
SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Optimizing AMBER for the CRAY T3E

Bob Sinkovits and Jerry Greenberg
Scientific Computing Group

San Diego Supercomputer Center

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

What is this presentation all about?

¥ What is AMBER?

¥ Why are we interested in AMBER?

¥ Brief(!) introduction to molecular dynamics

¥ Optimizing AMBER

¥ Neighbor list based calculations

¥ Particle mesh Ewald calculations

¥ Lessons learned / applicability to other MD calculations

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

What is AMBER?

ÒAMBER is the collective name for a suite of programs that

allow users to carry out molecular dynamics simulations,

particularly on biomolecules.Ó AMBER 5 users guide

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Why are we interested in AMBER?

¥ Largest user of CPU time on SDSCÕs CRAY T3E in both

 both 1997 and 1998.

¥ State of the art program used by researchers

worldwide.

 Developed at UCSF, TSRI, Penn State, U. Minnesota,

 NIEHS, and Vertex Pharmaceuticals

¥ Recognized as an application that could benefit from

 serious performance tuning

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Getting started

Although AMBER is a large suite of programs, the majority

of the CPU usage is accounted for in the SANDER module

Simulated Annealing with NMR-Derived Energy Restraints

Most simulations though have nothing to do with NMR

refinement. Primarily used for energy minimization and

molecular dynamics.

All optimization efforts focused on SANDER

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Classical molecular dynamics in a nutshell

Initialization

Calculate Forces

Update x,v

(F=ma)

Calculate

diagnostics

Output

Bonded interactions

stretching: Vst = SV(ri-rj)

bending: Vbend= SV(ri,rj,rk)

dihedral: Vdihed= SV(ri,rj,rk,rl)

Non-bonded interactions

van der Waals

hydrogen bonds

electrostatic

Update neighbor lists

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Molecular dynamics schematic

bend stretch

rcut

Non-bonded

interactions

Employing a finite

cutoff reduces problem
from O(N2) to O(N)

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

ROUTINE %CPU comments
NONBON 26 non-bonded interactions
QIKTIP 20 water-water interactions
_SQRT_CODE 13 square root operations
BOUND2 11 periodic bc
PSOL 7 pairlist construction
BOUND7 5 periodic bc
_sma_deadlock_wait 4 parallel overhead
barrier 2 parallel overhead
FASTWT 1 startup
RESNBA 1 startup

Initial protein kinase benchmark on CRAY T3E (4 CPUs)

As expected, majority of time spent in routines
responsible for force calculations

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Optimizing square root operations

Inverse and inverse-squared interatomic distances are

required in force/energy calculations. In original version of

code, 1/r2 is calculated first and then 1/r is computed as

needed. Doing this saves an FPM operation

do jn=1,npr

 rw(jn) = 1.0/(xwij(1,jn)**2
 + xwij(2,jn)**2
 + xwij(3,jn)**2)

enddo

. . .

df2 = -cgoh*sqrt(rw(jn))
r6 = rw(jn)**3

Original code

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Optimizing square root operations (continued)

Unfortunately, original coding is slow. Computation of the inverse
square root does not take any longer than simple square root - get

the inverse operation for free at cost of added FPM

do jn=1,npr

 rw(jn) = 1.0/(xwij(1,jn)**2
 + xwij(2,jn)**2
 + xwij(3,jn)**2)

enddo

. . .

df2 = -cgoh*sqrt(rw(jn))
r6 = rw(jn)**3

do jn=1,npr

 rw(jn) = 1.0/sqrt
 (xwij(1,jn)**2
 + xwij(2,jn)**2

 + xwij(3,jn)**2)
enddo

. . .

df2 = -cgoh*rw(jn)

rw(jn) = rw(jn)*rw(jn)
r6 = rw(jn)**3

Original code Modified code

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Optimizing square root operations (continued)

By isolating inverse square root operation, get the added bonus of
being able to use highly efficient vector version of function.

do jn=1,npr

 rw(jn) = 1.0/sqrt
 (xwij(1,jn)**2
 + xwij(2,jn)**2

 + xwij(3,jn)**2)
enddo

The CRAY f90 compiler automatically
replaces this with a call to the vector

inverse sqrt function

IBM xlf90 compiler cannot do this
automatically, requires user to insert

call to vrsqrt by hand

do jn=1,npr

 rw(jn) = xwij(1,jn)**2
 + xwij(2,jn)**2
 + xwij(3,jn)**2

enddo
call vrsqrt(rw,rw,npr)

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Periodic imaging

Periodic boundary conditions are

commonly employed in molecular
dynamics simulations to avoid
problems associated with finite sized

domains.

