7X Performance Results — Final Report: ASCI Red vs. Red Storm

Joel 0. Stevenson, Robert A. Ballance, Karen Haskell,
and John P. Noe, Sandia National Laboratories and
Dennis C. Dinge, Thomas A. Gardiner, and Michael E.
Dauvis, Cray Inc.

ABSTRACT: The goal of the 7X performance testing was to assure Sandia National
Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its
performance requirements which were defined as a comparison between ASCI Red and
Red Storm. Our approach was to identify one or more problems for each application in
the 7X suite, run those problems at two or three processor sizes in the capability
computing range, and compare the results between ASCI Red and Red Storm. The first
part of this paper describes the two computer systems, the 10 applications in the 7X
suite, the 25 test problems, and the results of the performance tests on ASCI Red and Red
Storm. During the course of the testing on Red Storm, we had the opportunity to run the
test problems in both single-core mode and dual-core mode and the second part of this
paper describes those results. Finally, we reflect on lessons learned in undertaking a
major head-to-head benchmark comparison.

KEYWORDS: 7X, ASCI Red, Red Storm, capability computing, benchmark

This work was supported in part by the U.S. Department of Energy. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000

1. Introduction

Background

The goal of the 7X performance testing is to assure
Sandia, Cray, and DOE that Red Storm will achieve its
performance requirements and to assess whether major
applications will realize at least a seven-fold performance
increase on the new Red Storm system relative to its
predecessor ASCI Red. The focus is on problem sizes
and processor counts representative of capability
computing; i.e. single application runs that use 20% to
100% of the processors on ASCI Red.

The performance tests are defined as a comparison
between ASCI Red and Red Storm. In general, the Red
Storm contract calls for a series of speedup comparisons
using selected applications at various problem sizes [1].
Our approach is to identify one or more problems for
each application, run those problems at two or three

processor sizes, and compare the results between ASCI
Red and Red Storm.

The Red Storm supercomputer, originally built in
2005 with 2.0 Ghz single-core Opteron processors,
received several upgrades to processors, memory, and
system software in 2006 and 2007. Red Storm compute
nodes are now 2.4 Ghz dual-core Opteron processors.
Users have the option of running applications on both
cores on each node of the system, or on only one core per
node. The latter option is useful for those applications
which are memory intensive and cannot abide having a
node’s memory partitioned between the two cores.
During the course of executing 7X applications on Red
Storm, results were collected in both modes.

Since the processor speeds were upgraded by 20%
(from 2.0 Ghz to 2.4 Ghz) on Red Storm before results
were gathered, the real target should now be 8.4X, not
7X. We will, however, continue to use the 7X descriptor

CUG 2008 Proceedings 1 of 13

throughout this report when referring to performance
testing.

The report is organized in the following manner:
Section 2 and Section 3 discuss the guidelines for
application/problem selection and application/problem
runs, respectively. Section 4 contains a detailed listing of
the applications under test with problem size information.
Section 5 contains an overview of activities and roles and
Section 6 discusses project and data management. 7X
performance testing results are presented in Section 7 and
Section 8 discusses single-core vs. dual-core results.
Section 9 contains a summary and lessons learned in
undertaking a major head-to-head benchmark
comparison.

It will be useful to discuss the basic history, layout,
and operation of ASCI Red and Red Storm in order to
fully understand and contrast their performance.

ASCI Red

ASCI Red, the first computer in the Advanced
Strategic Computing Initiative (ASCI) program, was built
by Intel and installed at Sandia in late 1996. The design
was based on the Intel Paragon computer. The goal was
to deliver a true teraflop machine by the end of 1996 that
would be capable of running an ASCI application using
all memory and nodes by September of 1997. In
December, 1996, three quarters of ASCI Red was
measured at a world record 1.06 TFLOPS on MP
LINPACK and held the record for fastest supercomputer
in the world for several consecutive years, maxing out at
2.38 TFLOPS after a processor and memory upgrade in
1999 [2, 3, 4]. ASCI Red was decommissioned in 2006,
shortly after completing the required 7X runs.

The ASCI Red supercomputer was a distributed
memory MIMD (Multiple Instruction, Multiple Data)
message-passing computer. The design provided high
degrees of scalability for 1/0, memory, compute nodes,
storage capacity, and communications; standard parallel
interfaces also made it possible to port parallel
applications to the machine. The machine was structured
into four partitions: Compute, Service, 1/O, and System.
Parallel applications executed in the Compute Partition
which contained nodes optimized for floating point
performance. The compute nodes had only the features
required for efficient computation — they were not
purposed for general interactive services. The Service
Partition provided an integrated, scalable host that
supported interactive users (log-in sessions), application
development, and system administration. The 1/O
Partition supported disk 1/O, a scalable parallel file
system and network services. The System Partition
supported initial booting and system Reliability,
Availability, and Serviceability (RAS) capabilities. A
block diagram of ASCI Red illustrating the Compute,
Service, 1/0, and System partitions is reproduced in
Figure 1.

Flane B
Flane A

Servi
Ngdces Cornpute Nodes ervice I/O Nodes ATM

H
."‘°' ===:“‘*;r°:":

3

other
connections

Ethemet

nams T 1 | ."gmg
. '.,J-
:i w u u H ~fi!;!J.

Figure 1. ASCI Red Block Diagram — Compute, Service,
1/0, and System Partitions.

In normal operation, disconnect cabinets divided
ASCI Red into two sides; unclassified and classified. In
this situation, each side appeared as a separate plane in
the mesh topology. In its full configuration, ASCI Red
consisted of four rows, each with an unclassified end and
a classified end. The unclassified ends of the rows
appeared to the users as a single machine named Janus,
and the classified ends of the rows appeared as a single
machine named Janus-s. Each end was a significant
parallel computer in its own right, with a peak
computational rate of approximately 780 Gflop. Since
each end was always connected to a LAN (barring
catastrophic failure or other rare circumstance), files on
both systems were always available. Each end had its
own set of disks for file storage, service nodes to handle
user logins, 1/0 nodes to handle I/O requests, and system
nodes for system monitoring and control, in addition to
the computational nodes, on which parallel applications
ran.

The precise configuration was 1168 compute nodes
on the unclassified end and 1166 compute nodes on the
classified end. The middle section contained 2176
compute nodes and could be switched between the
unclassified end and the classified end. Thus the total
number of compute nodes on ASCI Red was 4510.

ASCI Red used two operating systems, the Teraflops
Operating System on the Service, 1/0, and System
Partitions, and a Sandia-developed lightweight kernel
(Cougar) on the Compute nodes. The Teraflops
Operating System was Intel's distributed version of UNIX
(POSIX 1003.1 and XPG3, AT&T System V.3 and 4.3
BSD Reno VFS) developed for the Paragon XP/S
Supercomputer. It was a full-featured version of UNIX,
used for boot and configuration support, system
administration, user logins, user commands/services, and
development tools. The operating system in the Compute
Partition was Cougar, which was Intel's port of Puma, a
light-weight operating system for the TOPS, based on the
very successful SUNMOS system for the Paragon.
SUNMOS, and subsequently Puma, were developed by
Sandia National Laboratories (SNL) and the University of

CUG 2008 Proceedings 2 of 13

New Mexico. Cougar was a very efficient and high-
performance operating system providing program
loading, memory management, message-passing support,
some signal handling and exit handling, and run-time
support for the supported languages. Cougar was very
small, occupying less that 300 KBytes of RAM.

