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A program for electronic structure computations, which
scales linearly (O(N)) with the number of atoms in a sys-
tem, suitable for disordered systems, transition metal orides,
interfaces, superlattices, and in general for nanometer scale
engineered structures consisting of millions of atoms, has been
implemented on a vector-parallel Cray C90. It runs at a speed
of 8.5 GFlop/s on 16 CPUs Cray C90. We believe that the
system studied using this program (1,105,920 atoms in rutile
T30 ) is the largest quantum mechanical electronic structure
calculation reported so far.

We report on our experiences of porting and optimizing
this code on C90 and T38D architectures.

I. INTRODUCTION

Elucidation of the electronic structure of solids was
and continues to be one of the most central problems of
condensed matter physics [1]. Electronic structure of ide-
al, periodic solids: metals, insulators and semiconductors
has been established over the last half-century through
many different approaches, most of them based on ap-
plications of the Bloch Theorem. Presently considerable
research efforts are devoted to development of fast (lin-
ear O(N), where N is the number of atoms) algorithms,
large-N methods, real space methods and their parallel
implementations for the studies of electronic structure of
complex systems.

In this paper we present a method which is per-
fectly suitable for very large atomic systems, is a real-
space method, has been implemented on massively par-
allel SIMD, PVP and MPP architectures and scales as
O(N) on the Cray PVP architecture.

Why are we interested in the large-N methods? The
reasons are many. Most importantly real systems in na-
ture are almost always far from perfect. That means
all approximations based on ideal symmetry, perfect
stoichiometry, clean composition without impurities etc.
should be treated with caution. For example, for a sys-
tem with a high concentration of defects, the traditional
approach based on the perturbation method is not only
very difficult, but may not be applicable. Indeed, the
very fact that systems are far from perfect make them
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more interesting and endow them with peculiar charac-
teristics.

Further, fabrication of artifical structures in 0, 1,
2 or quasi-2 dimensions in nano-meter scale has been
achieved. Such structures have unique electronic and op-
tical properties which can not be easily approximated by
results obtained for ideal, infinite 3-D models. This calls
for methods of computation of electronic structure and
all related properties for complete atomic scale models of
structures [2].

The method presented in this paper, indeed the
original program on which this work is based, was recent-
ly used for elaborate studies which combined electronic
structure with the dynamics of ions in dense plasmas [3].

II. ELECTRONIC STRUCTURE: EQUATION OF
MOTION METHOD

The group of materials we are interested in, such
as insulators or semiconductors, are reasonably well de-
scribed by a model Hamiltonian which treats all outer
shell electrons as rather well localized “atomic orbitals”
- it is called the tight binding model. This model can
in principle be also used for metals, but the delocalized
nature of conduction electrons requires a very large (still
impractical) basis set for each atom.

The tight binding Hamiltonian is written in a form

H= Z‘i,ucz?,uci,u + Z (ti,u;j,vcft,ucj,v +he) (2.1)

iy ipdv

where the s and j's are site indices, the Greek letters
i, v are indices labeling orbitals and the sum on (ij) is
over neighbors on the lattice. The first term on the right
hand side of the equation describes the “on site” energy
at site 7 and atomic orbital i, and the second term rep-
resents “hopping energy” of the electron “jumping” from
J,V to i, u site/orbital state. The operators ¢, and ¢y
are called creation and anihilation operators respectively.

In this work we report application of the equation
of motion method (EoM) [4,5] to computations of local,
orbital projected, total, and surface electronic densities



of states on PVP and MPP Cray architectures. The
equation of motion method is intuitively very simple.
All computations are performed in direct space. The
method effectively computes the spectrum of a Hamilto-
nian (Schroedinger equation) without resorting to a di-
rect diagonalization.

Let us summarize the formal results which form the
basis of the equation of motion method.

The density of states N, (w) associated with orbitals
of type p is given by:

Ny(w) = ZZI < nli,p > 26w — €n) (2.2)
n i

where < n| are the eigenstates of the tight-binding prob-
lem in the (disordered) lattice and the |7, u > is the tight-
binding state localized on site ¢ and of the orbital type
L.

