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ABSTRACT: The goal of the 7X performance testing was to assure Sandia National 
Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its 
performance requirements which were defined as a comparison between ASCI Red and 
Red Storm.  Our approach was to identify one or more problems for each application in 
the 7X suite, run those problems at two or three processor sizes in the capability 
computing range, and compare the results between ASCI Red and Red Storm.  The first 
part of this paper describes the two computer systems, the 10 applications in the 7X 
suite, the 25 test problems, and the results of the performance tests on ASCI Red and Red 
Storm.  During the course of the testing on Red Storm, we had the opportunity to run the 
test problems in both single-core mode and dual-core mode and the second part of this 
paper describes those results.  Finally, we reflect on lessons learned in undertaking a 
major head-to-head benchmark comparison. 

KEYWORDS: 7X, ASCI Red, Red Storm, capability computing, benchmark 
 
This work was supported in part by the U.S. Department of Energy.  Sandia is a 
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States National Nuclear Security Administration and the Department of 
Energy under contract DE-AC04-94AL85000 

 

1. Introduction 

Background 
The goal of the 7X performance testing is to assure 

Sandia, Cray, and DOE that Red Storm will achieve its 
performance requirements and to assess whether major 
applications will realize at least a seven-fold performance 
increase on the new Red Storm system relative to its 
predecessor ASCI Red.  The focus is on problem sizes 
and processor counts representative of capability 
computing; i.e. single application runs that use 20% to 
100% of the processors on ASCI Red. 

The performance tests are defined as a comparison 
between ASCI Red and Red Storm.  In general, the Red 
Storm contract calls for a series of speedup comparisons 
using selected applications at various problem sizes [1].  
Our approach is to identify one or more problems for 
each application, run those problems at two or three 

processor sizes, and compare the results between ASCI 
Red and Red Storm. 

The Red Storm supercomputer, originally built in 
2005 with 2.0 Ghz single-core Opteron processors, 
received several upgrades to processors, memory, and 
system software in 2006 and 2007.  Red Storm compute 
nodes are now 2.4 Ghz dual-core Opteron processors.   
Users have the option of running applications on both 
cores on each node of the system, or on only one core per 
node.  The latter option is useful for those applications 
which are memory intensive and cannot abide having a 
node’s memory partitioned between the two cores.  
During the course of executing 7X applications on Red 
Storm, results were collected in both modes. 

Since the processor speeds were upgraded by 20% 
(from 2.0 Ghz to 2.4 Ghz) on Red Storm before results 
were gathered, the real target should now be 8.4X, not 
7X.  We will, however, continue to use the 7X descriptor 



throughout this report when referring to performance 
testing. 

The report is organized in the following manner:  
Section 2 and Section 3 discuss the guidelines for 
application/problem selection and application/problem 
runs, respectively.  Section 4 contains a detailed listing of 
the applications under test with problem size information.  
Section 5 contains an overview of activities and roles and 
Section 6 discusses project and data management.  7X 
performance testing results are presented in Section 7 and 
Section 8 discusses single-core vs. dual-core results.  
Section 9 contains a summary and lessons learned in 
undertaking a major head-to-head benchmark 
comparison. 

It will be useful to discuss the basic history, layout, 
and operation of ASCI Red and Red Storm in order to 
fully understand and contrast their performance. 

ASCI Red 
ASCI Red, the first computer in the Advanced 

Strategic Computing Initiative (ASCI) program, was built 
by Intel and installed at Sandia in late 1996.  The design 
was based on the Intel Paragon computer.  The goal was 
to deliver a true teraflop machine by the end of 1996 that 
would be capable of running an ASCI application using 
all memory and nodes by September of 1997.  In 
December, 1996, three quarters of ASCI Red was 
measured at a world record 1.06 TFLOPS on MP 
LINPACK and held the record for fastest supercomputer 
in the world for several consecutive years, maxing out at 
2.38 TFLOPS after a processor and memory upgrade in 
1999 [2, 3, 4].  ASCI Red was decommissioned in 2006, 
shortly after completing the required 7X runs. 

The ASCI Red supercomputer was a distributed 
memory MIMD (Multiple Instruction, Multiple Data) 
message-passing computer.  The design provided high 
degrees of scalability for I/O, memory, compute nodes, 
storage capacity, and communications; standard parallel 
interfaces also made it possible to port parallel 
applications to the machine.  The machine was structured 
into four partitions: Compute, Service, I/O, and System.  
Parallel applications executed in the Compute Partition 
which contained nodes optimized for floating point 
performance.  The compute nodes had only the features 
required for efficient computation – they were not 
purposed for general interactive services.  The Service 
Partition provided an integrated, scalable host that 
supported interactive users (log-in sessions), application 
development, and system administration. The I/O 
Partition supported disk I/O, a scalable parallel file 
system and network services. The System Partition 
supported initial booting and system Reliability, 
Availability, and Serviceability (RAS) capabilities.  A 
block diagram of ASCI Red illustrating the Compute, 
Service, I/O, and System partitions is reproduced in 
Figure 1. 

 

 
 
Figure 1. ASCI Red Block Diagram – Compute, Service, 
I/O, and System Partitions. 
 

In normal operation, disconnect cabinets divided 
ASCI Red into two sides; unclassified and classified.  In 
this situation, each side appeared as a separate plane in 
the mesh topology.  In its full configuration, ASCI Red 
consisted of four rows, each with an unclassified end and 
a classified end.  The unclassified ends of the rows 
appeared to the users as a single machine named Janus, 
and the classified ends of the rows appeared as a single 
machine named Janus-s.  Each end was a significant 
parallel computer in its own right, with a peak 
computational rate of approximately 780 Gflop.  Since 
each end was always connected to a LAN (barring 
catastrophic failure or other rare circumstance), files on 
both systems were always available.  Each end had its 
own set of disks for file storage, service nodes to handle 
user logins, I/O nodes to handle I/O requests, and system 
nodes for system monitoring and control, in addition to 
the computational nodes, on which parallel applications 
ran. 

The precise configuration was 1168 compute nodes 
on the unclassified end and 1166 compute nodes on the 
classified end. The middle section contained 2176 
compute nodes and could be switched between the 
unclassified end and the classified end.  Thus the total 
number of compute nodes on ASCI Red was 4510. 

ASCI Red used two operating systems, the Teraflops 
Operating System on the Service, I/O, and System 
Partitions, and a Sandia-developed lightweight kernel 
(Cougar) on the Compute nodes.  The Teraflops 
Operating System was Intel's distributed version of UNIX 
(POSIX 1003.1 and XPG3, AT&T System V.3 and 4.3 
BSD Reno VFS) developed for the Paragon XP/S 
Supercomputer.  It was a full-featured version of UNIX, 
used for boot and configuration support, system 
administration, user logins, user commands/services, and 
development tools.  The operating system in the Compute 
Partition was Cougar, which was Intel's port of Puma, a 
light-weight operating system for the TOPS, based on the 
very successful SUNMOS system for the Paragon.  
SUNMOS, and subsequently Puma, were developed by 
Sandia National Laboratories (SNL) and the University of 
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New Mexico.  Cougar was a very efficient and high-
performance operating system providing program 
loading, memory management, message-passing support, 
some signal handling and exit handling, and run-time 
support for the supported languages.  Cougar was very 
small, occupying less that 300 KBytes of RAM. 