This combination of operating systems made it
possible to specialize for specific tasks and standard
programming tools to make the supercomputer both
familiar to the user and non-intrusive for the scalable
application. The machine provided a single system image
to the user. The users perceived the system as a single
UNIX machine even though the operating system was
actually running on a distributed collection of nodes. To
the user, the system had the look and feel of a UNIX-
based supercomputer. All the standard facilities
associated with a UNIX workstation were available to the
user, yet the compute partition running the Cougar
operating system had only those features required for
computation. The Cougar operating system could
therefore be small in size and very fast. The combination
of these two operating systems was a powerful approach.

Since Cougar was a minimal operating system,
system services and support for the interactive user were
provided by the host operating system (in this case, the
Paragon-derived UNIX OS running in the Service
Partition). All access to hardware resources came from
the Q-Kernel, the lowest-level component of Cougar.
Above the Q-Kernel sat the process control thread (PCT),
which ran in user space and managed processes. User
applications sat at the highest level. As with most MPP
systems, the basic programming model in Cougar was
based on message passing. FORTRAN77, FORTRAN90,
C and C++ were supported. The interactive debugger and
performance analysis tools understood these languages
and mapped onto original source code.

One interesting feature of ASCI Red concerned
processor “mode”. While message passing was used
between nodes, shared memory mechanisms were used to
exploit parallelism on a node. Each compute node had
two processors. The second processor could be used in
one of four modes:

» Proc 0 option — ignored the second processor —
default mode — entire system RAM on the node
was available to the application (256 MB)

» Proc 1 option — used the second processor as a
communication co-processor.

* Proc 2 option — used the second processor to run
an additional application thread.

* Proc 3 option — this mode treated each processor
as a separate compute node — virtual mode — the
processors shared memory so only half the
system RAM was available to the application
(128 MB).

The 7X testing was performed on ASCI Red in Proc

0 and Proc 3 modes only.

Red Storm

Red Storm, the follow-on computer to ASCI Red,
was built by Cray and installed at Sandia in early 2005.
Red Storm is a distributed memory, massively parallel
supercomputer modeled on ASCI Red. Red Storm itself
is a dual-headed machine, being split between classified
(Red) and unclassified (Black) use. Each end is anchored
in a specific network. The classified portion of Red
Storm (redstorm-s.sandia.gov) is anchored in Sandia's
Classified Network, the SCN. The unclassified portion of
Red Storm (redstorm.sandia.gov) is anchored in Sandia's
Restricted Network, the SRN.

The Red Storm architecture facilitates simultaneous
usage on the unclassified and classified sides of the
machine. In normal operation, disconnect cabinets divide
Red Storm into two sides; unclassified and classified.
The initial configuration was 2688 compute nodes on the
unclassified end and 2688 compute nodes on the
classified end. The middle section contained 4992
compute nodes and could be switched between the
unclassified end and the classified end. Thus the total
number of compute nodes was 10368.

A fifth row of cabinets was added in an August-
October 2006 upgrade, bringing node counts to 3360 on
the unclassified side and 3360 on the classified side. The
middle section contains 6240 nodes. The total number of
compute nodes is now 12960. Each compute node was
upgraded to dual-core topology, bringing total processor
count to 25920. Processor speed was upgraded from 2.0
Ghz to 2.4 Ghz.

In 2005, Red Storm was measured at 36 TF on MP
LINPACK. Following the fifth row addition and upgrade
from 2.0 Ghz single-core Opteron processors to 2.4 Ghz
dual-core Opterons in 2006, Red Storm was measured at
101.4 TF on MP LINPACK. Red Storm was measured at
102.2 TF on MP LINPACK in 2007 [5].

Red Storm combines commodity and open source
components with custom-designed components to create a
system that can operate efficiently at immense scale. The
basic scalable component is the node. There are two
types of nodes; compute nodes run user applications and
service nodes provide support functions, such as
managing the user's environment, handling 1/0, and
booting the system. Basic internal services such as
networking and file system access run on the specially
designated and configured service nodes. Each compute
node or service node is a logical grouping of a processor,
memory, and a data routing resource.

Cray XT3 systems use a simple memory model: for
applications distributed across numerous nodes, each
instance of the application has its own processor and local
memory. Remote memory is the memory on the nodes
running the associated application instance — there is no
shared memory.

The system interconnection network is the data-
routing resource that Cray XT3 systems use to maintain

CUG 2008 Proceedings 3 of 13

high communication rates as the number of nodes
increases. The system interconnection network enables
the system to achieve an appropriate balance between
processor speed and interconnection bandwidth.

To a user, Red Storm appears as a collection of
Linux-based login nodes that have access to the Red
Storm file systems as well as the compute nodes.
Activities such as compilation, job submission, and job
monitoring are performed on login nodes. The collection
of login nodes appears to the user as a single system.

At the core of Red Storm is the compute partition,
where parallel jobs execute. Since the compute partition
is switchable between the classified and unclassified ends
of the machine, the actual size of the compute partition on
either end will vary over time.

Each Red Storm compute node has dual-core
topology. The 7X testing was performed on Red Storm
in both SN and VN modes.

e SN option — ignore the second processor —
default mode — entire system RAM on the node
is available to the application.

e VN option — each processor is a separate
compute node — only half the system RAM on
the node is available to each processor.

The software environment is summarized as follows:
Operating systems include Linux on service and 1/O
nodes (SUSE Enterprise Server), Catamount VN
lightweight kernel on compute nodes, and Linux on RAS
monitors. The run-time system includes a logarithmic job
launch utility (yod), the node allocator (CPA), and the
batch system workload manager (MOAB). The high
performance file system is Lustre. The user environment
includes PGI compilers (Fortran, C, C++), various
libraries (MPI, 1/O, Math, MPI-2), the showmesh utility
for displaying node states and job layouts on the mesh,
the Totalview debugger, and a performance monitor.

The lightweight compute node OS is fundamental to
the Sandia architecture. It is essential for: (1)
maximizing CPU resources, by reducing OS and runtime
system overhead; (2) maximizing memory resources, with
a small memory footprint and large page support; (3)
maximizing network resources, with no virtual memory
and physically contiguous address mapping; (4)
increasing reliability, with a small code base and reduced
complexity; (5) deterministic performance, with a high
degree of repeatability; (6) scalability, for which OS
resources must be independent of job size.

Other computing systems in the Red Storm
Environment are used for job preparation (such as
meshing) and visualization. Visualization can be
performed on Red RoSE and Black RoSE, companion
clusters to Red Storm that support classified and
unclassified visualization and data services, respectively.
High-speed data links ensure fast data migration between
Red Storm and other systems inside Sandia's computing
environment. Special scripts ensure that the data
movement is both simple and robust.

While Red Storm has many characteristics in
common with ASCI Red, it also differs in many ways.
The system parameters for ASCI Red and Red Storm are
summarized in Table 1 [3, 5]. Red refers to the Classified

(SCN) side and Black refers to unclassified (SRN) side.