In the figure, the central square is

the real system and the surrounding
squares are the replicated periodic
images of the system.

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Optimization of periodic imaging

Can drastically reduce time by applying periodic

imaging only to atoms that are within a distance rcut

of the edge of the box.

ibctype=0

if(abs(x(1,i)-boxh(1)).gt.boxh(1)-cutoff)
 ibctype = ibctype + 4
if(abs(y(2,i)-boxh(2)).gt.boxh(2)-cutoff)

 ibctype = ibctype + 2
if(abs(x(3,i)-boxh(3)).gt.boxh(3)-cutoff)
 ibctype = ibctype + 1

call periodic_imaging_routine(..,ibctype)

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Optimization of neighbor list construction

The code used for neighbor list construction is written in such a

way that it can handle the general case of single and dual cufoffs.

Rewriting the code so that different code blocks are called for the two
cases, the common case (single cutoff) can be made very fast.

Forces between green and lavender

recalculated each timestep

Forces between green and yellow

recalculated every n timesteps

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Cache optimizations in force vector evaluation

¥ Loop fusion:

Six loops used to calculate water-water interactions in

QIKTIP fused into two loops. Maximizes reuse of data.

¥ Collection of 1d work arrays into single 2d-arrays:
RW1(*), RW2(*), RW3(*) fi RWX(3,1000)

¥ Declaration of force vector work array:
FW(3,*) fi FWX(9,1000)

¥ Creation of common block to eliminate cache conflict possibility

common /local_qiktip/RWX(3,1000),FWX(9,1000)

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Making the common case fast - NVT ensemble

AMBER allows for calculations using a number of different
statistical ensembles, including NVT and NPT. For NVT calculations,

donÕt need to save intermediate force vector results.

do jn=1,npr
 . . .

 fwx(1,jn)=xwij(1,jn)*dfa
 f(1,j)=f(1,j)+fwx(1,jn)
 . . . = . . . +fwx(1,jn)

 . . .
Enddo

- fwx(1,jn) used later -

do jn=1,npr
 . . .

 fwx1=xwij(1,jn)*dfa
 f(1,j)=f(1,j)+fwx1
 . . . = . . . +fwx1

 . . .
Enddo

- fwx1 not needed later -

NPT ensemble NVT ensemble

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Importance of compiler options
Performance of the optimized code on the CRAY T3E was very sensitive to

the choice of compiler options. Very little dependence on IBM SP options.

Case speedup

original code/original flags -

original code/new flags 0.97
tuned code/original flags 1.48

tuned code/new flags 1.76

Original flags: -dp -Oscalar3

New flags: -dp -Oscalar3 -Ounroll2 -Opipeline2 -Ovector3

Protein kinase test case on four CRAY T3E PEs

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Comparison of original and hand tuned codes

 IBM SP CRAY T3E
PEs Orig Tuned speedup Orig Tuned speedup

1 315 220 1.43 - - -

2 160 113 1.41 316 184 1.72

4 84.4 60.8 1.39 162 96.2 1.69

8 44.8 33.6 1.33 85.0 51.8 1.64

16 25.9 20.3 1.27 46.2 29.6 1.56

32 18.3 15.2 1.20 25.6 17.6 1.45

64 17.1 15.3 1.12 16.4 12.3 1.33

Plastocyanine in water benchmark

¥ Excellent speedup relative to original code on small numbers of processors
¥ T3E wins at larger number of PEs due to better inter-processor network

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Particle mesh Ewald (PME) calculations

¥ PME is the ÒcorrectÓ way to handle long ranged electrostatic forces.