This combination of operating systems made it 
possible to specialize for specific tasks and standard 
programming tools to make the supercomputer both 
familiar to the user and non-intrusive for the scalable 
application.  The machine provided a single system image 
to the user.  The users perceived the system as a single 
UNIX machine even though the operating system was 
actually running on a distributed collection of nodes.  To 
the user, the system had the look and feel of a UNIX-
based supercomputer.  All the standard facilities 
associated with a UNIX workstation were available to the 
user, yet the compute partition running the Cougar 
operating system had only those features required for 
computation.  The Cougar operating system could 
therefore be small in size and very fast.  The combination 
of these two operating systems was a powerful approach. 

Since Cougar was a minimal operating system, 
system services and support for the interactive user were 
provided by the host operating system (in this case, the 
Paragon-derived UNIX OS running in the Service 
Partition).  All access to hardware resources came from 
the Q-Kernel, the lowest-level component of Cougar.  
Above the Q-Kernel sat the process control thread (PCT), 
which ran in user space and managed processes.  User 
applications sat at the highest level.  As with most MPP 
systems, the basic programming model in Cougar was 
based on message passing. FORTRAN77, FORTRAN90, 
C and C++ were supported.  The interactive debugger and 
performance analysis tools understood these languages 
and mapped onto original source code. 

One interesting feature of ASCI Red concerned 
processor “mode”.  While message passing was used 
between nodes, shared memory mechanisms were used to 
exploit parallelism on a node.  Each compute node had 
two processors.  The second processor could be used in 
one of four modes: 

• Proc 0 option – ignored the second processor – 
default mode – entire system RAM on the node 
was available to the application (256 MB) 

• Proc 1 option – used the second processor as a 
communication co-processor. 

• Proc 2 option – used the second processor to run 
an additional application thread. 

• Proc 3 option – this mode treated each processor 
as a separate compute node – virtual mode – the 
processors shared memory so only half the 
system RAM was available to the application 
(128 MB). 

The 7X testing was performed on ASCI Red in Proc 
0 and Proc 3 modes only. 

Red Storm 
Red Storm, the follow-on computer to ASCI Red, 

was built by Cray and installed at Sandia in early 2005.  
Red Storm is a distributed memory, massively parallel 
supercomputer modeled on ASCI Red.  Red Storm itself 
is a dual-headed machine, being split between classified 
(Red) and unclassified (Black) use.  Each end is anchored 
in a specific network.  The classified portion of Red 
Storm (redstorm-s.sandia.gov) is anchored in Sandia's 
Classified Network, the SCN.  The unclassified portion of 
Red Storm (redstorm.sandia.gov) is anchored in Sandia's 
Restricted Network, the SRN. 

The Red Storm architecture facilitates simultaneous 
usage on the unclassified and classified sides of the 
machine.  In normal operation, disconnect cabinets divide 
Red Storm into two sides; unclassified and classified.  
The initial configuration was 2688 compute nodes on the 
unclassified end and 2688 compute nodes on the 
classified end.  The middle section contained 4992 
compute nodes and could be switched between the 
unclassified end and the classified end.  Thus the total 
number of compute nodes was 10368. 

A fifth row of cabinets was added in an August-
October 2006 upgrade, bringing node counts to 3360 on 
the unclassified side and 3360 on the classified side.  The 
middle section contains 6240 nodes.  The total number of 
compute nodes is now 12960.  Each compute node was 
upgraded to dual-core topology, bringing total processor 
count to 25920.  Processor speed was upgraded from 2.0 
Ghz to 2.4 Ghz. 

In 2005, Red Storm was measured at 36 TF on MP 
LINPACK.  Following the fifth row addition and upgrade 
from 2.0 Ghz single-core Opteron processors to 2.4 Ghz 
dual-core Opterons in 2006, Red Storm was measured at 
101.4 TF on MP LINPACK.  Red Storm was measured at 
102.2 TF on MP LINPACK in 2007 [5].   

Red Storm combines commodity and open source 
components with custom-designed components to create a 
system that can operate efficiently at immense scale.  The 
basic scalable component is the node.  There are two 
types of nodes; compute nodes run user applications and 
service nodes provide support functions, such as 
managing the user's environment, handling I/O, and 
booting the system.  Basic internal services such as 
networking and file system access run on the specially 
designated and configured service nodes.  Each compute 
node or service node is a logical grouping of a processor, 
memory, and a data routing resource. 

Cray XT3 systems use a simple memory model: for 
applications distributed across numerous nodes, each 
instance of the application has its own processor and local 
memory.  Remote memory is the memory on the nodes 
running the associated application instance – there is no 
shared memory. 

The system interconnection network is the data-
routing resource that Cray XT3 systems use to maintain 
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high communication rates as the number of nodes 
increases.  The system interconnection network enables 
the system to achieve an appropriate balance between 
processor speed and interconnection bandwidth. 

To a user, Red Storm appears as a collection of 
Linux-based login nodes that have access to the Red 
Storm file systems as well as the compute nodes. 
Activities such as compilation, job submission, and job 
monitoring are performed on login nodes. The collection 
of login nodes appears to the user as a single system. 

At the core of Red Storm is the compute partition, 
where parallel jobs execute. Since the compute partition 
is switchable between the classified and unclassified ends 
of the machine, the actual size of the compute partition on 
either end will vary over time. 

Each Red Storm compute node has dual-core 
topology.   The 7X testing was performed on Red Storm 
in both SN and VN modes. 

• SN option – ignore the second processor – 
default mode – entire system RAM on the node 
is available to the application. 

• VN option – each processor is a separate 
compute node – only half the system RAM on 
the node is available to each processor. 

The software environment is summarized as follows:  
Operating systems include Linux on service and I/O 
nodes (SuSE Enterprise Server), Catamount VN 
lightweight kernel on compute nodes, and Linux on RAS 
monitors.  The run-time system includes a logarithmic job 
launch utility (yod), the node allocator (CPA), and the 
batch system workload manager (MOAB).  The high 
performance file system is Lustre.  The user environment 
includes PGI compilers (Fortran, C, C++), various 
libraries (MPI, I/O, Math, MPI-2), the showmesh utility 
for displaying node states and job layouts on the mesh, 
the Totalview debugger, and a performance monitor. 

The lightweight compute node OS is fundamental to 
the Sandia architecture.  It is essential for:  (1) 
maximizing CPU resources, by reducing OS and runtime 
system overhead; (2) maximizing memory resources, with 
a small memory footprint and large page support; (3) 
maximizing network resources, with no virtual memory 
and physically contiguous address mapping; (4) 
increasing reliability, with a small code base and reduced 
complexity; (5) deterministic performance, with a high 
degree of repeatability; (6) scalability, for which OS 
resources must be independent of job size. 

Other computing systems in the Red Storm 
Environment are used for job preparation (such as 
meshing) and visualization. Visualization can be 
performed on Red RoSE and Black RoSE, companion 
clusters to Red Storm that support classified and 
unclassified visualization and data services, respectively. 
High-speed data links ensure fast data migration between 
Red Storm and other systems inside Sandia's computing 
environment. Special scripts ensure that the data 
movement is both simple and robust. 

While Red Storm has many characteristics in 
common with ASCI Red, it also differs in many ways.  
The system parameters for ASCI Red and Red Storm are 
summarized in Table 1 [3, 5].  Red refers to the Classified 
(SCN) side and Black refers to unclassified (SRN) side. 
 