ASCI Red Red Storm
Compute Nodes 4510 12960
(Red/Center/Black) (1166/2176/1168) | (3360/6240/3360)
Compute Processors | 9020 25920
(Red/Center/Black) (2332/4352/2336) | (6720/12480/6720)
PIl Xeon 333Mhz | Opteron Dual-core
2.4Ghz
Service Nodes 52 (26/26) 640 (320/320) Service
(Red/Black) and 1/O partition
Disk 1/0 Nodes 73 (37/36) (login, service, 1/0,
(Red/Black) administrative nodes)
System Nodes 2 (1) RAS and System
(Red / Black) Management Partition
Network Nodes 12 (6/6) 100 (50/50) 10GigE to
(Red/Black) Ethernet ATM RoSE
20 (10/10) 1GigE to
login nodes
Number of Cabinets | 96 (76 compute/20 | 155 (135 compute/20
disk) service and 1/O)
Interconnect 3-D Mesh (x,y,z) 3-D Mesh (x,y,z)
Topology (38x32x2) (27x20x24)
Architecture Dist. Memory Dist. Memory MIMD
MIMD
Theoretical Peak 3.15TF 12442 TF
Performance
MP-Linpack 2.38TF 101.4 TF (2006)
Performance 102.2 TF (2007)
Total Memory 1.21TB 39.19TB
System Memory 25TB/s 78.12 TB/s
B/W
Disk Storage 125TB/6.25TB 340 TB/170 TB
(Total/per Color)
Parallel File System | 2.0 GB/s/1.0 100 GB/s / 50 GB/s
B/W GB/s sustained disk transfer
(Total/per Color) rate
External Network 0.4 GB/s/0.2 50 GB/s /25 GB/s
(Total/per Color) GB/s sustained network
transfer rate to RoSE
Interconnect B/W
MPI Latency 15 us 1 hop, ~4.78 us 1 hop,
20 us max ~7.78 us max
Bi-Directional 800 MB/s 9.6 GB/s
Link B/W
Minimum Bi- 51.2 GB/s 4.61 TB/s
Section B/W
Full System RAS
RAS Network 10 Mb Ethernet 100 Mb and 1 Gb
Ethernet
RAS Processors | 1 for each 32 1 for each 4 CPUs
CPUs
Operating System
Compute Nodes | Cougar Catamount VN
Service and I/O TOS (OSFI) Linux
Nodes
RAS Nodes VX-Works Linux
Red/Black Switch
Switches 2/row 4/row

Table 1. System Parameters — ASCI Red vs. Red Storm.

CUG 2008 Proceedings 4 of 13

A block diagram of Red Storm illustrating the three
functional hardware partitions 1) Compute, 2) Service
and 1/0, and 3) RAS/System Management is reproduced
in Figure 2.

Boundary of VTR (Bldg 725)

Backup
System Management
Workstation

Boot RAID Boot RAID Ta SRN

Fiber to Fiber to
Boot Nodes Boat Nodes)
Compute Partition &
High-Speed Mesh

BER0OCO000R0000000000000RCO00000RR
IR OO0 OORC 0000000000 O0RO000O00R M
ERRO00000RO000000000000ROOC000ORER Fartition
BEROCOO0COROOOO0ODOOOCOORCOCOOCO RN

Eﬂpﬂﬂﬂﬂﬂ@ﬂHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ”ﬂﬂﬂﬂﬂ
Red/Black Switch Cabinets
RAID
Storage

GigE 10Gig 10GigE 1 GigE
SCN SCN SRN SRN

Classified Unclassified

Figure 2. Red Storm Block Diagram — Three Functional
Hardware Partitions 1) Compute, 2) Service and 1/0, and
3) RAS/System Management.

2. Guidelines for Application and Problem
Selection

The key criteria for application and problem selection
are discussed at length in The 7X Cookbook [6]. One of
the mandates of 7X testing is that applications and
problem sets shall be “real”. The 7X testing effort is
attempting to characterize production job behavior by
exercising applications-of-interest with production input
files and algorithms. Each of the chosen applications is
either a significant DOE production application or an
idealized benchmark application that is based upon and
closely resembles the behavior of a major DOE
production application.

The same calculation will be run on ASCI Red and
Red Storm. The primary metric is wall-clock time as
measured by the elapsed time to execute the entire job
script, including any pre and post processing [7]. The
two calculations should give equivalent answers. The
answers might not be numerically identical due to
different sequences of operations, math libraries or
numerical round-off, but the analysts should be
comfortable that they are giving the “same” answer. For
example, the answers may agree to only 6 significant
digits.

Problems should be chosen to use as many ASCI Red
resources (processor, memory) as possible in order to
place reasonable stress on Red Storm. Problem sizes are
deliberately chosen so that jobs run on ASCI Red should
range from ~4-8 hours of wall-clock time [7]. Simplified
geometries are preferred in order to simplify input file
creation and to avoid meshing problems during

benchmarking. All applications should use standard
production capabilities including 1/0, checkpoint/restart,
and visualization files. When an application can be run
using alternative algorithms, such as ALEGRA with and
without contact, said application may have more than one
benchmark problem in the suite.

We will test each application in “standard” mode
(with the exception of PARTISN and SPPM where we
will skip standard mode and proceed directly to stretch
mode). We will also test each application in “stretch”
and/or “maximum” mode. Figure 3 shows an overlay of
node counts on ASCI Red vs. Red Storm to highlight the
regimes under test.

1. Standard - the standard size should be easily run

and accurately measured on both platforms.
This standard will be used to calibrate the testing
and to check for shifts in performance due to
changes in the underlying system software.
Standard refers to “Large — proc 0” on ASCI
Red and “Small” on Red Storm.

2. Stretch - the stretch size will fully occupy the
large configuration of ASCI Red. Stretch refers
to “Large — proc 3” on ASCI Red and “Large
(SN)/Small (VN)” on Red Storm. Problem sets
will need to accommodate the reduced memory
available in ASCI Red stretch mode.

3. Maximum - selected applications (CTH, ITS,
PARTISN, SAGE, SALINAS, SPPM, UMT2K)
may also be run in maximum size that requires
an operational configuration of ASCI Red’s
entire compute node partition. Maximum refers
to “Jumbo — proc 0 or Jumbo — proc 3” on ASCI
Red and “Large (SN)/Small (VN) or Large” on
Red Storm. Where maximum runs are not
feasible on ASCI Red, the corresponding stretch
sizes shall be considered sufficient.

standard maximum

A N A i V. =)
Pﬂmsﬁlma\ Small)({ Large Jumbo >

0-1166 K 1167-3342 3343-4510

stratch maximum

y A A [
ASCI Red [{ 5)
proc 3 mode Small f__q Large F_,‘ l\I Jumbo ,.f’
02332 2334.6684 6E686-0020
A h A \.
Red Storm (Small 1 Large)/ Jumbo '\;
SNmode 'y VN ¥ ¥
0-3360 3361-9600 9601-12960
A A A n
Rﬁﬁ g}g&m { Small) (Large /‘ { Jumbo)
1 0-6720 iy 6722-19200 v 19202-25920 ¥

ASCI Red: 4510 compute nodes (9020 processors). Proc 0 mode uses one
processor per node and the full 256 MB of memory. Proc 3 mode uses two
processors per node but only 128 MB of memory is available to each
process,

Red Storm: Upgraded to 12960 compute nodes (25920 processors). Each
node is dual core topology with minimum 2 GB of memory per node,
Memaory available to each process is halved when using two processors
per node.

Figure 3. Standard, Stretch, and Maximum Modes on
ASCI Red and Red Storm.

CUG 2008 Proceedings 5 of 13

3. Guidelines for Application and Problem
Runs

The key criteria for application and problem runs are
discussed at length in The 7X Cookbook [6].

