Application of Fortran
Pthreads on Linear Algebra
and Scientific Computing

Clay P. Breshears
Henry A. Gabb
Mark Fahey

USAE Waterways Experiment Station

Major Shared Resource Center

Acknowledgements

This work was funded by the DoD High Performance Computing
Modernization Program CEWES Major Shared Resource Center
through Programming Environment and Training (PET),
Contract Number: DAHC 94-96-C0002, Nichols Research
Corporation.

Introduction

e Last year: Introduced F90 Pthreads API

e This year: Are they really useful?
- How easy is programming?
- Can we get decent parallel performance?
- Are there algorithmic considerations?
- Are there external considerations?

e Must be within a user’s attention span

Pthreads

e POSIX standard for thread functions
- Thread management
- Mutual exclusion
- Conditional variables
- Attributes

e Only defined in C

FO90 Pthreads API

e FO90 subroutines interface C functions

o ‘F prefix to name
- fpthread_create
- Similar to PVM, MPI
- Error code as final argument

e F90 module and C wrapper routines

Problems Considered

e Matrix Multiplication

e Direct Solution of Linear Systems
- Gaussian Elimination and Back Substitution
e Command, Control, Communication, and
Intelligence (C31) Benchmarks
- Map-Image Correlation

- Terrain Masking

Project Goals

e Apply threaded programming techniques to
scientific computations

e Demonstrate and exploit concurrency in numeric
codes

e Achieve execution speed up with multiple
threads/processors

NOT a Project Goal...

To produce the fastest executing
versions of codes and algorithms
examined

Our Emphasis:
eHow easy is the method to use?

eHow much speed up might be
expected?

Matrix Multiplication

e Sparse matrix-matrix multiplication

e Row-major linked list data structure

- Direct Methods for Sparse Matrices by Duff, Erisman and Reid

e |[KJloop structure
- C(l,) =Cd,) + A, K) * B(K, 3)
- |t row of C; Kt" row of B
- Scalar from A (accessed across It row)

Thread Algorithm

While more rows to process
get next row number (lock shared counter)

for each element in row of A do
copy appropriate row of B to local vector
multiply vector by scalar from A
add results to local “summation” vector

add “summation” vector to row of C
lock data structure to prevent overwriting

1000x1000 Sparse Matrix Multiplication (< 10K NZ)
on SGI/Cray Origin 2000 (IRIX 6.4)

of Threads Time (seconds)
1 0.259
2 0.261
4 0.261
8 0.264
16 0.270
32 0.301
64 0.324
128 0.364

Dense Matrices

e Not enough work in sparse case

e |[KJ loop structure

- row-major access

e JKI loop structure
- CG:, J) =CCG, J) + A, K) * B(K, J)
- Jth column of C; Kt column of A
- Scalar from B (accessed down Jt column)

1000x1000 Dense Matrix Multiplication
on SGI/Cray Origin 2000 (IRIX 6.4)

of Threads IKJ Time JKI Time
(seconds) (seconds)

1 75.5 29.8

2 42.4 20.2

4 22.4 11.2

8 11.9 6.1

16 6.3 3.4

32 3.6 2.0

64 3.2 1.9

128 3.0 2.3

Solution of Linear Systems

e Gaussian Elimination with Back Substitution
- simple method with row updates
- diminishing amounts of work

Q: How do we distribute work evenly among threads
throughout computation?

A: Cyclic distribution of rows

Cyclic Row Partitioning

pivot A X

© |0 OO O |O|Oo

index

Thread Algorithm

do i = 1, NUMROWS
if (i mod myid = = 0) then
save pivot, row(i)

indx = NUMROWS
while (indx > 0)
while (indx mod myid = = 0)

else . . fpthread_cond_wait
wait for pivot to be saved compute x(indx)
endif o indx =indx - 1
copy row(i), pivot to local row, fpthread_cond_broadcast
pivot B B

o end while
doj =i+1, NUMROWS

if (mod myid = = 0) then
compute row multiplier
update row(j) with local row
endif
end do
end do

Cyclic Row Partitioning

pivot A X

o |0 |00 O0C|0O|O

index

But What About...