 ASCI Red Red Storm 
Compute Nodes 
(Red/Center/Black) 

4510 
(1166/2176/1168) 

12960 
(3360/6240/3360) 

Compute Processors 
(Red/Center/Black) 

9020 
(2332/4352/2336) 
PII Xeon 333Mhz 

25920 
(6720/12480/6720) 
Opteron Dual-core 
2.4Ghz 

Service Nodes 
(Red/Black) 
Disk I/O Nodes 
(Red/Black) 

52 (26/26) 
 
73 (37/36) 

640 (320/320) Service 
and I/O partition 
(login, service, I/O, 
administrative nodes) 

System Nodes 
(Red / Black) 

2 (1/1) RAS and System 
Management Partition 

Network Nodes 
(Red/Black) 

12 (6/6)  
Ethernet ATM 

100 (50/50) 10GigE to 
RoSE 
20 (10/10) 1GigE to 
login nodes 

Number of Cabinets 96 (76 compute/20 
disk) 

155 (135 compute/20 
service and I/O) 

Interconnect 
Topology 

3-D Mesh (x,y,z) 
(38x32x2) 

3-D Mesh (x,y,z) 
(27x20x24) 

Architecture Dist. Memory 
MIMD 

Dist. Memory MIMD 

Theoretical Peak 
Performance 

3.15 TF 124.42 TF 

MP-Linpack 
Performance 

2.38 TF 101.4 TF (2006) 
102.2 TF (2007) 

Total Memory 1.21 TB 39.19 TB 
System Memory 
B/W 

2.5 TB/s 78.12 TB/s 

Disk Storage 
(Total/per Color) 

12.5 TB/6.25 TB 340 TB/170 TB 

Parallel File System 
B/W 
(Total/per Color) 

2.0 GB/s / 1.0 
GB/s 

100 GB/s / 50 GB/s 
sustained disk transfer 
rate 

External Network 
(Total/per Color) 
 

0.4 GB/s / 0.2 
GB/s 

50 GB/s / 25 GB/s 
sustained network 
transfer rate to RoSE 

Interconnect B/W   
MPI Latency 15 us 1 hop,  

20 us max 
~4.78 us 1 hop,  
~7.78 us max 

Bi-Directional 
Link B/W 

800 MB/s 9.6 GB/s 

Minimum Bi-
Section B/W 

51.2 GB/s 4.61 TB/s 

Full System RAS   
RAS Network 10 Mb Ethernet 100 Mb and 1 Gb 

Ethernet 
RAS Processors 1 for each 32 

CPUs 
1 for each 4 CPUs 

Operating System   
Compute Nodes Cougar Catamount VN 
Service and I/O 
Nodes 

TOS (OSFI) Linux 

RAS Nodes VX-Works Linux 
Red/Black Switch   

Switches 2/row 4/row 
 
Table 1. System Parameters – ASCI Red vs. Red Storm. 
 



A block diagram of Red Storm illustrating the three 
functional hardware partitions 1) Compute, 2) Service 
and I/O, and 3) RAS/System Management is reproduced 
in Figure 2. 
 

 
 
Figure 2. Red Storm Block Diagram – Three Functional 
Hardware Partitions 1) Compute, 2) Service and I/O, and 
3) RAS/System Management. 

2.  Guidelines for Application and Problem 
Selection 

The key criteria for application and problem selection 
are discussed at length in The 7X Cookbook [6].  One of 
the mandates of 7X testing is that applications and 
problem sets shall be “real”.  The 7X testing effort is 
attempting to characterize production job behavior by 
exercising applications-of-interest with production input 
files and algorithms.  Each of the chosen applications is 
either a significant DOE production application or an 
idealized benchmark application that is based upon and 
closely resembles the behavior of a major DOE 
production application. 

The same calculation will be run on ASCI Red and 
Red Storm.  The primary metric is wall-clock time as 
measured by the elapsed time to execute the entire job 
script, including any pre and post processing [7].  The 
two calculations should give equivalent answers.  The 
answers might not be numerically identical due to 
different sequences of operations, math libraries or 
numerical round-off, but the analysts should be 
comfortable that they are giving the “same” answer.  For 
example, the answers may agree to only 6 significant 
digits. 
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Problems should be chosen to use as many ASCI Red 
resources (processor, memory) as possible in order to 
place reasonable stress on Red Storm.  Problem sizes are 
deliberately chosen so that jobs run on ASCI Red should 
range from ~4-8 hours of wall-clock time [7].  Simplified 
geometries are preferred in order to simplify input file 
creation and to avoid meshing problems during 

benchmarking.  All applications should use standard 
production capabilities including I/O, checkpoint/restart, 
and visualization files.  When an application can be run 
using alternative algorithms, such as ALEGRA with and 
without contact, said application may have more than one 
benchmark problem in the suite. 

We will test each application in “standard” mode 
(with the exception of PARTISN and SPPM where we 
will skip standard mode and proceed directly to stretch 
mode).  We will also test each application in “stretch” 
and/or “maximum” mode.  Figure 3 shows an overlay of 
node counts on ASCI Red vs. Red Storm to highlight the 
regimes under test. 

1. Standard - the standard size should be easily run 
and accurately measured on both platforms.  
This standard will be used to calibrate the testing 
and to check for shifts in performance due to 
changes in the underlying system software.  
Standard refers to “Large – proc 0” on ASCI 
Red and “Small” on Red Storm. 

2. Stretch - the stretch size will fully occupy the 
large configuration of ASCI Red.  Stretch refers 
to “Large – proc 3” on ASCI Red and “Large 
(SN)/Small (VN)” on Red Storm.  Problem sets 
will need to accommodate the reduced memory 
available in ASCI Red stretch mode. 

3. Maximum - selected applications (CTH, ITS, 
PARTISN, SAGE, SALINAS, SPPM, UMT2K) 
may also be run in maximum size that requires 
an operational configuration of ASCI Red’s 
entire compute node partition.  Maximum refers 
to “Jumbo – proc 0 or Jumbo – proc 3” on ASCI 
Red and “Large (SN)/Small (VN) or Large” on 
Red Storm.  Where maximum runs are not 
feasible on ASCI Red, the corresponding stretch 
sizes shall be considered sufficient. 

 

 
 
Figure 3. Standard, Stretch, and Maximum Modes on 
ASCI Red and Red Storm. 



3. Guidelines for Application and Problem 
Runs 

The key criteria for application and problem runs are 
discussed at length in The 7X Cookbook [6]. 

For the purposes of the 7X testing, the versions of the 
applications run on both platforms should be identical, 
subject only to changes required to make the applications 
run on both systems (ASCI Red and Red Storm).  This 
requirement implies that the 7X benchmarking team 
needs to carefully manage the source code for each 
application.  The SNL and Cray teams will both need 
access to the source code and input decks to build 
binaries and execute the runs.  System and support 
libraries (e.g. glibc) required for the application to link 
and run may differ between the systems.  Numeric and 
message passing libraries may differ, but the differences 
should not include substantive algorithm changes unless 
such changes were induced by the Red Storm 
architecture. 

SNL will port each application to Red Storm and 
provide Cray with access to the source code, on-site at 
Sandia, for the purpose of 7X compilation.  All access to 
source code is subject to export control restrictions.  Cray 
must obtain licenses for any other use of the 7X 
application source code. 