For the purposes of the 7X testing, the versions of the
applications run on both platforms should be identical,
subject only to changes required to make the applications
run on both systems (ASCI Red and Red Storm). This
requirement implies that the 7X benchmarking team
needs to carefully manage the source code for each
application. The SNL and Cray teams will both need
access to the source code and input decks to build
binaries and execute the runs. System and support
libraries (e.g. glibc) required for the application to link
and run may differ between the systems. Numeric and
message passing libraries may differ, but the differences
should not include substantive algorithm changes unless
such changes were induced by the Red Storm
architecture.

SNL will port each application to Red Storm and
provide Cray with access to the source code, on-site at
Sandia, for the purpose of 7X compilation. All access to
source code is subject to export control restrictions. Cray
must obtain licenses for any other use of the 7X
application source code.

SNL personnel will run the tests on ASCI Red, with
Cray personnel witnessing the process and validating the
results. Cray personnel will run the tests on Red Storm,
with SNL personnel witnessing the process and validating
the results.

The Red Storm hardware configuration and software
stack was designed to minimize any need for application
source code modifications when porting any application
from ASCl Red to Red Storm. Consequently, any
modifications required in the source code itself are of
interest to both the Sandia Red Storm design teams and to
Cray. Any changes introduced into the 7X application
code base that were required so that the application will
correctly compile and run on Red Storm need to be shared
among the Red Storm design teams, including Cray.

The Makefiles and scripts used to build the
applications may require changes during the port to Red
Storm. For example, the compiler options and switches
used may vary. Similarly, job launch options may differ.
Such changes are acceptable and need only be identified
and tracked as support to the end-users of Red Storm.
However, the final configuration switches used for the 7X
benchmark runs must be properly documented and logged
into the status database.

Each application on Red Storm should be validated
against known “gold standard” results provided by SNL,
LANL, or LLNL as appropriate. Discrepancies in the
output must be validated with designated Labs points of
contact. Similar validation runs should be carried out on
ASCI Red for any applications that are not currently in

production on ASCI Red such as PARTISN, SAGE,
SPPM, and UMT2K. Validation should include
checkpoint/restart and visualization outputs.

The output of the benchmarking runs should be
checked for proper completion, proper creation of output
files, and approximate size of files. Where possible, the
same validation procedures as used by the functional
testing team will be used to validate the 7X runs. Each
test case (a specific benchmark and size) will be run 2-3
times on ASCI Red and Red Storm.

Speedup for each benchmark size will be calculated
by dividing the average of the runs on ASCI Red by the
average of the runs on Red Storm. Speedup for each
application will be calculated by dividing the arithmetic
average of the benchmark speedups on ASCI Red by the
arithmetic average of the benchmark speedups on Red
Storm. Overall speedup will be measured as specified in
the contract [1]: “The speedup of each of the applications
above will be measured as a number, nominally around 7,
and these numbers will be linearly averaged with equal
weights.”

For a given benchmark and size (e.g. SPPM on 4500
processors), all runs must be made with the same
compiled binary. Final 7X testing runs shall be allocated
exclusive use of the platform in order to eliminate any
contention for machine resources (i.e. only one 7X
application running on the mesh at a time and no other
users on the platform during 7X testing).

4. 7X Application Suite

Ten applications comprise the 7X test suite:
ALEGRA Contact, ALEGRA NoContact, CTH, ITS,
PARTISN, PRESTO, SAGE, SALINAS, SPPM, and
UMT2K. The ten applications and the twenty-five test
problems in the 7X suite are shown graphically in Figure
4. Table 2 summarizes the test problem sizes for each
application. Following Table 2, we describe each of these
applications and test problems.

Application Suite (25 cases under test)

oce W Standard

8000

P Streteh
iy B Maximum

I 8500 mo
4500
4008
2?44 {
zou

PARTISN Presio SAGE Balinas SPPM UMTIH

Number of Processors
§ § g
8 8 =S

5 §

CMM MMW[
Application

Figure 4. 7X Application Suite

CUG 2008 Proceedings 6 of 13

App Run Size ASCI Red Red Storm

ALEGRA Standard 2048 | Large - proc 0 Small
Contact

Stretch 6484 | Large —proc 3 Large (SN)
Small (VN)

ALEGRA Standard 2048 | Large - proc 0 Small
NoContact

Stretch 6484 | Large —proc 3 Large (SN)
Small (VN)
CTH Standard 2000 | Large - proc 0 Small
Stretch 6480 | Large —proc 3 Large (SN)
Small (VN)
Maximum 9000 | Jumbo - proc 3 Large
ITS Standard 3200 | Large —proc 0 Small
Maximum 4500| Jumbo - proc 0 Large (SN)
Small (VN)
Stretch 6500 | Large —proc 3 Large (SN)
Small (VN)

Maximum 9000 | Jumbo - proc 3 Large

PARTISN Maximum 4096 | Jumbo — proc 0 Large (SN)
Small (VN)

Stretch 6480 | Large —proc 3 Large (SN)
Small (VN)

Maximum 8930 | Jumbo - proc 3 Large

PRESTO Standard 2036 | Large —proc 0 Small

Stretch 6360 | Large —proc 3 Large (SN)
Small (VN)
SAGE Standard 2048 | Large - proc 0 Small
Maximum 4500 | Jumbo - proc 0 Large (SN)
Small (VN)

SALINAS | Standard 2744 Large —proc 0 Small

Maximum 4096 | Jumbo — proc 0 Large (SN)

Small (VN)

SPPM Maximum 4500 | Jumbo - proc 0 Large (SN)
Small (VN)

Stretch 6561 | Large —proc 3 Large (SN)

Small (VN)

Maximum 9000 | Jumbo - proc 3 Large

UMT2K Standard 3200 Large - proc 0 Small

Maximum 4500 | Jumbo - proc 0 Large (SN)
Small (VN)

Table 2. Test Problem Sizes.

ALEGRA (QSEM with Contact)

ALEGRA is used to simulate the dynamic material
response of complex configurations [8]. It solves coupled
physics problems in 2D or 3D using Lagrangian,
Eulerian, and/or ALE coordinates. The code runs
efficiently on massively parallel computers and contains a
large variety of physics options including hydrodynamics,
magnetohydrodynamics with external circuit coupling,
radiation transport, thermal conduction, and dual ion and
electron temperatures. The ALEGRA Contact problem is
a Quasistatic electromechanics (QSEM) problem in which
a curved impactor depoles a potted active ceramic
element.

ALEGRA (QSEM without Contact)

The ALEGRA No Contact problem is a QSEM
problem identical to the contact problem except the
boundary condition is a prescribed displacement rather
than an impactor. This eliminates the need for contact.

CTH

CTH is a multimaterial, large-deformation, strong
shock wave, solid mechanics code developed at Sandia
National Laboratories [9]. CTH has models for
multiphase, elastic viscoplastic, porous and explosive
materials. Three-dimensional rectangular meshes; two-
dimensional rectangular and cylindrical meshes; and one-
dimensional rectilinear, cylindrical and spherical meshes
are available. CTH uses second order accurate numerical
methods to reduce dispersion and dissipation and to
produce accurate, efficient results. CTH is used for
studying armor/antiarmor interactions, warhead design,
high explosive initiation physics, and weapons safety
issues. The test problem is the shock physics in 3D of a
large conical shaped charge.

