

CUG 1999 Spring

 Proceedings

1

SV1 Cluster

User Data Base Feature

Richard Lagerstrom
Resource Management
SGI
rnl@sgi.com

ABSTRACT:

Administration of an SV1 cluster requires that the user information contained
within the User Data Base (UDB) is to some degree consistent among all the nodes. This feature
offers central management of the UDB files local to each node in the cluster.

Introduction

Each node of an SV1 cluster will have a local User Data Base
(UDB) just as if it were a stand alone system. The administration
of an SV1 cluster requires that the user information contained
within the data base is consistent among all nodes in the cluster.
This paper describes a feature to enforce that requirement to the
level specified by the administrator within the range of flexi-
bility provided by this feature.

Design Outline

There are two distinct parts comprising this feature; the node
level UDB maintenance tools and the cluster level UDB admin-
istration tools. The cluster UDB tools use the node level tools to
effect its requests.

Each node will have the UDB files common to all Unicos
systems. Additionally, each node must have access to the cluster
UDB configuration file, the distribution files and the cluster
UDB source file.

Node Level UDB Maintenance Tools

The existing Unicos

udbgen

 and

udbsee

 tools are the
basis for this feature. One of the design rules is to maintain
upward compatibility with the existing UDB. Making sweeping
changes to the UDB (although tempting) not only causes a great
deal of administrative work but could also pose authorization
risks and denial of service failures.

Cluster UDB administration is done using an enhanced UDB
source file. This method has been selected to provide the
greatest amount of flexibility to the administrator and a
minimum dependence on the local UDB files. This choice also

allows an administrator to develop special source manipulation
aids using available tools such as

awk

 or

perl

.

Changes to the UDB Source Language

To support many nodes with common UDB source and at the
same time allow each node to have tailored user fields makes it
necessary to include target node names with the source. Upward
compatibility is also essential for easy conversion from a stand
alone to a cluster environment. This will be done by adding a
new

field-name:field-value:

 pair to the source

language

1

 as follows:

•

node:node-name:

 The new field name “node” will be
recognized anywhere a field name may appear.

Node-name

 can be a single node name, a comma sepa-
rated list of node names or “*”. A null name (

node::

) is
ignored.

Udbgen

 will accept any subsequent name-value
pairs in the input file as input directives only if a node-name
given on the node directive matches the host name of the
machine on which

udbgen

 is running or node-name is “*”.

Udbgen

 sets the initial node-name as though a node:host-
name: directive had been read. If the current node-name
does not match the machine’s host name,

udbgen

 will skip
directives as though they were comments after examining
each field name for the keyword “node.”

• The rule that an introductory keyword appears as the first
non-comment token on a line is relaxed to allow a preceding
node directive on the same line.

1

See the udbgen(8) man page for all the details of the UDB source language

Copyright

 1999. SGI. All rights reserved.

2

CUG 1999 Spring

 Proceedings

• A new introductory keyword,

change

, has been added so
records may be created or updated from the source. This is
necessary since the UDB may not have the same record pop-
ulation on all nodes when a cluster UDB source file is dis-
tributed.

Since

udbsee

 is expected to be the generator of the UDB
source files, its output has been modified to include the

node:node-name:

 pair in every output record if the new
node (

-n

) option appears. If the source is intended for input to
the cluster UDB, specific options (

-agnv -t change

) must
be used to get the needed source information.

Changes were made to

udbgen

 to handle the

node

 direc-
tive. No changes to the existing

udbgen

 options or interface
were needed.

New Cluster Level UDB Maintenance Tools

Cluster UDB maintenance tools support or assist in these
administrative functions:

• Add or delete records from all local UDBs with one action

• Add or delete user’s system information using locally written
scripts

• Update

/etc/passwd

 to match the local UDB

• Alter specified fields in the UDBs on all or selected nodes

• Enforce cluster wide uniformity of user identity fields such
as name, password,

uid

,

gid

 and

acid

 lists, and home
directory. If a password or default shell is changed by the
user or administrator, the corresponding field of the user’s
record on each node should be changed. Password and shell
changes should optionally trigger a site specified process to
perform site dependent work

• Optionally enforce cluster wide uniformity of the share tree
structure, share mode (

uid

 or

acid

), share entitlement and
share group membership

• Allow node by node variations on limits, permissions, quo-
tas, and other fields

Resiliency is also important in order to keep the nodes of the
cluster synchronized as intended. Specifically,

• Information should not be lost if one or more nodes fail

• Logs of changes should be maintained

• When a node joins the cluster a check that all changes have
been applied is made. There are two cases to consider: a
node newly added to the cluster and a node joining the clus-
ter after being temporarily disconnected. Pending update
files are used to handle the rejoining case. Distribution of the
Cluster UDB populates the UDB of the new node as desired.

Implementation

The core of cluster UDB administration is to categorize what
the cluster environment should be and, from a user’s view, how
similar the nodes should appear. To accomplish this the Cluster

UDB configuration file

2

 allows uniformity rules to be estab-

lished in a flexible way. There are three categories into which
records and fields may be placed:

• Non-configurable and node invariant record identity infor-
mation. The fields in this category are

name

 and

uid

. Dis-
counting any configured exceptions, all records must
comply.