SNL personnel will run the tests on ASCI Red, with 
Cray personnel witnessing the process and validating the 
results.  Cray personnel will run the tests on Red Storm, 
with SNL personnel witnessing the process and validating 
the results. 

The Red Storm hardware configuration and software 
stack was designed to minimize any need for application 
source code modifications when porting any application 
from ASCI Red to Red Storm.  Consequently, any 
modifications required in the source code itself are of 
interest to both the Sandia Red Storm design teams and to 
Cray.  Any changes introduced into the 7X application 
code base that were required so that the application will 
correctly compile and run on Red Storm need to be shared 
among the Red Storm design teams, including Cray. 

The Makefiles and scripts used to build the 
applications may require changes during the port to Red 
Storm.  For example, the compiler options and switches 
used may vary.  Similarly, job launch options may differ.  
Such changes are acceptable and need only be identified 
and tracked as support to the end-users of Red Storm.  
However, the final configuration switches used for the 7X 
benchmark runs must be properly documented and logged 
into the status database. 

 
CUG 2008 Proceedings 6 of 13 

 

Each application on Red Storm should be validated 
against known “gold standard” results provided by SNL, 
LANL, or LLNL as appropriate.  Discrepancies in the 
output must be validated with designated Labs points of 
contact.  Similar validation runs should be carried out on 
ASCI Red for any applications that are not currently in 

production on ASCI Red such as PARTISN, SAGE, 
SPPM, and UMT2K.  Validation should include 
checkpoint/restart and visualization outputs. 

The output of the benchmarking runs should be 
checked for proper completion, proper creation of output 
files, and approximate size of files.  Where possible, the 
same validation procedures as used by the functional 
testing team will be used to validate the 7X runs.  Each 
test case (a specific benchmark and size) will be run 2-3 
times on ASCI Red and Red Storm. 

Speedup for each benchmark size will be calculated 
by dividing the average of the runs on ASCI Red by the 
average of the runs on Red Storm.  Speedup for each 
application will be calculated by dividing the arithmetic 
average of the benchmark speedups on ASCI Red by the 
arithmetic average of the benchmark speedups on Red 
Storm.  Overall speedup will be measured as specified in 
the contract [1]: “The speedup of each of the applications 
above will be measured as a number, nominally around 7, 
and these numbers will be linearly averaged with equal 
weights.” 

For a given benchmark and size (e.g. SPPM on 4500 
processors), all runs must be made with the same 
compiled binary.  Final 7X testing runs shall be allocated 
exclusive use of the platform in order to eliminate any 
contention for machine resources (i.e. only one 7X 
application running on the mesh at a time and no other 
users on the platform during 7X testing). 

4. 7X Application Suite 
Ten applications comprise the 7X test suite:  

ALEGRA Contact, ALEGRA NoContact, CTH, ITS, 
PARTISN, PRESTO, SAGE, SALINAS, SPPM, and 
UMT2K.  The ten applications and the twenty-five test 
problems in the 7X suite are shown graphically in Figure 
4.  Table 2 summarizes the test problem sizes for each 
application.  Following Table 2, we describe each of these 
applications and test problems. 
 

 
 
Figure 4. 7X Application Suite 
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App Run Size ASCI Red Red Storm 

ALEGRA 
Contact 

Standard 2048 Large – proc 0 Small 

 Stretch 6484 Large – proc 3 Large (SN) 
Small (VN) 

ALEGRA 
NoContact 

Standard 2048 Large – proc 0 Small 

 Stretch 6484 Large – proc 3 Large (SN) 
Small (VN) 

CTH Standard 2000 Large – proc 0 Small 
 Stretch 6480 Large – proc 3 Large (SN) 

Small (VN) 
 Maximum 9000 Jumbo – proc 3 Large 
ITS Standard 3200 Large – proc 0 Small 
 Maximum 4500 Jumbo – proc 0 Large (SN) 

Small (VN) 
 Stretch 6500 Large – proc 3 Large (SN) 

Small (VN) 
 Maximum 9000 Jumbo – proc 3 Large 
PARTISN Maximum 4096 Jumbo – proc 0 Large (SN) 

Small (VN) 
 Stretch 6480 Large – proc 3 Large (SN) 

Small (VN) 
 Maximum 8930 Jumbo – proc 3 Large 
PRESTO Standard 2036 Large – proc 0 Small 
 Stretch 6360 Large – proc 3 Large (SN) 

Small (VN) 
SAGE Standard 2048 Large – proc 0 Small 
 Maximum 4500 Jumbo – proc 0 Large (SN) 

Small (VN) 
SALINAS Standard 2744 Large – proc 0 Small 
 Maximum 4096 Jumbo – proc 0 Large (SN) 

Small (VN) 
SPPM Maximum 4500 Jumbo – proc 0 Large (SN) 

Small (VN) 
 Stretch 6561 Large – proc 3 Large (SN) 

Small (VN) 
 Maximum 9000 Jumbo – proc 3 Large 
UMT2K Standard 3200 Large – proc 0 Small 
 Maximum 4500 Jumbo – proc 0 Large (SN) 

Small (VN) 
 
Table 2. Test Problem Sizes. 
 

ALEGRA (QSEM with Contact) 
ALEGRA is used to simulate the dynamic material 

response of complex configurations [8].  It solves coupled 
physics problems in 2D or 3D using Lagrangian, 
Eulerian, and/or ALE coordinates.  The code runs 
efficiently on massively parallel computers and contains a 
large variety of physics options including hydrodynamics, 
magnetohydrodynamics with external circuit coupling, 
radiation transport, thermal conduction, and dual ion and 
electron temperatures.  The ALEGRA Contact problem is 
a Quasistatic electromechanics (QSEM) problem in which 
a curved impactor depoles a potted active ceramic 
element. 

ALEGRA (QSEM without Contact) 
The ALEGRA No Contact problem is a QSEM 

problem identical to the contact problem except the 
boundary condition is a prescribed displacement rather 
than an impactor.  This eliminates the need for contact. 

CTH 
CTH is a multimaterial, large-deformation, strong 

shock wave, solid mechanics code developed at Sandia 
National Laboratories [9].  CTH has models for 
multiphase, elastic viscoplastic, porous and explosive 
materials.  Three-dimensional rectangular meshes; two-
dimensional rectangular and cylindrical meshes; and one-
dimensional rectilinear, cylindrical and spherical meshes 
are available.  CTH uses second order accurate numerical 
methods to reduce dispersion and dissipation and to 
produce accurate, efficient results.  CTH is used for 
studying armor/antiarmor interactions, warhead design, 
high explosive initiation physics, and weapons safety 
issues.  The test problem is the shock physics in 3D of a 
large conical shaped charge. 

ITS 
The Integrated Tiger Series (ITS) code permits 

Monte Carlo solution of linear time-independent coupled 
electron/photon transport radiation transport problems, 
with or without the presence of macroscopic electric and 
magnetic fields of arbitrary spatial dependence [10,11].  
Physical rigor is provided by employing accurate cross 
sections, sampling distributions, and physical models for 
describing the production and transport of the 
electron/photon cascade from 1.0 GeV down to 1.0 keV.  
Mulitgroup ITS Version 5.0 (April 1, 2002) contains (1) 
improvements to the ITS 3.0 continuous-energy codes, 
(2) multigroup codes with adjoint transport capabilities, 
(3) parallel implementations of all ITS codes, (4) a 
general purpose geometry engine for linking with CAD or 
other geometry formats, and (5) the Cholla facet geometry 
library.  The 7X runs will perform the Starsat MITS test 
with CAD flow and geometry and ACIS simulation 
mode. 