ITS

The Integrated Tiger Series (ITS) code permits
Monte Carlo solution of linear time-independent coupled
electron/photon transport radiation transport problems,
with or without the presence of macroscopic electric and
magnetic fields of arbitrary spatial dependence [10,11].
Physical rigor is provided by employing accurate cross
sections, sampling distributions, and physical models for
describing the production and transport of the
electron/photon cascade from 1.0 GeV down to 1.0 keV.
Mulitgroup ITS Version 5.0 (April 1, 2002) contains (1)
improvements to the ITS 3.0 continuous-energy codes,
(2) multigroup codes with adjoint transport capabilities,
(3) parallel implementations of all ITS codes, (4) a
general purpose geometry engine for linking with CAD or
other geometry formats, and (5) the Cholla facet geometry
library. The 7X runs will perform the Starsat MITS test
with CAD flow and geometry and ACIS simulation
mode.

PARTISN

The Parallel Time-dependent Sy (PARTISN) code
package is designed to solve the time-independent or
dependent multigroup discrete ordinates form of the
Boltzmann transport equation in several different
geometries [12]. PARTISN provides neutron transport
solutions on orthogonal meshes with adaptive mesh
refinement in 1D, 2D or 3D. Much effort has been
devoted to making PARTISN efficient on massively
parallel computers. The package can be coupled to
nonlinear multiphysics codes that run for weeks on
thousands of processors to finish one simulation. The test
problem is “Sntiming”, in which flux and eigenvalue
convergence are monitored by PARTISN.

CUG 2008 Proceedings 7 of 13

PRESTO

PRESTO is a Lagrangian, three-dimensional explicit,
transient dynamics code for the analysis of solids
subjected to large, suddenly applied loads [13]. PRESTO
is designed for problems with large deformations,
nonlinear material behavior, and contact. There is a
versatile element library incorporating both continuum
and structural elements.

The contact algorithm is supplied by ACME. The
contact algorithm detects contacts that occur between
elements in the deforming mesh and prevents those
elements from interpenetrating each other. This is done
on a decomposition of just the surface elements of the
mesh. The contact algorithm is communication intensive
and can change as the problem progresses.

The brick walls problem consists of a number of
rectangular bricks, each meshed using 3x3x6 elements.
The bricks are stacked in an alternating fashion in a plane
to produce a wall which is three elements thick. Four of
these walls are lined up in the thin direction. The walls
are then given a sudden pressure loading such that they
compress against each other. Since all of the bricks are
meshed independently, they interact with each other
through contact on their outer surfaces. Each brick is
located on one processor so the only communication for
the finite element portion of the code is for the
determination of the length of the next time step. As the
problem grows with the number of processors, the contact
problem also grows. Although there is no analytic
solution for this problem, it provides a large amount of
contact with respect to the number of elements. There are
1.67 times as many faces to be considered in contact as
there are elements, so the cost of contact dominates the
computation. This serves as an excellent test to exercise
large-scale global contact and to demonstrate the parallel
scaling of the algorithm.

SAGE

SAIC’s Adaptive Grid Eulerian (SAGE) hydrocode
is a multidimensional, multimaterial hydrodynamics code
with adaptive mesh refinement that uses second-order
accurate numerical methods [14]. SAGE represents a
large class of production computing applications at Los
Alamos National Laboratory (LANL). It is a large-scale
parallel code written in Fortran 90 and uses MPI for
interprocessor communications. It routinely runs on
thousands of processors for months at a time on capability
computing systems in the DOE complex. The test
problem is an asteroids simulation of 45 degree, 3D,
granite asteroid impact into a stratified medium of water,
calcite, granite crust, and mantle.

SALINAS

SALINAS is a massively parallel implicit structural
mechanics/dynamics code aimed at providing a scalable
computational workhorse for extremely complex finite
element (FE) stress, vibration, and transient dynamics

models with tens or hundreds of millions of degrees of
freedom (dofs) [15]. The SALINAS software predicts
vibrational loads for components within larger systems,
design optimization, frequency response information for
guidance and space systems, and modal data necessary
for active vibration control. SALINAS is used to predict
mechanical response in normal and hostile STS1
environments for RB2 systems and missiles. The
software is a tool for understanding and predicting
structural response. It is used for both production type
calculations and for research and development, especially
with respect to development of joint and interface models.
The test problem is a transient dynamics problem
based on one unit cube model. The cube will first be
decomposed into subcubes using an nsub x nsub x nsub
partition. Then each cube will be meshed using nelem x
nelem x nelem hex8 elements. The x=0 face will be
clamped, and x=1 face will have an x-directional load.
The cube starts at the origin (0,0,0) and extends to (1,1,1).
The faces are parallel to the three coordinate directions
(x,y,2). We use “pmesh” to create the models on the fly.

SPPM

PPM (Piecewise Parabolic Method) is a 3-D
hydrodynamics code used to model a wide range of shock
physics problems [16]. It performs PPM hydrodynamics
in Lagrangian style using a Riemann solver. A simple
gamma-law equation of state is used, and an initially
uniform grid with either periodic or continuation
boundary conditions is assumed. The SPPM benchmark
solves a 3D gas dynamics problem on a uniform
Cartesian mesh, using a simplified version of PPM, hence
the "s" for simplified [17, 18]. The code is written to
simultaneously exploit explicit threads for
multiprocessing shared memory parallelism and domain
decomposition with message passing for distributed
parallelism. It represents the current state of ongoing
research which has demonstrated good processor
performance, excellent multi-threaded efficiency, and
excellent message passing parallel speedups all at the
same time. The SPPM program was written in Fortran77
with all system dependent calls taking place through C. It
uses a small number of MPI routines for communication
between nodes.

The hydrodynamics algorithm involves a split
scheme of X, Y, and Z Lagrangian and remap steps which
are computed as three separate passes or sweeps through
the mesh per timestep, each time sweeping in the
appropriate direction with the appropriate operator. Each
such sweep through the mesh requires approximately 680
FLOPs to update all of the state variables for each real
mesh cell. Message passing is used to update ghost cells
with data from neighboring domains three times per
timestep and occurs just before each of the X, Y, and Z
sweeps. Multiple threads are used to manipulate data and
update pencils of cells in parallel.

CUG 2008 Proceedings 8 of 13

UMT2K

The UMT benchmark is a 3D, deterministic,
multigroup, photon transport code for unstructured
meshes [19]. UMT 1.2, referred to as UMT2K for clarity,
performs exactly the same physics as previous versions of
UMT (i.e., UMT 1.1, referred to as UMT98) but now
includes additional features that are commonly found in
large Lawrence Livermore National Laboratory (LLNL)
parallel applications. These features include mixed MPI
and OMP support for large-scale parallelism, an OMP-
based C computation kernel called from an MPI-based
Fortran90 driver, a new mechanism for synthetically
generating very large distributed meshes, a parallel
checkpoint/restart mechanism, and graphics output files.
The transport code solves the first-order form of the
steady-state Boltzmann transport equation. The
equation's energy dependence is modeled using multiple
photon energy groups. The angular dependence is
modeled using a collocation of discrete directions, or
"ordinates." The spatial variable is modeled with an
"upstream corner balance" finite volume differencing
technique. The solution proceeds by tracking through the
mesh in the direction of each ordinate. For each ordinate
direction all energy groups are transported, accumulating
the desired solution on each zone in the mesh. Hence,
memory access patterns may vary substantially for each
ordinate on a given mesh, and the entire mesh is "swept"
multiple times. Note, however, that having the energy
group loop on the inside significantly improves cache
reuse, because all of the geometrical information related
to sweeping an ordinate direction is the same for each
energy group.