It can be shown that the above expression can be repre-
sented as

Ny(w) = —%Im [/Ze‘i‘#""F;‘,‘(t)e*".“"dt (2.3)

where F; u(t) =3, aj,vGi ujw(t) is the amplitude of
Green’s function.

We define the Green’s function in a standard way:
Gipg(t) = —i0(t) < {esult), ], (0)} >.

The time evolution of the quantum system is governed
by the equation of motion

ihOF; /0t = HiujuFiu (2.4)
I
with the initial condition F; ,(0) = —ia; ,

Insulators or wide gap semiconductors can be de-
scribed by the tight binding Hamiltonian, Eq. (2.1).

In order to compute the total electronic density of
states (for the orbital of type p) we set the coefficients
in expression for F; , to be: a; , = €'%"#; with random
¢i,u; 0< ¢i,y < 2.

The equation of motion is integrated using the for-
mal solution

F(tH-I) = eXp(—iH(St)F(tl)

with the Chebyshev polynomial fit of the exponential
function expansion. More details can be found in ref-
erences [6-8].

(2.5)

IIT. IMPLEMENTATION ON CRAY C90 AND
T3D COMPUTERS

A. C90: PVP implementation

The massively parallel implementation of the
equation-of-motion program designed for array proces-
sor SIMD architecture [7,8] was modified specifically for

MIMD (as well as SIMD) machines. The connection of
physics and parallel architecture is contained in Eq. (2.4)
and especially Eq. (2.1). The values of hopping integrals
ti u.j,» Tepresent “exchange of information” between the
neighbouring atoms. Depending on the location of an
atom, it may correspond to inter- or intra-processor com-
munication.

Most of our PVP work was done on Cray C916,
serial number SN-4025. Over time, its configuration has
changed. At present it is called Rain (it was Hot) and is
described thus:

Environment — Unicos/Production

Mainframe — SN 4025
Model — CRAY C916
CPUs — 16

Memory Size — 512 mW
Memory banks — 512
Chip Type — MEM4M
Clock — 4.167 ns

SSD —
Model — SSDE
Size — 1024

IOS — IOSE SN 709

Depending on the size of the sample the program
ran between 550 to 630 MFlops/s on a single processor
C90. This means we achieved about 57% to 66% effi-
ciency of a single vector processor of CRAY C90. The
sample sizes are presented in the table below. Each unit
cell contains six atoms. The dimensions of the largest
sample were 18 x 22 x 28nm.

TABLE [. Ti0; model system sizes

System size Number of atoms

axbxc

6x6x6 1296
10 x 10 x 12 7200
12 x 12 x 12 10368
16 x 16 x 16 24574
18 x 18 x 18 34992
20 x 20 x 20 48000
24 X 24 x 24 82944
81 x 81 x 10 393660
45 x 45 x 42 510300
40 x 48 x 48 552960
40 x 48 x 96 1105920

The results of benchmarks are presented in Figure 1.
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FIG. 1. Computation time as a function of system size for
different numbers of Cray C90 processors employed. Linear
scaling is seen for all hardware configurations.

The running time was defined as the total CPU time
divided by the number of processors which ran a particu-
lar job. The running time defined this way differs slightly
(up to about 15%) from the wallclock figures given on
completion of each job. The discrepancy is attributed
to the fact that we ran our program on a busy machine
with many jobs competing for the resources. For a giv-
en sample size the slope of each curve decreases with
the number of processors. This indicates deterioration of
performance of each processor as the number of proces-
sors used grows. The best performance achieved was 8.5
GFlops with 16 processors (wallclock 452s, system size
552960 atoms).