PARTISN 
The Parallel Time-dependent SN (PARTISN) code 

package is designed to solve the time-independent or 
dependent multigroup discrete ordinates form of the 
Boltzmann transport equation in several different 
geometries [12].  PARTISN provides neutron transport 
solutions on orthogonal meshes with adaptive mesh 
refinement in 1D, 2D or 3D.  Much effort has been 
devoted to making PARTISN efficient on massively 
parallel computers.  The package can be coupled to 
nonlinear multiphysics codes that run for weeks on 
thousands of processors to finish one simulation.  The test 
problem is “Sntiming”, in which flux and eigenvalue 
convergence are monitored by PARTISN. 



 
CUG 2008 Proceedings 8 of 13 

 

PRESTO 
PRESTO is a Lagrangian, three-dimensional explicit, 

transient dynamics code for the analysis of solids 
subjected to large, suddenly applied loads [13].  PRESTO 
is designed for problems with large deformations, 
nonlinear material behavior, and contact.  There is a 
versatile element library incorporating both continuum 
and structural elements. 

The contact algorithm is supplied by ACME.  The 
contact algorithm detects contacts that occur between 
elements in the deforming mesh and prevents those 
elements from interpenetrating each other.  This is done 
on a decomposition of just the surface elements of the 
mesh.  The contact algorithm is communication intensive 
and can change as the problem progresses. 

The brick walls problem consists of a number of 
rectangular bricks, each meshed using 3x3x6 elements.  
The bricks are stacked in an alternating fashion in a plane 
to produce a wall which is three elements thick.  Four of 
these walls are lined up in the thin direction.  The walls 
are then given a sudden pressure loading such that they 
compress against each other.  Since all of the bricks are 
meshed independently, they interact with each other 
through contact on their outer surfaces.  Each brick is 
located on one processor so the only communication for 
the finite element portion of the code is for the 
determination of the length of the next time step.  As the 
problem grows with the number of processors, the contact 
problem also grows.  Although there is no analytic 
solution for this problem, it provides a large amount of 
contact with respect to the number of elements.  There are 
1.67 times as many faces to be considered in contact as 
there are elements, so the cost of contact dominates the 
computation.  This serves as an excellent test to exercise 
large-scale global contact and to demonstrate the parallel 
scaling of the algorithm. 

SAGE 
SAIC’s Adaptive Grid Eulerian (SAGE) hydrocode 

is a multidimensional, multimaterial hydrodynamics code 
with adaptive mesh refinement that uses second-order 
accurate numerical methods [14].  SAGE represents a 
large class of production computing applications at Los 
Alamos National Laboratory (LANL).  It is a large-scale 
parallel code written in Fortran 90 and uses MPI for 
interprocessor communications.  It routinely runs on 
thousands of processors for months at a time on capability 
computing systems in the DOE complex.  The test 
problem is an asteroids simulation of 45 degree, 3D, 
granite asteroid impact into a stratified medium of water, 
calcite, granite crust, and mantle. 

SALINAS 
SALINAS is a massively parallel implicit structural 

mechanics/dynamics code aimed at providing a scalable 
computational workhorse for extremely complex finite 
element (FE) stress, vibration, and transient dynamics 

models with tens or hundreds of millions of degrees of 
freedom (dofs) [15]. The SALINAS software predicts 
vibrational loads for components within larger systems, 
design optimization, frequency response information for 
guidance and space systems, and modal data necessary 
for active vibration control. SALINAS is used to predict 
mechanical response in normal and hostile STS1 
environments for RB2 systems and missiles.  The 
software is a tool for understanding and predicting 
structural response.  It is used for both production type 
calculations and for research and development, especially 
with respect to development of joint and interface models. 

The test problem is a transient dynamics problem 
based on one unit cube model.  The cube will first be 
decomposed into subcubes using an nsub x nsub x nsub 
partition.  Then each cube will be meshed using nelem x 
nelem x nelem hex8 elements.  The x=0 face will be 
clamped, and x=1 face will have an x-directional load.  
The cube starts at the origin (0,0,0) and extends to (1,1,1).  
The faces are parallel to the three coordinate directions 
(x,y,z).  We use “pmesh” to create the models on the fly. 

SPPM 
PPM (Piecewise Parabolic Method) is a 3-D 

hydrodynamics code used to model a wide range of shock 
physics problems [16].  It performs PPM hydrodynamics 
in Lagrangian style using a Riemann solver.  A simple 
gamma-law equation of state is used, and an initially 
uniform grid with either periodic or continuation 
boundary conditions is assumed.  The SPPM benchmark 
solves a 3D gas dynamics problem on a uniform 
Cartesian mesh, using a simplified version of PPM, hence 
the "s" for simplified [17, 18].  The code is written to 
simultaneously exploit explicit threads for 
multiprocessing shared memory parallelism and domain 
decomposition with message passing for distributed 
parallelism.  It represents the current state of ongoing 
research which has demonstrated good processor 
performance, excellent multi-threaded efficiency, and 
excellent message passing parallel speedups all at the 
same time.  The SPPM program was written in Fortran77 
with all system dependent calls taking place through C. It 
uses a small number of MPI routines for communication 
between nodes. 

The hydrodynamics algorithm involves a split 
scheme of X, Y, and Z Lagrangian and remap steps which 
are computed as three separate passes or sweeps through 
the mesh per timestep, each time sweeping in the 
appropriate direction with the appropriate operator.  Each 
such sweep through the mesh requires approximately 680 
FLOPs to update all of the state variables for each real 
mesh cell.  Message passing is used to update ghost cells 
with data from neighboring domains three times per 
timestep and occurs just before each of the X, Y, and Z 
sweeps.  Multiple threads are used to manipulate data and 
update pencils of cells in parallel. 
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UMT2K 
The UMT benchmark is a 3D, deterministic, 

multigroup, photon transport code for unstructured 
meshes [19].  UMT 1.2, referred to as UMT2K for clarity, 
performs exactly the same physics as previous versions of 
UMT (i.e., UMT 1.1, referred to as UMT98) but now 
includes additional features that are commonly found in 
large Lawrence Livermore National Laboratory (LLNL) 
parallel applications.  These features include mixed MPI 
and OMP support for large-scale parallelism, an OMP-
based C computation kernel called from an MPI-based 
Fortran90 driver, a new mechanism for synthetically 
generating very large distributed meshes, a parallel 
checkpoint/restart mechanism, and graphics output files.  
The transport code solves the first-order form of the 
steady-state Boltzmann transport equation.  The 
equation's energy dependence is modeled using multiple 
photon energy groups.  The angular dependence is 
modeled using a collocation of discrete directions, or 
"ordinates."  The spatial variable is modeled with an 
"upstream corner balance" finite volume differencing 
technique.  The solution proceeds by tracking through the 
mesh in the direction of each ordinate.  For each ordinate 
direction all energy groups are transported, accumulating 
the desired solution on each zone in the mesh.  Hence, 
memory access patterns may vary substantially for each 
ordinate on a given mesh, and the entire mesh is "swept" 
multiple times.  Note, however, that having the energy 
group loop on the inside significantly improves cache 
reuse, because all of the geometrical information related 
to sweeping an ordinate direction is the same for each 
energy group. 