The code works on unstructured meshes, which it
generates at run-time using a two-dimensional
unstructured mesh (read in) and extruding it in the third
dimension a user-specified amount. This allows the
generation of a wide variety of input problem sizes and
facilitates "constant work™ scaling studies. The MPI-
based parallelism in the Fortran portion uses mesh
decomposition to distribute the mesh across the specified
MPI tasks. The OMP-based parallelism in the C kernel
then divides the ordinates among the OMP threads. This
C kernel's computation time typically completely
dominates the execution time of the benchmark.

5. Activities and Roles

Completion of the 7X benchmarking task requires
cooperation among SNL, LLNL, LANL, and Cray.

SNL Responsibilities: Code Teams

The code teams will designate code releases to be
used and identify test problems for each application,
along with problem sizes and ASCI Red running modes.
Problem sizes should include those needed for testing and
scalability studies on Red Storm. Input files must be
developed for each problem and size and the code teams

must also work with the 7X systems team to port
applications to Red Storm. Code teams will provide the
7X team with instructions on how to compile each
application and how to assemble the input files if the
actual files are not provided directly. Code teams will
also provide either full source code snapshots or access to
a source code repository in which the code to be used is
appropriately tagged for later retrieval.

SNL Responsibilities: 7X Team

The 7X team will organize and manage the
performance testing effort. A data repository will be
created for all testing information. The team will
develop, test, and document the benchmarking procedures
and work with the code teams to develop input files,
problem sizes, and running modes. The 7X team will also
provide assistance to SNL code teams in porting the 7X
applications to Red Storm and work with LANL and
LLNL points of contact to port non-SNL applications to
Red Storm. The 7X team will execute all official baseline
runs on ASCI Red, run and validate each problem set at
its standard size on Red Storm, and partner with Cray
engineers to complete all necessary official runs and
validations on Red Storm.

LLNL and LANL Responsibilities

LLNL and LANL teams will designate the code
releases to be used and assist SNL in identifying test
problems, problem sizes, and ASCI Red running modes
for their candidate applications. The LLNL and LANL
teams will also assist SNL in developing input files for
each test problem/size and provide the 7X team with
instructions on how to port/compile each application on
Red Storm.

Cray Responsibilities

Cray will work with SNL to ensure that all
applications compile and run on Red Storm for all
problems and sizes. Cray engineers will partner with the
7X team to compile binaries for Red Storm and execute
the official runs on Red Storm. Official runs will be
executed with designated SNL personnel as witnesses.

6. Project and Data Management

Many data items need to be tracked during the 7X
benchmarking. Two data repositories will be used: 1)
relational database for projects, status, and result
management 2) file repository for document, build, input,
and output file management.

Project Database

A relational database has been developed that will
store all relevant status and result information. The
information in this database will be used to track both
status and to extract final results. For example, when a
data run occurs, the database will be used both to set up
the run and to log relevant information about the results.
The database currently uses a PostgresSQL [20] server

CUG 2008 Proceedings 9 of 13

located on a development workstation. Interfaces to the
relational database were developed in Perl (for command-
line use). Web-based status reporting can be added if
required. Preliminary status reporting interfaces have
been developed that allow a user to extract data from the
project database and format it as graphs, charts, or tables
using Unix-based tools.

Test Management

A simple XML-based scripting language has been
developed that will allow the 7X testers to specify, run,
and log the results of each benchmark. The
implementation of this language is called rst. Using rst,
one can

e Specify a test to be run.

» Compile application binaries and capture
extended output for later inclusion into the
database.

* Runatest in either batch or interactive mode and
capture run-time information for later inclusion
in the database.

» Write results data back into the database.

The tool has been designed to minimize impact on
the HPC engines where it runs. In particular, it can run
without requiring access to a database server when
compiling applications or when running the actual tests.

File Management

A Sourceforge [21] project repository has been
created to support all of the file management necessary
for running and reviewing the benchmarks. Sourceforge
is a collaborative software development tool that supports
web-based interactions, collaborative communications
and file sharing. Underlying the web interface is a source
code management system based on CVS [22]. Access to
files can be controlled and limited to certain users via
role-based access controls. The input files, build scripts,
and run scripts for each application and benchmark will
reside on the Sourceforge site. When a benchmark needs
to be executed, the files can be retrieved, the application
built (if necessary) and the test run. The resulting test
output files will be pushed back into the Sourceforge
repository, while the test results will be logged into the
relational database.

7. Results — How Much Faster is Red Storm
on the 7X Applications?

An effort was made to set up the test problems so that
each would require ~4-8 hours wall-clock execution time
on ASCI Red and, therefore, about 1 hr. on Red Storm.
This goal was largely met, as seen in Figure 5, although it
was not possible to scale the PARTISN test problem to
that level. The SALINAS test problems ran for slightly
more than an hour on Red Storm, as the SALINAS
speedups on Red Storm were only a factor of 6 to 8 over
ASCI Red, lower than for all of the other applications.

Wall-Clock Execution Times (ASCI Red vs. Red Storm)

&

@
g 10
=
a® 8-
B S U SN A ORI AU s S
LA .
A + ASCI Red
¥, | - Red storm
'E ~ = ASCI Red Avg (8.0)
e Y] | — - Red Storm Avg (0.538) |
£ 31
3 2
L
S -

n 1

“{\ei “{“ %@i ‘ﬁ 'oa@@.%ﬁfﬁf‘;f*@?*

éeyfé;f'@ RS ES ,ﬁé\qv&ég“é e,_;.,;e@\o&@‘ & &{*

Application

Figure 5. Application Execution Times on ASCI Red and
Red Storm.

We have not thoroughly investigated the cause for
the lower than expected speedup for SALINAS, however
we observed that the total Finite Element Tearing and
Interconnecting (FETI) solution time to wall-clock time
was much closer to one in the ASCI Red runs than for the
Red Storm runs. For example, a typical 2744 proc 0 mode
run on ASCI Red, took 30419 wall-clock seconds with
29025 seconds spent in the FETI solve step which equates
with 95% of the wall-clock time spent in the FETI solve.
By comparison, a typical 2744 VN mode run on Red
Storm took 4733 wall-clock seconds to complete with
3400 seconds spent in the FETI solve step. The FETI
solve step occupied only 72% of the total wall-clock time.
We will need to profile SALINAS on Red Storm to
determine what is occurring during the “unproductive”
28% (1333 seconds).

Figure 6 shows the speedups achieved on Red Storm
relative to ASCI Red. An average speedup of 20X is
observed across the test suite, far above the hoped-for
seven-fold improvement. Three caveats are in order: (1)
the average speedup is unduly influenced by the
extremely large speedup (65X) measured for PARTISN
(and, to a lesser extent, by SAGE) on Red Storm. We can
speculate that ASCI Red may have been in a degraded
state when the PARTISN runs were made, but this cannot
be proven since the system is no longer available; (2)
processor speeds were upgraded by 20% on Red Storm
before these results were gathered, so the real target
should now be 8.4X, not 7X; (3) Although our intent was
to perform all testing on ASCI Red and Red Storm in
“exclusive” mode (i.e. only one 7X application running
on the mesh at a time and no other users on the platform
during 7X testing), the Red Storm testing was almost
never “exclusive”. We often ran several 7X applications
concurrently and other users were allowed to run jobs on
Red Storm during the 7X testing due to program
milestone needs. Our testing on ASCI Red was always
“exclusive”. This may indeed have disadvantaged Red

CUG 2008 Proceedings 10 of 13

Storm performance results; however, we cannot
determine the extent of the effect.