The linear scaling of the equation of motion algo-
rithm can be expressed as T = @ncpus X Natoms, Where
T is the run time defined above, N;joms is the num-
ber of atoms in the sample and a@,cpu, is the linear co-
efficient depending on the number of processors ncpus.
The coefficients @nepus normalized to unity (a; = 1) are
plotted on Figure 2. The solid triangles are the re-
sults for our algorithm and the open squares are frac-
tions 1, 1/4, 1/8, 1/12 and 1/16 corresponding to the
best possible speed-up on a vector-parallel machine when
increasing the number of processors from 1 to 4 to 8 to
12 to 16 respectively. Our results very closely follow the

relationship apcpus = a3 x ncpus™!.
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FIG. 2. Normalized coefficients a for the equation of
motion program on a Cray C90 (solid triangles) and the best
theoretical speed-up (open squares).

B. T3D: MPP implementation

The Cray T3D machine which we used has the serial
number SN 6216. The standard configuration was the
following:

MPP — SN 6216

Model — T3D MC/AC128-8
PEs — 128

MW /nodes — 8

It must be expected that the performance will drop,
when an algorithm that has been successively refined for
a particular architecture, is relocated to a different com-
puting environment. This is the current situation with
our effort to transfer the computation to the Cray T3D.
The basic structure of the algorithm is very well suited
to MPP architectures. However, at present we see a ratio
of about 1:40 between execution speeds per C90 CPU, to
the speed per T3D PE. These figures suggest that it will
take a 320 node T3D (640 PEs) to rival a C90/16. It’s
not that bad, as we see some performance degradation
due to memory conflicts, with more than 12 C90 CPUs.
So a 256 node T3D should provide a worthwhile con-
test. Further refinement of the MPP version of the code
should result in another doubling of performance. Also



the better caching capabilities and faster PEs of a T3E
will enable the latest MPP line, to provide a significant
challenge to the current supremacy of the PVP machines,
for this type of work.

Some explanation is in order, as to why the equation
of motion technique should be so well suited to MPP
computation. The calculation is iterative with respect
to time-step (Eq. 2.5). Each iteration revises a number
of field quantities that are calculated at each atomic site
of the solid being considered. The revision of each field
quantity requires only values of the set of field quantities
at the site being considered and some (few) neighbours
(Eq. 2.4).

Implementation is simple. The atomic sites of the
model solid are divided into a number of hypercells. One
hypercell per PE. Arrays are allocated to hold the field
quantities. In fact, the arrays are oversize, the local field
quantities are stored in the middle of the arrays while the
borders hold the field values for those near neighbours of
local sites, that are located in adjacent hypercells. Anim-
portant point is that for problems with more than, say
350 sites per hypercell, the purely local sites outnum-
ber the sites that require special consideration because
they have neighbours on adjacent hypercell. Once past
this threshold, inter PE data transfer times cease to be
a significant component of the total computation time.
This is a very low threshold so, for problems of practical
interest, inter PE data transfer times present no burden.
The sequence of computational steps is the following:

1. Set up the initial data.
2. Perform an iteration on each PE.

3. Barrier. (To ensure that each PE completes step 2
before proceeding)

4. Inter PE data transfers, to fill the border areas of the
field arrays.

5. Barrier. (Ensure that the update is complete before
the next iteration)

6. Loop back to step 2, as often as required.

At the outset of this project it was decided to explic-
itly code the synchronization primitives and to perform
all inter PE data transfers via routines from the Shared
Memory library (SHMEM). We have had no cause to re-
gret this decision. These simple tools are more than suffi-
cient to meet the requirements of our algorithm. It does
mean, however, that we must maintain separate MPP
and PVP versions of the code.

IV. RESULTS FOR TEST MODELS

During the last four years a number of refined ex-
perimental studies of the rutile Ti0,(100) surface have

appeared in the literature [9-13]. With sophisticat-
ed experimental methods such as STM, glancing angle
X-ray diffraction and LEED, the researchers were able
to observe surface reconstruction and the appearance
of Ti02(100)1 x 3 microfacets. The surface electronic
valence-band structure of 720, (100) and (110) faces was
studied recently using angle-resolved photoemission [14].
It is hoped that by understanding the atomic and elec-
tronic structure of rutile surface, and especially the ef-
fects of surface steps and microfacets, the mechanism of
photocatalytic decomposition of water observed by Fu-
jusima and Honda in 1972 could be better understood
[15,9]

The crystallographic structure of ideal rutile 720,
[16,17] and its most stable surfaces (110) and (100) [18]
is well known. The tetragonal unit cell consists of two
Ti and four O atoms. The titanium atoms occupy the
positions (0,0,0) and (%, %,% whereas oxygens are at
the positions *(z,z,0), and (3 + z,3 — z,1), where
z = 0.306 + 0.001 [16].