• Node invariant fields. The administrator names these fields in
the configuration file with the

Uniform

 keyword. The
released configuration file specifies most of the UDB fields
to be in this category

• Node specific information having no cluster wide meaning.
Such fields as

shextime

 and

shusage

 belong to this cat-
egory. The merge process will skip fields in this category.
The administrator names these fields in the configuration file
with the

Drop

 keyword

The fields belonging to each category except the first will be
configurable. Exceptions to the rules will also be configurable.
To make it possible to define special UDB records on a node by
node basis, a way to exempt records by UID value ranges or an
enumeration of exceptions by UID or user name is provided. No
pattern matching or other advanced capabilities for selection
appear to be needed and are not available. The

Exempt

keyword is used to specify exception records.
The Cluster UDB configuration file is used by all of the

cluster UDB tools. The file must be able to be read from all
nodes. In addition to specifying the uniformity rules, the config-
uration file is needed to specify the directories where the cluster
information files are located and a template for new record
creation. All path information must be specified by the site
administrator when installing this feature since path names to nfs
or other shared files have no common naming plan.

Cluster UDB tools may be run from any node of the cluster.
There is interlocking provided to reduce the possibility of confu-
sion if these tools are being run simultaneously somewhere in

the cluster. We recommend to coordinate

3

 cluster UDB admin-
istration to avoid possible race conditions among the tools. Such
races, when the same record is involved, could result in violation
of node invariant rules.

Each of the four cluster UDB tools, the server and the site
module will be described below. Some man-page style informa-
tion appears but only to demonstrate the feel of the commands.
The options and features are not completely described here. The
commands are ordered by the typical sequence in which they
would be used.

UDB Source Collection

The information from the UDB on each node must be made
available for merging and rule evaluation as the first step in

2

A recommended configuration file is supplied with the release materials.

3

Only one administrator should be maintaining the cluster UDB at a time.

CUG 1999 Spring

 Proceedings

3

establishing cluster UDB administration. To do this the

udb_collect

 tool causes

udbsee

 to run on each node to
write the source to a specified file in the cluster UDB directories.

Which nodes to include in the cluster is specified in the
configuration file.

UDB Source Merging and Rule Verification

The UDB source from each node made available by the

udb_collect

 command will be read by

udb_merge

 and
converted into a single cluster UDB source file. In each record a
field having identical values in each node’s UDB will be merged
into a single field description. Non-uniform fields will be identi-
fied with the appropriate node names. Node specific fields will
be dropped from the merged data. Required node invariants will
be enforced and exceptions will be handled as well.

In order to deliver the flexibility necessary for specific needs
the fields belonging to the node invariant and node specific cate-
gories will be configurable. Exception records may be specified
by UID or user name. These records will not be required to
follow the node invariant rules. Fields configured to be dropped
will be eliminated from all records including exception records.

Dropped fields are intended to prevent the merged source file
from containing any node specific information that should not be
restored to the node’s UDB when UDB synchronization is done.
Fields such as share exit time and share usage fall into this cate-
gory.

The command will exit with a status of 1 if it detects any
errors. A completion message showing the number of errors will
appear on

stdout

. The log file should be examined if errors are
indicated. Field uniformity errors will also be marked in the
cluster UDB source file using comment lines. The log file will
record the date, the command line used for the run and the
configuration as interpreted by the tool.

UDB Source Editing

The

udb_edit

 command is used to generate a template
record for creation of a new user record or to edit an existing
cluster UDB record. For a new record the template is extracted
from the cluster UDB configuration file. To edit an existing
record, specify the user name to select from the cluster UDB
source file. Only one record may be created or edited per

udb_edit

 invocation.
A file is created in the directory named on the

EditDirec-
tory

 configuration statement. The name of the file is

user-
name.yyyymmddhhmmss

. The date suffix makes the
filename unique and orders the files on time of creation. This
ordering is needed for proper update sequencing.

An editor is then started to allow the administrator to manip-
ulate the record being changed or created. The

EDIT

 environ-
ment variable chooses the editor. If no

EDIT

 variable exists,

udb_edit

 terminates with a message naming the file holding
a copy of the unedited record. If an editor was executed and it
terminates with a zero error code, the administrator is asked if
the edited record should be saved. If the answer is no or the
editor indicates an error exit, the file is deleted and no changes

are retained. If the answer is yes and this is an update to an
existing record,

udb_edit

 simulates how the changes found in
the edited file would alter the original record. A

udbgen

 direc-
tive file is written over the edited file containing only the direc-
tives needed to alter the UDB record as intended. If this is a new
user creation request, the edited record is used as is from the
editor.

Each edited record results in an update file containing the

udbgen

 directives needed to make the changes specific to that
edit operation.