If we discard the maximum and minimum speedup
values (65X for PARTISN 8930 processors and 6X for
SALINAS 4096 processors), we obtain a 19X average
speedup. If we discard the highest two values (65X for
PARTISN 8930 processors and 42X for SAGE 4500
processors), we still obtain an 18X average speedup, well
above the 7X target.

ASCI Red vs. Red Storm

- standard

== stretch

. maximum

— Avg (20.5X for 2.4 GH1)

= = Target (8.4X for 2.4 GHz) [
=« Target (7.0 for 2.0 GHz)

80
Data from Red Storm Acquired Post
Upgrade (2.4 GHz Processors)

Average is 19.1X without
max and min values

i 'I 1l

Megra Alegra CTH IT$ PARTISN Presto UMTZK
Contact MoContact

Speedup Achieved by Red Storm

Application

Figure 6. Application Speedup - ASCI Red vs. Red Storm

8. Results — Single-Core vs. Dual-Core
Comparison on Red Storm

The recent upgrade of Red Storm to dual-core
sockets has provided the option of specifying either one
or two cores per socket when launching an application.
As noted above, the 7X tests can be performed on Red
Storm in either SN or VN mode: (1) the SN option,
which is the default, ignores the second core and makes
all user memory on the node available to the application;
(2) the VN option, which treats each core as a separate
compute node and makes only half the user memory on
the node available to each core. If applications can run
efficiently in VN mode on Red Storm, this frees up
sockets for other applications.

In Figure 7, we compare the Red Storm results in
terms of execution time for SN and VN runs of the test
problems, as well as a few pre-upgrade runs (2.0 Ghz
single-core Opteron processors). Run times in yellow
were performed pre-upgrade (2.0 Ghz single-core). Run
times in blue were obtained on 2.4 Ghz dual-core, but the
second core of each node was left idle. Run times in red
used both cores on the node and only required half as
many compute nodes as the run times in blue, freeing
nodes for other production work.

Most of the applications are demonstrating a small-
to-modest performance hit (5-30%) for using the second
core in VN mode. The average efficiency drop was 17%
for VN mode vs. SN mode (post-upgrade). PARTISN is
again an outlier with the largest dual-core performance
penalty in the test suite. Interestingly, the 6484 processor

ALEGRA No Contact test shows a very slight
performance acceleration in VN mode relative to the
same number of cores in SN mode.

Pre-upgrade runs were available for three
applications in the 7X suite. These runs were performed
using the 2.0 Ghz single-core Opteron processors that
were in place prior to the Red Storm system upgrade. ITS
shows a speedup commensurate with the 20% increase in
processor speed due to the upgrade, but little benefit is
seen for UMT2K and SAGE for upgrading to the 2.4 Ghz
dual-core Opteron processors.

Red Storm (SN vs. VN)
SN = 1PE/socket, VN = 2PE/socket
17% average slowdown for VN mode vs SN mode (post-upgrade) [oo (Post-upgrade)
Rum times In yellow performed pre-upgrade B VN (post-upgrade)

Run Time {hrs)

14
12 core of each node was beft idle, Run times in
1.0 T e I B0, Treeing nodes for amer
production work,
08
0.6
04 1
0.2 1

{10 Ghr single core). Run imes In blue {
obitained on 2.4 Ghz dual core, but the second pre-ugrade
red used both cores on the node and only
required half &s many compute nodes as the
P & o é‘ & &
.p:; f‘ﬁ#’éﬁ'é‘ Q, & Q’,p" @v“gs;? @@i@ﬁf
f (\"Jm%g‘,* 6,#7‘.6.; 6"@2« &

Application (PEs)” *

Figure 7. Comparison of SN and VN Results on Red
Storm (includes pre-upgrade 2.0 Ghz single-core results
for three applications).

9. Summary and Lessons Learned

In preparation for the testing and acceptance of the
Red Storm system, a suite of ten applications/benchmarks
were developed to assess whether major applications
would realize at least a seven-fold performance increase
on the new system relative to its predecessor. This
methodology has subsequently proven quite valuable in
addressing diverse performance issues: e.g. the benefits of
processor and memory upgrades, particularly the benefits
of dual-core processors. The impending 2008 upgrade of
Red Storm to quad-core Opteron processors will provide
another opportunity to demonstrate the usefulness of the
7X suite to track performance across single, dual, and
quad core processors.

Red Storm has achieved its requirement of 7X
performance over ASCI Red, posting an average speed-
up of 20X. We find that although most of the individual
applications show at least a 12-fold to 15-fold
performance improvement over the ASCI Red system,
there are interesting outliers: PARTISN shows run time
speed-ups of up to 65X while SALINAS manages only a
6X-8X performance increase. The results validate Red
Storm as a capability platform for major scientific and
engineering codes on 2K-10K processors.

We also compared single-core (SN) and dual-core
(VN) runs on Red Storm to investigate the efficiency that

CUG 2008 Proceedings 11 of 13

users might experience when utilizing both cores on the
node. Dual-core performed well on the 7X applications,
often completing in nominally the same time as single-
core runs. The average efficiency drop was 17% for VN
mode vs. SN mode with most of the applications
demonstrating a small-to-modest performance hit (5-30%)
for using the second core in VN mode. The results
validate the efficacy of the dual-core upgrade, as most of
these applications make efficient use of the second core.
Applications that can run efficiently in VN mode on Red
Storm have the potential to free up sockets for other
applications.

The availability and applicability of this test suite to
answer design questions and evaluate upgrade options,
such as the dual-core upgrade, further validates the need
for evaluation of capability-class, massively parallel
systems with real applications.

Many of the 7X applications are routinely used to
benchmark and evaluate other new systems, e.g. highly
parallel cluster systems that are acquired to serve as
capacity computing systems. However, there are some
serious limitations to this methodology. Several of the
applications discussed here require major porting efforts
whenever a new system is to be tested. This is
particularly true of the Sierra framework-based
applications, such as CALORE and PRESTO, as well as
other large, modern, object-oriented applications such as
ALEGRA. Some applications can require a week or two
to be built for a new system, even if no portability issues
are encountered.

When the comparison testing is spread out over a
long period of time, it will undoubtedly be necessary to
adjust to changes in the computing environment.
Upgrades to the operating system, compilers, file systems,
etc. can prove quite challenging. The application code
may not compile the first time out of the chute with a new
compiler. Application codes also “evolve”, which is also
quite challenging when striving for some level of test
consistency over time.

When standing up any new parallel computing
system, an argument could be made for using an
appropriate subset of the large complex application codes
in addition to simpler application/benchmark codes for
quick portability. We see a need for compact applications
based on “real” applications, and there are recent research
and development efforts to create new compact
applications, so that testing and evaluation of new
systems and potential procurements can be done in a
timely manner [23].

References

1. Contract for Red Storm, Internal Document 32124,
Sandia National Laboratories, Albuquerque, NM,
Sept. 23, 2002.

2. Paul Hommert, Dona Crawford, Rena A. Haynes,
George W. Davidson, William J. Camp, Doug

10.

11.

12.

13.

14,

15.

16.

Brown, Arthur L. Hale, Juan C. Meza, Accelerated
Strategic Computing Initiative, SAND96-2659C,
Sandia National Laboratories, Albuquerque, NM,
1996.