The code works on unstructured meshes, which it 
generates at run-time using a two-dimensional 
unstructured mesh (read in) and extruding it in the third 
dimension a user-specified amount.  This allows the 
generation of a wide variety of input problem sizes and 
facilitates "constant work" scaling studies.  The MPI-
based parallelism in the Fortran portion uses mesh 
decomposition to distribute the mesh across the specified 
MPI tasks.  The OMP-based parallelism in the C kernel 
then divides the ordinates among the OMP threads.  This 
C kernel's computation time typically completely 
dominates the execution time of the benchmark. 

5. Activities and Roles 
Completion of the 7X benchmarking task requires 

cooperation among SNL, LLNL, LANL, and Cray. 

SNL Responsibilities: Code Teams 
The code teams will designate code releases to be 

used and identify test problems for each application, 
along with problem sizes and ASCI Red running modes.  
Problem sizes should include those needed for testing and 
scalability studies on Red Storm.  Input files must be 
developed for each problem and size and the code teams 

must also work with the 7X systems team to port 
applications to Red Storm.  Code teams will provide the 
7X team with instructions on how to compile each 
application and how to assemble the input files if the 
actual files are not provided directly.  Code teams will 
also provide either full source code snapshots or access to 
a source code repository in which the code to be used is 
appropriately tagged for later retrieval. 

SNL Responsibilities: 7X Team 
The 7X team will organize and manage the 

performance testing effort.  A data repository will be 
created for all testing information.  The team will 
develop, test, and document the benchmarking procedures 
and work with the code teams to develop input files, 
problem sizes, and running modes.  The 7X team will also 
provide assistance to SNL code teams in porting the 7X 
applications to Red Storm and work with LANL and 
LLNL points of contact to port non-SNL applications to 
Red Storm.  The 7X team will execute all official baseline 
runs on ASCI Red, run and validate each problem set at 
its standard size on Red Storm, and partner with Cray 
engineers to complete all necessary official runs and 
validations on Red Storm. 

LLNL and LANL Responsibilities 
LLNL and LANL teams will designate the code 

releases to be used and assist SNL in identifying test 
problems, problem sizes, and ASCI Red running modes 
for their candidate applications.  The LLNL and LANL 
teams will also assist SNL in developing input files for 
each test problem/size and provide the 7X team with 
instructions on how to port/compile each application on 
Red Storm. 

Cray Responsibilities 
Cray will work with SNL to ensure that all 

applications compile and run on Red Storm for all 
problems and sizes.  Cray engineers will partner with the 
7X team to compile binaries for Red Storm and execute 
the official runs on Red Storm.  Official runs will be 
executed with designated SNL personnel as witnesses. 

6. Project and Data Management 
Many data items need to be tracked during the 7X 

benchmarking.  Two data repositories will be used: 1) 
relational database for projects, status, and result 
management 2) file repository for document, build, input, 
and output file management. 

Project Database 
A relational database has been developed that will 

store all relevant status and result information.  The 
information in this database will be used to track both 
status and to extract final results.  For example, when a 
data run occurs, the database will be used both to set up 
the run and to log relevant information about the results.  
The database currently uses a PostgresSQL [20] server 



located on a development workstation.  Interfaces to the 
relational database were developed in Perl (for command-
line use).  Web-based status reporting can be added if 
required.  Preliminary status reporting interfaces have 
been developed that allow a user to extract data from the 
project database and format it as graphs, charts, or tables 
using Unix-based tools. 

Test Management 
A simple XML-based scripting language has been 

developed that will allow the 7X testers to specify, run, 
and log the results of each benchmark.  The 
implementation of this language is called rst.  Using rst, 
one can 

• Specify a test to be run. 
• Compile application binaries and capture 

extended output for later inclusion into the 
database. 

• Run a test in either batch or interactive mode and 
capture run-time information for later inclusion 
in the database. 

• Write results data back into the database. 
The tool has been designed to minimize impact on 

the HPC engines where it runs.  In particular, it can run 
without requiring access to a database server when 
compiling applications or when running the actual tests. 

File Management 
A Sourceforge [21] project repository has been 

created to support all of the file management necessary 
for running and reviewing the benchmarks.  Sourceforge 
is a collaborative software development tool that supports 
web-based interactions, collaborative communications 
and file sharing.  Underlying the web interface is a source 
code management system based on CVS [22].  Access to 
files can be controlled and limited to certain users via 
role-based access controls.  The input files, build scripts, 
and run scripts for each application and benchmark will 
reside on the Sourceforge site.  When a benchmark needs 
to be executed, the files can be retrieved, the application 
built (if necessary) and the test run.  The resulting test 
output files will be pushed back into the Sourceforge 
repository, while the test results will be logged into the 
relational database. 

7. Results – How Much Faster is Red Storm 
on the 7X Applications? 

An effort was made to set up the test problems so that 
each would require ~4-8 hours wall-clock execution time 
on ASCI Red and, therefore, about 1 hr. on Red Storm.  
This goal was largely met, as seen in Figure 5, although it 
was not possible to scale the PARTISN test problem to 
that level.  The SALINAS test problems ran for slightly 
more than an hour on Red Storm, as the SALINAS 
speedups on Red Storm were only a factor of 6 to 8 over 
ASCI Red, lower than for all of the other applications. 

 

 
 
Figure 5. Application Execution Times on ASCI Red and 
Red Storm. 
 

We have not thoroughly investigated the cause for 
the lower than expected speedup for SALINAS, however 
we observed that the total Finite Element Tearing and 
Interconnecting (FETI) solution time to wall-clock time 
was much closer to one in the ASCI Red runs than for the 
Red Storm runs. For example, a typical 2744 proc 0 mode 
run on ASCI Red, took 30419 wall-clock seconds with 
29025 seconds spent in the FETI solve step which equates 
with 95% of the wall-clock time spent in the FETI solve.  
By comparison, a typical 2744 VN mode run on Red 
Storm took 4733 wall-clock seconds to complete with 
3400 seconds spent in the FETI solve step.  The FETI 
solve step occupied only 72% of the total wall-clock time.  
We will need to profile SALINAS on Red Storm to 
determine what is occurring during the “unproductive” 
28% (1333 seconds). 

Figure 6 shows the speedups achieved on Red Storm 
relative to ASCI Red.  An average speedup of 20X is 
observed across the test suite, far above the hoped-for 
seven-fold improvement.  Three caveats are in order:  (1) 
the average speedup is unduly influenced by the 
extremely large speedup (65X) measured for PARTISN 
(and, to a lesser extent, by SAGE) on Red Storm.  We can 
speculate that ASCI Red may have been in a degraded 
state when the PARTISN runs were made, but this cannot 
be proven since the system is no longer available; (2) 
processor speeds were upgraded by 20% on Red Storm 
before these results were gathered, so the real target 
should now be 8.4X, not 7X; (3) Although our intent was 
to perform all testing on ASCI Red and Red Storm in 
“exclusive” mode (i.e. only one 7X application running 
on the mesh at a time and no other users on  the platform 
during 7X testing), the Red Storm testing was almost 
never “exclusive”.  We often ran several 7X applications 
concurrently and other users were allowed to run jobs on 
Red Storm during the 7X testing due to program 
milestone needs.  Our testing on ASCI Red was always 
“exclusive”.  This may indeed have disadvantaged Red 
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Storm performance results; however, we cannot 
determine the extent of the effect. 