Based on data derived from LEED symmetry and
photoemission spectra Muryn ef al. (1991) proposed the
missing row model (MR) for the reconstructed Ti02(100)
surface. Soon after, Zschack et al. [11] found that the mi-
crofacet model (MM) (Figure 3) was in better agreement
with glancing angle X-ray diffraction and LEED mea-
surements than the missing row model.

Microfacet Model

FIG. 3. Microfacet Model of the T10,(100)1 x 3 recon-
struction (after Ref. [5]). Oxygen is represented by large and
titanium by small circles. The oxygen vacancy sites studied
in this work are labelled by letters A, B and C.
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We used all five models: missing row (MR), mi- 22 '\'L
crofacet model (MM) and microfacet models A, B and C - T2 1 /\_j t
(MMA, MMB and MMC respectively) to study the effect
of the local environment on the local electronic density
of states (LDOS).

STM images of reconstructed and reduced surfaces

of Ti02(100)1 x 3 were obtained by a number of groups Tt J V|
[10,13]. In all studies the images are obtained at posi- 30 F | 3
tive sample bias, i.e. the electrons tunnel from the tip : O6.1 ™

into unoccupied T 3d states. It was reported that the A 053 |

images at negative tip bias could not be obtained. This
means that the STM probes the positions of the T atoms
and cannot distinguish between different reduced surface
models (MMA, MMB or MMC). The results of our cal-
culations attempt to answer the question: which model
is physically realised?

The local electronic density of states for up to thir-
teen unequivalent atoms on the surface of microfacet for -
five models of microfacet (MR, MM, MMA, MMB and ) - ~ L =
MMC) were computed at positions indicated in Figure 4. ﬁ

Local Densily of Slales (arb. unils )

Energy (eV)

FIG. 5. The Local Electronic Density of States for surface
atoms in Microfacet Model (MM) at positions indicated in
Figure 2. Note complete lack of covalent mixing and spread
of bands at site 05.2.

The LDOS for all four models derived from Micro-
facet Model are very similar. One striking feature is com-
plete lack of covalent mixing and narrow s and p bands
at oxygen site 05.2. This feature is present in all three
models (MM, MMA and MMB). We interpret this as a
lack of bonding of 05.2 atom at a microfacet. It would
mean that Microfacet Model C is the most likely to rep-
resent the reduced reconstructed T:0,(100)1 x 3 surface.
This result is different from the conclusions of Hardman
el al., [13] and needs to be investigated further.

FIG. 4. Five Ti (small black circles) and eight O (large
black circles) atom sites at which the LDOS was computed.

The typical results are presented in Figure 5. V. CONCLUSIONS

There is a need for very fast and efficient codes to
calculate the electronic structure of novel complex ma-
terials. The search for electronic structure algorithms
which scale linearly is an intense field of research [19-21].
Defects engineering might lead to exciting new materials
and devices. The equation-of-motion method, as imple-
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mented in this work, can be used to study disordered
transition metal oxides, amorphous semiconductors, the
electronic structure of random point and extended de-
fects and their influence on the electronic properties of
materials. The current versions of the program, devel-
oped specifically for PVP and MPP parallel architectures
scale identically in all three spatial dimensions of a sam-
ple. It is possible to manipulate a sample, rotate it,
and study various crystallographic faces and extended
surface defects.

With the program reported in this work we studied
the local electronic structure of T and O atoms in the
vicinity of Ti02(100)1 x 3 microfacets. The samples were
up to 1,105,920 atoms or 18 x 22 x 28nm in size. The
peak speed achieved in benchmarks was 8.5 GFlops/s.
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