James L. Tomkins, The ASCI Red TFLOPS
Supercomputer, SAND96-2659C, pg 17-18, Sandia
National Laboratories, Albugquerque, NM, 1996. An
excerpt from this report can be found at
http://www.sandia.gov/ASCI/Red/RedFacts.htm
Timothy G. Mattson and Greg Henry, The ASCI
Option Red Supercomputer, Intel Corporation, 1997.
R. A. Ballance, Red Storm Web Site, Sandia
National Laboratories, Albugquerque, NM, 2008.
http://redstormweb.sandia.gov/RedStorm

R. A. Ballance, The 7X Cookbook, Version 1.5.1,
Internal Document, Sandia National Laboratories,
Albuquerque, NM, Jan. 10, 2005.

Preliminary Cray Test Document for Red Storm,
Draft Cray Internal Document, Dec. 11, 2003.

T. A. Haill, et al., Multi-dimensional z-pinch
calculations with Alegra, Pulsed Power Plasma
Science, IEEE, Las Vegas, NV, June 2001.

E. S. Hertel, et al., CTH: A Software Family for
Multidimensional Shock Physics Analysis,
Proceedings 19" International Symposium on Shock
Waves, 1, 274ff, Universite de Provence, France,
1993.

Brian C. Franke, Ronald P. Kensek and Thomas W.
Laud, ITS Version 5.0: The Integrated TIGER Series
of Coupled Electron/Photon Monte Carlo Transport
Codes with CAD Geometry, SAND2004-5172,
Sandia National Laboratories, Albuquerque, NM,
2004.

M. Rajan, et al., Performance Analysis, Modeling
and Enhancement of Sandia’s Integrated TIGER
Series (ITS) Coupled Electron/Photon Monte Carlo
Transport Code, Proceedings of LACSI Symposium,
Santa Fe, NM, Oct. 2005.

Transport Methods CCS-4, Los Alamos National
Laboratory, Los Alamos, NM.

J. Richard Koteras and Arne S. Gullerud, Presto
User's Guide Version 1.05, SAND2003-1089, Sandia
National Laboratories, Albuquerque, NM, 2003.

D. J. Kerbyson, et al., Predictive Performance and
Scalability Modeling of a Large Scale Application,
Proceedings of the ACM-IEEE International
Conference HPC and Networking (SC01), Nov.
2001.

Garth Reese, Salinas — Strategic Vision, Internal
Document, Sandia National Laboratories,
Albuquerque, NM, April 2, 2008.

P. Colella and P. R. Woodward, The Piecewise
Parabolic Method (PPM) for Gas-Dynamical
Simulations, J. Comput. Phys., 54, pg. 174-201,
1984.

CUG 2008 Proceedings 12 of 13

http://www.sandia.gov/ASCI/Red/RedFacts.htm
http://redstormweb.sandia.gov/RedStorm

17. J. Owens, The ASCl sPPM Benchmark Code,
Lawrence Livermore National Laboratory,
Livermore, CA, 1996.

18. T. Spelce, Early Performance Results from the
LLNL/NNSA Purple Computer, UCRL-PRES-22309,
SCICOMP 12, Boulder, CO, July 17-21, 2006.

19. B. Chan, The UMT Benchmark Code, Lawrence
Livermore National Laboratory, Livermore, CA,
2002,

20. Bruce Momijian, PostgresSQL: Introduction and
Concepts, Addison-Wesley, Reading, MA, USA,
2001.

21. VA Software, Sourceforge 3.1 User Guide, 2002.

22. Per Cedergvist, Version Management with CVS,
Version 1.12.5.

23. D. A. Bader et al., Designing Scalable Synthetic
Compact Applications for Benchmarking High
Productivity Computing Systems, Cyberinfrastructure
Technology Watch, 2 (4B), 1-10, Nov. 2006.

Acknowledgments

The authors thank Courtenay Vaughan, Bob Benner,
John Van Dyke, Sue Goudy, Mahesh Rajan, and Hal
Meyer for their assistance with compiling, configuring,
and troubleshooting on ASCI Red and Red Storm. Many
thanks also to the ASCI Red (Frank Jaramillo, Paul
Sanchez, Mike Martinez, Sean Taylor) and Red Storm
system administrators and support staff for their
assistance. Thanks also to Mark Hamilton for assistance
in setting up the Sourceforge repository.

The authors thank Cray engineers Paul Burkhardt,
Doug Enright, and Ron Pfaff for their assistance with
compiling and optimizing the codes for Red Storm runs.

Sue Goudy, Sue Kelly, Mike McGlaun, Jim
Tomkins, and Courtenay Vaughan have all provided help,
suggestions, and guidance as the predecessor [6] to this
report was assembled. However, the authors are solely
responsible for any errors or omissions.

We also thank the application code developers for
their assistance: Brian Franke (ITS), Garth Reese
(SALINAS), Riley Wilson (SALINAS), Galen Gizler
(SAGE), John Daly (SAGE), Kevin Brown (PRESTO),
Arne Gullerud (PRESTO), Allen Robinson (ALEGRA),
Rich Drake (ALEGRA), and Josh Robbins (ALEGRA).

About the Authors

Robert A. Ballance is a Principal Member of
Technical Staff at Sandia National Laboratories. Since
joining Sandia in November, 2003, he has been deeply
involved in the preparations for the delivery, acceptance
testing, and production deployment of Red Storm,
Sandia's newest capability computing platform. He is
currently the System Manager for Red Storm. Prior to
joining Sandia, he honed his operations skills while
serving as the Manager of Systems and Systems Research

at the Center for High-Performance Computing at the
University of New Mexico. Dr. Ballance received his
Ph.D. in Computer Science from the University of
California, Berkeley (1989); a Masters in Computer
Science from the University of Michigan, Ann Arbor
(1978); and a Bachelors of Science in Mathematics from
the University of North Carolina, Chapel Hill (1976).
Bob can be reached at Sandia National Laboratories,
Albuquerque, NM, USA, E-mail: raballa@sandia.gov.

Joel 0. Stevenson has been employed a total of 15
years at Sandia National Laboratories from 1986-1997
and 2005-present. Joel was Co-Founder and Director of
Software Engineering for Peak Sensor Systems from
1997-2005. Joel and partners successfully developed,
patented, and commercialized a portfolio of
semiconductor process technologies (20 issued patents)
and gained broad-based interest and acceptance in the
technologies across a large number of semiconductor
device manufacturers. Joel received his Masters in
Computer Science from the University of New Mexico
(1992) and a Bachelors of Science in Chemistry from
Eastern New Mexico University (1984). Joel is
committed to providing high quality, high value service to
a broad range of customers and is a relative newcomer to
High Performance Computing. Joel can be reached at
Sandia National Laboratories, Albuquerque, NM, USA,
E-Mail: josteve@sandia.gov.

CUG 2008 Proceedings 13 of 13

mailto:raballa@sandia.gov
mailto:josteve@sandia.gov

	1. Introduction
	Background
	ASCI Red
	Red Storm

	2. Guidelines for Application and Problem Selection
	3. Guidelines for Application and Problem Runs
	4. 7X Application Suite
	ALEGRA (QSEM with Contact)
	ALEGRA (QSEM without Contact)
	CTH
	ITS
	PARTISN
	PRESTO
	SAGE
	SALINAS
	SPPM
	UMT2K

	5. Activities and Roles
	SNL Responsibilities: Code Teams
	SNL Responsibilities: 7X Team
	LLNL and LANL Responsibilities
	Cray Responsibilities

	6. Project and Data Management
	Project Database
	Test Management
	File Management

	7. Results – How Much Faster is Red Storm on the 7X Applications?
	8. Results – Single-Core vs. Dual-Core Comparison on Red Storm
	9. Summary and Lessons Learned
	References
	Acknowledgments
	About the Authors