If we discard the maximum and minimum speedup 
values (65X for PARTISN 8930 processors and 6X for 
SALINAS 4096 processors), we obtain a 19X average 
speedup.  If we discard the highest two values (65X for 
PARTISN 8930 processors and 42X for SAGE 4500 
processors), we still obtain an 18X average speedup, well 
above the 7X target. 
 

 
 
Figure 6. Application Speedup - ASCI Red vs. Red Storm 

8. Results – Single-Core vs. Dual-Core 
Comparison on Red Storm 

The recent upgrade of Red Storm to dual-core 
sockets has provided the option of specifying either one 
or two cores per socket when launching an application.  
As noted above, the 7X tests can be performed on Red 
Storm in either SN or VN mode:  (1) the SN option, 
which is the default, ignores the second core and makes 
all user memory on the node available to the application; 
(2) the VN option, which treats each core as a separate 
compute node and makes only half the user memory on 
the node available to each core.  If applications can run 
efficiently in VN mode on Red Storm, this frees up 
sockets for other applications. 

In Figure 7, we compare the Red Storm results in 
terms of execution time for SN and VN runs of the test 
problems, as well as a few pre-upgrade runs (2.0 Ghz 
single-core Opteron processors).  Run times in yellow 
were performed pre-upgrade (2.0 Ghz single-core).  Run 
times in blue were obtained on 2.4 Ghz dual-core, but the 
second core of each node was left idle.  Run times in red 
used both cores on the node and only required half as 
many compute nodes as the run times in blue, freeing 
nodes for other production work. 

Most of the applications are demonstrating a small-
to-modest performance hit (5-30%) for using the second 
core in VN mode.  The average efficiency drop was 17% 
for VN mode vs. SN mode (post-upgrade).  PARTISN is 
again an outlier with the largest dual-core performance 
penalty in the test suite.  Interestingly, the 6484 processor 

ALEGRA No Contact test shows a very slight 
performance acceleration in VN mode relative to the 
same number of cores in SN mode. 

Pre-upgrade runs were available for three 
applications in the 7X suite.  These runs were performed 
using the 2.0 Ghz single-core Opteron processors that 
were in place prior to the Red Storm system upgrade.  ITS 
shows a speedup commensurate with the 20% increase in 
processor speed due to the upgrade, but little benefit is 
seen for UMT2K and SAGE for upgrading to the 2.4 Ghz 
dual-core Opteron processors. 
 

 
 
Figure 7. Comparison of SN and VN Results on Red 
Storm (includes pre-upgrade 2.0 Ghz single-core results 
for three applications). 

9. Summary and Lessons Learned 
In preparation for the testing and acceptance of the 

Red Storm system, a suite of ten applications/benchmarks 
were developed to assess whether major applications 
would realize at least a seven-fold performance increase 
on the new system relative to its predecessor.  This 
methodology has subsequently proven quite valuable in 
addressing diverse performance issues: e.g. the benefits of 
processor and memory upgrades, particularly the benefits 
of dual-core processors.  The impending 2008 upgrade of 
Red Storm to quad-core Opteron processors will provide 
another opportunity to demonstrate the usefulness of the 
7X suite to track performance across single, dual, and 
quad core processors. 

Red Storm has achieved its requirement of 7X 
performance over ASCI Red, posting an average speed-
up of 20X.  We find that although most of the individual 
applications show at least a 12-fold to 15-fold 
performance improvement over the ASCI Red system, 
there are interesting outliers:  PARTISN shows run time 
speed-ups of up to 65X while SALINAS manages only a 
6X-8X performance increase.  The results validate Red 
Storm as a capability platform for major scientific and 
engineering codes on 2K-10K processors. 

We also compared single-core (SN) and dual-core 
(VN) runs on Red Storm to investigate the efficiency that 
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users might experience when utilizing both cores on the 
node.  Dual-core performed well on the 7X applications, 
often completing in nominally the same time as single-
core runs.  The average efficiency drop was 17% for VN 
mode vs. SN mode with most of the applications 
demonstrating a small-to-modest performance hit (5-30%) 
for using the second core in VN mode.  The results 
validate the efficacy of the dual-core upgrade, as most of 
these applications make efficient use of the second core.  
Applications that can run efficiently in VN mode on Red 
Storm have the potential to free up sockets for other 
applications. 

The availability and applicability of this test suite to 
answer design questions and evaluate upgrade options, 
such as the dual-core upgrade, further validates the need 
for evaluation of capability-class, massively parallel 
systems with real applications. 

Many of the 7X applications are routinely used to 
benchmark and evaluate other new systems, e.g. highly 
parallel cluster systems that are acquired to serve as 
capacity computing systems.  However, there are some 
serious limitations to this methodology.  Several of the 
applications discussed here require major porting efforts 
whenever a new system is to be tested.  This is 
particularly true of the Sierra framework-based 
applications, such as CALORE and PRESTO, as well as 
other large, modern, object-oriented applications such as 
ALEGRA.  Some applications can require a week or two 
to be built for a new system, even if no portability issues 
are encountered. 

When the comparison testing is spread out over a 
long period of time, it will undoubtedly be necessary to 
adjust to changes in the computing environment.  
Upgrades to the operating system, compilers, file systems, 
etc. can prove quite challenging.  The application code 
may not compile the first time out of the chute with a new 
compiler.  Application codes also “evolve”, which is also 
quite challenging when striving for some level of test 
consistency over time. 

When standing up any new parallel computing 
system, an argument could be made for using an 
appropriate subset of the large complex application codes 
in addition to simpler application/benchmark codes for 
quick portability.  We see a need for compact applications 
based on “real” applications, and there are recent research 
and development efforts to create new compact 
applications, so that testing and evaluation of new 
systems and potential procurements can be done in a 
timely manner [23]. 

References 
1. Contract for Red Storm, Internal Document 32124, 

Sandia National Laboratories, Albuquerque, NM, 
Sept. 23, 2002. 

2. Paul Hommert, Dona Crawford, Rena A. Haynes, 
George W. Davidson, William J. Camp, Doug 

Brown, Arthur L. Hale, Juan C. Meza, Accelerated 
Strategic Computing Initiative, SAND96-2659C, 
Sandia National Laboratories, Albuquerque, NM, 
1996. 

3. James L. Tomkins, The ASCI Red TFLOPS 
Supercomputer, SAND96-2659C, pg 17-18, Sandia 
National Laboratories, Albuquerque, NM, 1996.  An 
excerpt from this report can be found at 
http://www.sandia.gov/ASCI/Red/RedFacts.htm 

4. Timothy G. Mattson and Greg Henry, The ASCI 
Option Red Supercomputer, Intel Corporation, 1997. 

5. R. A. Ballance, Red Storm Web Site, Sandia 
National Laboratories, Albuquerque, NM, 2008. 
http://redstormweb.sandia.gov/RedStorm 

6. R. A. Ballance, The 7X Cookbook, Version 1.5.1, 
Internal Document, Sandia National Laboratories, 
Albuquerque, NM, Jan. 10, 2005. 