¢ Column-Major ordering is Fortran standard
- Helped with Matrix Multiply code

e Modify threaded algorithm

- Transpose A matrix after input
¢ library routine is threaded

- Swap A(i,j) indices for A(j,i)

Timing Results

FO90 threaded Gaussian Elimination with back substitution
2000x2000 system of equations on SGI/Cray Origin2000

of Threads| Row-Major Transpose
Column-Major
1 672 162
2 735 232
4 556 115
8 1030 100
16 1642 147
32 1667 131

But What About...

e _.Memory contention of threads if matrices
stored on a single processor?

- Used _DSM_ROUND_ROBIN to no significant effect
- Used A(CYCLIC,*) distribution to no significant effect

e _.Distribution of threads to processors?

pthread_setconcurrency

e SGI extension to Pthreads
e Wrote F90 wrapper

e Set to number of threads executing

Added Timing Results

FO90 threaded Gaussian Elimination with back substitution
2000x2000 system of equations on SGI/Cray Origin2000

of Threadf Row-Major

Tr anspose
Column-Major

Transpose

y

fp_setconcurrenc
1 672 162
2 735 232 125
4 556 115 68
8 1030 100 26
16 1642 147 53
32 1667 131 64

10K System of Equations

e Transpose algorithm
- 32 threads
- 10144 seconds on Origin2000

e Transpose with setconcurrency
- 32 threads
- 8608 seconds on Origin2000

C31 Benchmarks

e U.S. AFRL Information Directorate
- Rome Research Site (Griffis AFB)

¢ 10 non real-time C3I functions
- diverse
- computationally
- challenging

- representative of C3l systems

® Spec, sequential code, associated dataset

Map-Image Correlation

¢ Surveillance data from remote sensors
- space-based infrared satellites
- remotely-piloted vehicles
- intelligence photographs

e Determine the alignment of features in the images
with a detailed map of the area

e Potential for comparing “before” and “after” images

Example Problem

Satellite photo (0900
hgtts)

Translation

Spy plane photo (1300 and

h0|m\ { matching
/AL |

Find matching rotation
of physical features
and realize a ship has
departed

Potentials for Concurrency

e Each image is independent

e 2-D Fast Fourier Transform
- Each column is independent 1-D FFT
- Transpose
- Each column (original row) is independent

e FFT of finite number of rotations is independent

Thread Algorithm

Create thread for each image (both original and rotations):
Discretize image
For each column in image create thread for 1-D FFT
Transpose image array
For each column in image create thread for 1-D FFT
Join threads

Correlate images (using threaded Inverse Fourier Transform)

Implementation Detalls

e Two 1024x1024 Grids
e Use 1-D FFT routine from Cray Sci Lib
e Total of three 2-D FFTs

- Two images
- Inverse FFT for correlation

e Use pthread_setconcurrency

Map-Image Timing Results

Threaded Image Correlation of Two
1024x1024 grids on SGI Origin2000

Number of
threads 1 | 2| 4] 8| 16| 32 64
Time (seconds)155| 85| 47/ 28 19 14 I

Single Threaded 2-D FFT (Cray Sci Library): <2

seconds

Terrain Masking

e Used in aircraft flight mission computer systems
to aid in attack, covert, and evasive flight
operations

e Compute evasive routes with low observability

- given a set of threats and their positions

Problem Description

e [nput:
- 2-D relief map (grid of surface elevations)
- Position and range of threats within region

e Output:

- Original map plus masking altitudes
e minimum visible altitude at grid points

Threat Range and Line of Sight

Within range and in line-
of-site

Masked

Enemy Sensor

\

Maske

Terrain

Concurrent Method 1

For each threat
determine range boundaries of threat
divide range into N sectors
create N threads
assign one per sector

join threads

Sector Concurrency Model

Concurrent Method 2

Determine number of sectors, N
create M (number of threats) threads
dol=1,N
for each threat compute sector |
lock potential overlap areas
synchronize M threads
end do

Threat Concurrency Model

Create and
use mutex
for each
overlapping
column

Terrain Masking Results

Terrain Masking Timing (in minutes) for 6000x6000
element grid with 90 threats on SGI Origin2000

NUMBER OF THREADS| 1 2 4 38 16

Time (minutes) 25 | 14 8 | 5.5 3.5

With or without pthread_setconcurrency yielded
little difference.

Conclusions

Threaded codes can demonstrate speed-up

Minor coding changes to add Pthreads
- task parallelism or functional units

Able to take advantage of nested parallelism

Must still be aware of architectural quirks
- cache access patterns
- data distribution and memory contention
- thread to processor mapping

