc. 

The flow between a pair of corotating disks in a fixed enclo-
sure has received a great deal of attention in recent years
because it approximates the geometry of magnetic information
storage devices in the computer industry (more commonly
known as ‘hard disks’.) A sketch of the problem investigated is
shown in Fig. 1. The most relevant geometrical parameter is the
height to radius aspect ratio, 

 

Γ

 

 = H / (R

 

2

 

-R

 

1

 

), where H is the

inter-disk axial spacing and R

 

1

 

, R

 

2

 

 are the disk inner and outer

radius, respectively. A review of the literature on the subject
prior to 1991 can be found in the article by Humphrey et al. [1].
At relatively low rotation speeds, i.e., low values of the

Reynolds number, Re = 

 

Ω

 

R

 

2
2

 

/n, the flow between a pair of

corotating disks in a fixed enclosure is steady, axisymmetric
(2D) and is characterised by a pair of counter-rotating
cross-stream vortices near the outer cylindrical wall [2-4]. In the
above expression for the Reynolds number W is the angular

velocity of rotation of the disks and hub, R

 

2

 

 is the disk external

radius and v is the fluid kinematic viscosity. 

When the angular velocity of rotation of the disks and hub is
sufficiently increased, the flow becomes three-dimensional
(3D) and unsteady. Such a 2D-3D transition was already
reported in early investigations such as, for example, that of
Lenneman [5]. More recently, Humphrey et al. [6] analysed
numerically the 3D structure of the flow at a height to radius
aspect ratio of 

 

Γ

 

 = 0.2. The flow displays a 3D wavy structure
which precesses with respect to the disks and hub. The wavy
nature of the flow leads to a fluctuating behaviour of the
measured or computed velocity records, which are observed to
oscillate around its average value. The contribution by
Humphrey et al. [6] does not account, however, for all of the
complexities of the 3D flow reported in some of the previous
experimental investigations, such as that of Abrahamson et al.
[7]. A more comprehensive analysis of the structure of the 3D
flow in the range of aspect ratios 0.1

 

≤

 

Γ

 

≤

 

0.4 may be found in the
contribution by Herrero et al. [8], who also assessed the effect
of a radial clearance between the disk tip and the enclosure wall
(see Fig. 1.) 

In the remainder of the text, conservation equations
governing the flow can be found in Section 2, the main features
of the numerical algorithm are discussed in Section 3 and finally
Section 4 presents some examples of the calculations carried out
by the authors over the period 1993-1996. 
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Conservation equations

 

The flow is assumed to be incompressible, laminar and
Newtonian. In these conditions, the conservation of mass and
momentum in a frame of reference rotating at the angular
velocity of rotation of the disks and hub, 

 

Ω

 

, is governed by the
following set of partial differential equations: 

continuity:

(1)

z-momentum: 

(2) 

r-momentum: 

(3) 

 

θ

 

-momentum: 

(4) 

where 

 

ρ

 

 is the fluid density, u, v, and w are the respective velocity
components in the axial, radial and circumferential directions (z,
r, 

 

θ

 

), t denotes time, p’ is the modified pressure (which also
includes the contribution of the gravity potential field,) the

symbol D/Dt denotes the substantial derivative and

 

 ∇

 

2 

 

stands for
the Laplacian operator. Some terms in the above equations arise
as a result of the rotation of the frame of reference and play a
major role in determining the structure and the stability proper-
ties of the flow under investigation. These are the centrifugal

force (

 

Ω

 

2

 

r) in Eq. (3) and the radial (2w

 

Ω

 

) and circumferential
(-2v

 

Ω

 

) components of the Coriolis force in Eqns. (3) and (4). The
above conservation equations are subject to the following set of
boundary conditions: 

u = v = 0 at any solid boundary (5a) 

w = 0 at the disk and hub surfaces (5b) 

w = -

 

Ω

 

R

 

2

 

 at the enclosure wall (5c) 
It should be noted that the Eqns. (2-4) are given in dimen-

sional form. The corresponding non-dimensional equations can

be obtained by introducing R

 

2

 

 and 

 

Ω

 

R

 

2

 

 as the respective length

and velocity scales and defining the corresponding dimension-
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less variables. The Reynolds number, defined in Section 1
above, would therefore appear in the resulting dimensionless
equations. 

 

Numerical method

 

Calculations have been performed using the CUTEFLOWS
numerical algorithm for unsteady incompressible flows [6]. It
has been extensively tested and successfully used to calculate a
variety of flow configurations including rotating disk, bluff
bodies [9, 10], and backward-facing step [11, 12] problems. The
algorithm is based on a staggered-grid, control volume discreti-
zation approach to derive finite difference forms of the conser-
vation equations in terms of primitive variables. Central
differencing is used to approximate the pressure and diffusion
terms in the momentum equations. The second order accurate
QUICK scheme is used for the convection terms. Continuity
yields a discrete Poisson equation which is solved for pressure
using the conjugate gradient method. The algorithm is explicit in
time and the use of a second order Runge-Kutta scheme renders
it second order accurate in time as well as in space. The explicit
character of the time-marching makes possible a high degree of
vectorization and parallelization of the code. 