7. Preliminary Cray Test Document for Red Storm, 
Draft Cray Internal Document, Dec. 11, 2003. 

8. T. A. Haill, et al., Multi-dimensional z-pinch 
calculations with Alegra, Pulsed Power Plasma 
Science, IEEE, Las Vegas, NV, June 2001. 

9. E. S. Hertel, et al., CTH:  A Software Family for 
Multidimensional Shock Physics Analysis, 
Proceedings 19th International Symposium on Shock 
Waves, 1, 274ff, Universite de Provence, France, 
1993. 

10. Brian C. Franke, Ronald P. Kensek and Thomas W. 
Laud, ITS Version 5.0: The Integrated TIGER Series 
of Coupled Electron/Photon Monte Carlo Transport 
Codes with CAD Geometry, SAND2004-5172, 
Sandia National Laboratories, Albuquerque, NM, 
2004. 

11. M. Rajan, et al., Performance Analysis, Modeling 
and Enhancement of Sandia’s Integrated TIGER 
Series (ITS) Coupled Electron/Photon Monte Carlo 
Transport Code, Proceedings of LACSI Symposium, 
Santa Fe, NM, Oct. 2005. 

12. Transport Methods CCS-4, Los Alamos National 
Laboratory, Los Alamos, NM. 

13. J. Richard Koteras and Arne S. Gullerud, Presto 
User's Guide Version 1.05, SAND2003-1089, Sandia 
National Laboratories, Albuquerque, NM, 2003. 

14. D. J. Kerbyson, et al., Predictive Performance and 
Scalability Modeling of a Large Scale Application, 
Proceedings of the ACM-IEEE International 
Conference HPC and Networking (SC01), Nov. 
2001. 

15. Garth Reese, Salinas – Strategic Vision, Internal 
Document, Sandia National Laboratories, 
Albuquerque, NM, April 2, 2008. 

16. P. Colella and P. R. Woodward, The Piecewise 
Parabolic Method (PPM) for Gas-Dynamical 
Simulations, J. Comput. Phys., 54, pg. 174-201, 
1984. 

http://www.sandia.gov/ASCI/Red/RedFacts.htm
http://redstormweb.sandia.gov/RedStorm


 
CUG 2008 Proceedings 13 of 13 

 

17. J. Owens, The ASCI sPPM Benchmark Code, 
Lawrence Livermore National Laboratory, 
Livermore, CA, 1996. 

18. T. Spelce, Early Performance Results from the 
LLNL/NNSA Purple Computer, UCRL-PRES-22309, 
SCICOMP 12, Boulder, CO, July 17-21, 2006. 

19. B. Chan, The UMT Benchmark Code, Lawrence 
Livermore National Laboratory, Livermore, CA, 
2002, 

20. Bruce Momjian, PostgresSQL: Introduction and 
Concepts, Addison-Wesley, Reading, MA, USA, 
2001. 

21. VA Software, Sourceforge 3.1 User Guide, 2002. 
22. Per Cederqvist, Version Management with CVS, 

Version 1.12.5. 
23. D. A. Bader et al., Designing Scalable Synthetic 

Compact Applications for Benchmarking High 
Productivity Computing Systems, Cyberinfrastructure 
Technology Watch, 2 (4B), 1-10, Nov. 2006. 

Acknowledgments 
The authors thank Courtenay Vaughan, Bob Benner, 

John Van Dyke, Sue Goudy, Mahesh Rajan, and Hal 
Meyer for their assistance with compiling, configuring, 
and troubleshooting on ASCI Red and Red Storm.  Many 
thanks also to the ASCI Red (Frank Jaramillo, Paul 
Sanchez, Mike Martinez, Sean Taylor) and Red Storm 
system administrators and support staff for their 
assistance.  Thanks also to Mark Hamilton for assistance 
in setting up the Sourceforge repository. 

The authors thank Cray engineers Paul Burkhardt, 
Doug Enright, and Ron Pfaff for their assistance with 
compiling and optimizing the codes for Red Storm runs. 

Sue Goudy, Sue Kelly, Mike McGlaun, Jim 
Tomkins, and Courtenay Vaughan have all provided help, 
suggestions, and guidance as the predecessor [6] to this 
report was assembled.  However, the authors are solely 
responsible for any errors or omissions. 

We also thank the application code developers for 
their assistance:  Brian Franke (ITS), Garth Reese 
(SALINAS), Riley Wilson (SALINAS), Galen Gizler 
(SAGE), John Daly (SAGE), Kevin Brown (PRESTO), 
Arne Gullerud (PRESTO), Allen Robinson (ALEGRA), 
Rich Drake (ALEGRA), and Josh Robbins (ALEGRA). 

About the Authors 
Robert A. Ballance is a Principal Member of 

Technical Staff at Sandia National Laboratories.  Since 
joining Sandia in November, 2003, he has been deeply 
involved in the preparations for the delivery, acceptance 
testing, and production deployment of Red Storm, 
Sandia's newest capability computing platform.  He is 
currently the System Manager for Red Storm.  Prior to 
joining Sandia, he honed his operations skills while 
serving as the Manager of Systems and Systems Research 

at the Center for High-Performance Computing at the 
University of New Mexico.  Dr. Ballance received his 
Ph.D. in Computer Science from the University of 
California, Berkeley (1989); a Masters in Computer 
Science from the University of Michigan, Ann Arbor 
(1978); and a Bachelors of Science in Mathematics from 
the University of North Carolina, Chapel Hill (1976).  
Bob can be reached at Sandia National Laboratories, 
Albuquerque, NM, USA, E-mail: raballa@sandia.gov. 

Joel 0. Stevenson has been employed a total of 15 
years at Sandia National Laboratories from 1986-1997 
and 2005-present.  Joel was Co-Founder and Director of 
Software Engineering for Peak Sensor Systems from 
1997-2005.  Joel and partners successfully developed, 
patented, and commercialized a portfolio of 
semiconductor process technologies (20 issued patents) 
and gained broad-based interest and acceptance in the 
technologies across a large number of semiconductor 
device manufacturers.  Joel received his Masters in 
Computer Science from the University of New Mexico 
(1992) and a Bachelors of Science in Chemistry from 
Eastern New Mexico University (1984).  Joel is 
committed to providing high quality, high value service to 
a broad range of customers and is a relative newcomer to 
High Performance Computing.  Joel can be reached at 
Sandia National Laboratories, Albuquerque, NM, USA, 
E-Mail: josteve@sandia.gov. 

 
 

mailto:raballa@sandia.gov
mailto:josteve@sandia.gov

	1. Introduction
	Background
	ASCI Red
	Red Storm

	2.  Guidelines for Application and Problem Selection
	3. Guidelines for Application and Problem Runs
	4. 7X Application Suite
	ALEGRA (QSEM with Contact)
	ALEGRA (QSEM without Contact)
	CTH
	ITS
	PARTISN
	PRESTO
	SAGE
	SALINAS
	SPPM
	UMT2K

	5. Activities and Roles
	SNL Responsibilities: Code Teams
	SNL Responsibilities: 7X Team
	LLNL and LANL Responsibilities
	Cray Responsibilities

	6. Project and Data Management
	Project Database
	Test Management
	File Management

	7. Results – How Much Faster is Red Storm on the 7X Applications?
	8. Results – Single-Core vs. Dual-Core Comparison on Red Storm
	9. Summary and Lessons Learned
	References
	Acknowledgments
	About the Authors