 Effectively sums effects of all periodic images out to infinity

¥ Due to the structure of the PME routines - most loops contain multiple

 levels of indirect addressing - difficult to optimize

¥ Optimization efforts focused on the statement and basic block levels

¥ PME routines provided less Òlow hanging fruitÓ - already attacked by
 Mike Crowley (TSRI)

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Particle mesh Ewald (PME) - bitwise optimizations

The PME routines make use of bitwise operations to pack multiple integer

variables into a single integer word. Example: extracting integer data

itran = ishft(n,-27)
n = n - ishft(itran,27)

Extracting high-order bits from

variable n

Same as extracting low-order bits

from original variable n

itran = ishft(n,-27)
n = iand(n,2**27-1) More efficient way to extract

low-order bits using mask

Optimization

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Particle mesh Ewald (PME) - bitwise optimizations

The PME routines make use of bitwise operations to pack multiple integer

variables into a single integer word. Example: packing integer data

iwa(lpr) = n + ishft(jtran,27)

High-order bits of n empty,

packing jtran into high-order
bits using ishft and add

iwa(lpr) = ior(n,ishft(jtran,27))

Optimization

Achieves same result as

above code, but avoids
arithmetic operation

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Common subexpression elimination

Most Fortran compilers are pretty good at performing common subexpression

elimination, but only if expressions are simple enough.

Following optimization missed by compiler

common_expr = dx*(erf_arr(3,ind)+dx*erf_arr(4,ind)*third)

erfcc = erf_arr(1,ind)+dx*(erf)arr(2,ind)+common_expr*0.5)

derfc = -(erf_arr(2,ind)+common_expr)

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Pulling loop invariants outside of inner loops

This is another optimization that most compilers can do, but only if the

expressions are not too complex.

Following optimization opportunity missed by compilers

- several layers of nested loops -
term = . . .

f1 = f1 - nfft1*term*dth(I1,ig)*th2(i2,ig)*th3(i3,ig)
f2 = f2 - nfft2*term*th(I1,ig)*dth2(i2,ig)*th3(i3,ig)
f3 = f3 - nfft2*term*th(I1,ig)*th2(i2,ig)*dth3(i3,ig)

. . .

Bold terms are loop invariants (w/ regards to innermost loop). Product of
terms pre-calculated in next level up of loop nesting

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Manual prefetching of cache lines

Technique most useful for accessing randomly accessed data, but can give

performance benefits for hardware that does not support hardware streams

do m=1,numvdw
 n = ipairs(n)
 . . .

enddo

nprefetch = ipairs(1)
do m=1,numvdw

 n = nprefetch
 nprefetch = ipairs(m+1)
 . . .

enddo

Guarantees that n will be in cache at start of each iteration, minimizes
effects of cache misses

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Making the common case fast - NVT ensemble

As was done earlier, took advantage of opportunity to eliminate

operations that are not need for NVT ensemble calculations

vxx = vxx - dfx*delx

. . .
vzz = vzz - dfz*delz

virial(1) = virial(1)+vxx
. . .
virial(6) = virial(6)+vzz

if(NPT_calc) then

 vxx = vxx - dfx*delx
 . . .
 vzz = vzz - dfz*delz

 virial(1) = virial(1)+vxx
 . . .

 virial(6) = virial(6)+vzz
endif

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Comparison of original and hand tuned PME codes

 Water dhfr

PEs Orig Tuned speedup Orig Tuned speedup
2 222.5 172.5 1.29 422.7 331.6 1.27
4 118.4 91.9 1.29 223.2 176.5 1.26

8 64.5 51.0 1.26 119.8 96.5 1.24
16 38.2 30.83 1.24 69.5 56.0 1.24

CRAY T3E benchmarks

SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Lessons learned / applicability to other MD calculations

¥ Take advantage of vector inverse square root intrinsics

¥ Compilers are limited in their ability to identify loop invariants
 and common subexpressions. Do these optimizations by hand

¥ Optimize for the common case, create multiple versions of code
 blocks or subroutines if necessary

¥ Experiment with compiler options - donÕt assume that highest level
 of optimization will work best

¥ Keep in mind physics of the code
¥ What quantities required for NVT, NPT ensembles?
¥ When is periodic imaging required?