UDB Cluster Updating

When one or more changes have been made using

udb_edit,

udb_update

 is invoked to distribute the
changes to the cluster. Actually,

udb_update

 has a number of
functions to support the idea of distributing change information
to the nodes. The significant options are:

• -u file1 file2.. filen. Update the cluster from the list of update
files. All of the named files will be concatenated in the order
they appear in this list into a single file for distribution to all
the nodes in the cluster. The file names are relative to Edit-
Directory unless they begin with “/”.

• -s source_file. Synchronize the node UDBs. The cluster
UDB source file named will be distributed to either the con-
figured or the explicitly named nodes in the cluster. The file
name is relative to DistributionDirectory unless it
begins with “/”.

• -e user_name field. The UDB record for the named user will
be read from the UDB local to the node on which the com-
mand is running and the value contained in the named field
will be placed in a udbgen directive file as though the admin-
istrator had used udb_edit . This results in an immediate
update of all other nodes in the cluster. For example, if the
password for user uuu has changed on this node,
udb_update would be started with the command
udb_update -e uuu passwd .

• -j : Join the cluster and apply pending changes.
Udb_update will examine the files in Distribution-
Directory for any that match the pattern Dist*. node-
name. (The Dist prefix is set by the
DistributionFile configuration directive.) Only the
node name matching the host name of the node on which
udb_update is executing will match. Changes will be
applied in order of decreasing age.

The distribution file created by udb_update -u and -e
options will be in the DistributionDirectory with the
name prefix specified by DistributionFile . The released
prefix is Dist . The file name will also encode the creation time
for resiliency and ordering. The file name using the released
configuration has the form Dist yyyymmddhhmmss.

The list of nodes to contact is provided through the
NodeList configuration directive. Udb_update will create
hard links to the distribution file for each node using the node
specific name Dist yyyymmddhhmmss. node . If the distri-

4 CUG 1999 Spring Proceedings

bution file is generated with the -u or -e options, the file to
which the hard links point will be unlinked before node distribu-
tion is started. When all of the node specific links are deleted, the
distribution file will automatically disappear so no administra-
tive cleanup is necessary. If the -s option is used, the links will
point to the source file but that file is not unlinked and so remains
after node distribution is finished.

As each node completes the update the link for that node will
be removed. Any links remaining after the udb_update
completes means those nodes did not perform the update.

Change Feedback to Cluster UDB Source
Updates requested with the -u or -e options need to be

reflected in the cluster UDB source file so subsequent use of
udb_edit displays correct information. This is done by
appending the distribution file to the existing cluster UDB
source file.

Change Logging
When a distribution file is created, a copy is appended to the

change log to record the action. If the cluster source file is
distributed (-s option), the change log contains the action but
not the content of the source file. The change log is in LogDi-
rectory and named by the ChangeLog configuration direc-
tive.

Performing Node Actions
A server named udb_server has been written to manage

the commands run by the nodes. This is a simple server initiated
by inetd on behalf of the udb_collect or udb_update
tools. All response messages are written to stdout or
stderr . For security reasons the configuration file must exist
and be named /etc/config/udb/clusterUDB.conf .

All udb_server options must appear on the command line.
The directive is read from stdin and consists of options and
arguments for udb_helper followed by the prototype of the
command to execute on the node, thus making it possible to run
any authorized command without changing network configura-
tion information.

Only commands residing in the directory named by
CommandDirectory in the configuration file are authorized.
To reduce the possibility of security breaches path names may
not be included in the udb_helper options or on the command
prototype. To enforce this the “/” character may not appear in the
text read from stdin .

Site Support
In order to provide services that may be tailored by the site the

shell script udb_helper will be executed directly by the

server. The input from stdin (after the place holders are
replaced by the proper strings and the absolute command path is
specified with the -b option) will be passed to this script as its
parameters. At some point udb_server must execute the
requested command.

User Initiated UDB Updates
Certain node invariant UDB data can be changed by the user.

• When the default shell is changed by the user running on a
specific node, that change should appear on all other nodes
within a reasonably short period of time.

• The user can change password at any time. Usually this does
not happen very often but sites using password aging may
have a fairly high frequency of password change. In addition
to propagating the new password to all nodes, some environ-
ments also need to make this change visible to an authentica-
tion server. Udb_helper is intended to perform this
specialized role.

The commands chsh , to change the login shell, and
passwd , to change the password, will be modified so cluster
distribution of the information can occur quickly. User initiated
actions that change the cluster UDB have the possibility of
occurring on more than one node at nearly the same time. The
cluster UDB administration tools do not prevent multiple
changes to the same field within a short period of time. In this
case it is possible for node UDBs to end up with different final
field values. Periodic source collection and merging will be
needed to detect and correct this situation.

Summary

Four commands, a server and a site helper have been added
to Unicos to support centralized administration of the User Data
Base (UDB) on SV1 clusters. This feature distributes changes to
the UDB throughout the cluster as required by site policy. It is
assumed that the administrator will never use the udbgen
command to update the UDB once this feature is installed.

Every node in the cluster must be able to access a common set
of cluster UDB files in order to use this feature. Security is
provided through normal file access policy. In addition, all of the
cluster UDB commands are restricted to privileged users and the
server is able to execute only a specific set of commands. All
changes are logged for auditing or problem analysis.