The distribution of computational nodes throughout the
calculation domain is optimised so that the grid is fine enough in
the vicinity of any solid boundary, where strong velocity gradi-
ents occur. The amount of computational nodes in a typical 3D
calculation ranges from 150,000 to 300,000, depending on the
particular conditions of a given run. The total CPU time required
for a complete calculation also depends on the characteristics of
each run. Typical CPU times (on the basis of 1 CPU on a
CRAY-YMP computer) for a 3D run range between 20 and 200
hours. 

 

Results

 

Results presented here correspond to the case with 

 

Γ

 

 = 0.2
and A = 0 (see Fig 1.) At this height to radius aspect ratio, which
matches that of Schuler’s [13] experimental device, transition
from steady 2D to unsteady 3D flow is numerically detected at a
Reynolds number about Re = 16,000. Changes in 

 

Γ

 

 lead to
important modifications in the value of the transition Reynolds
number as well as in the structure of the resulting 3D flow [8]. 

At any Reynolds number value below the 2D-3D transition
boundary the flow is steady and axisymmetric. The typical
cross-stream structure of this 2D flow is shown in Fig. 2, where
streamlines are plotted for a calculation at Re = 13,710 on a
40x74 (z, r) computational grid. When the Reynolds number is
increased beyond the critical value the flow becomes 3D and
unsteady and the cross-stream vortices acquire a wavy shape.
This is shown in Fig. 3a, where the instantaneous cross-stream
structure of the flow at a given circumferential location is plotted
for a 3D calculation with Re = 20,565 on a 40x74x52 (z, r, 

 

θ

 

)
grid. The oscillation of the cross-stream flow structure also
affects the main, circumferential motion, as illustrated in Fig. 3b
where the distribution of the axial component of vorticity (basi-
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cally a function of w only) is plotted for the same conditions of
Fig. 3a. The oscillation of the cross-stream vortices, portrayed in
Fig. 3a, results in a circumferentially-periodic flow structure.
The midplane distribution of the modulus of vorticity, plotted in
Fig. 4 for the same 3D calculation of Fig. 3, illustrates the
circumferential periodicity with a wave-number 

 

m

 

 = 4.

Predictions for a parameter of practical relevance such as the
disk momentum coefficient, C

 

M

 

, are presented in Fig. 5. The

disk momentum coefficient is proportional to the sum of the
contributions from each opposing disk surface to the total torque
(see reference [8] for further details.) Thus, C

 

M

 

 would give a

good idea, in a real computer hard disk consisting of a stack of
disks in a casing, of the dissipation of energy due to the rotation
of the disks. As can be seen in Fig. 5, predictions from both 2D
[14] and 3D calculations agree well with previous experiments
of Hudson and Eibeck [15] at the highest Reynolds number
investigated. Moreover, calculated C

 

M

 

 values tend to the theo-

retical behaviour [16] C

 

M

 

 

 

α

 

 Re

 

-0.5

 

 for sufficiently high

Reynolds numbers. It should be noted that the -0.5 exponent in
the above dependence can only be achieved at Reynolds

numbers typically above Re = 10

 

5

 

, when the disk boundary
(Ekman) layers are already perfectly established [17]. 
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Figure 1:

 

 

 

Schematic of the ECDP geometry investigated. Dimensional values are, for the case presented here, H = 9.53 mm, R

 

1

 

 = 56.4 mm, 
R

 

2

 

 = 105 mm and A = h = 0.

Figure 2:

 

 

 

Streamline patter for a two dimensional calculation at Re = 13,710 

  

((((ΩΩΩΩ

 

 = 200 rpm) on a 40x74 (z, r) computational grid. The number 
of equally spaced iso-contours is 11 with maximum and minimum dimensionless values of -0.039 and 0.039. Negative values (excluding zero) 
are denoted by dashed lines. The dimensional values of the stream-function have been normalised with the value of the circumferential flow 
rate that would be crossing the z-r plane at any instant for the case with all the fluid rotating in solid body rotation with the disks and hub. 
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Figure 3:

 

 

 

Results for a 3D calculation at Re = 20,565 (

  

ΩΩΩΩ

 

 = 300 rpm) on a 40x74x52 grid. Instantaneous velocity vectors in the cross-stream 
plane are plotted in (a) while the corresponding distribution of the dimensionless axial component of vorticity is plotted in (b). 
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Figure 4:

 

 

 

Distribution of the dimensionless modulus of vorticity at the inter-disk midplane for the same 3D calculation of Fig. 3. 

Figure 5:

 

 

 

Predicted values of the disk momentum coefficient for different Reynolds numbers. Data by Hudson and Eibeck [14] have also been 
included for comparison purposes. 


