Programming Tools on the T3E: ARSC Real Experiences and Benefits.

Guy Robinson.

Research Liaison and MPP Specialist..

Arctic Region Supercomputing Center

Mission

To support computational research in science and engineering – with emphasis on high latitudes and the Arctic

http://www.arsc.edu/

Research at the University of Alaska Fairbanks

"The Arctic University of the United States"

Geophysical Institute

Institute of Marine Science

Institute of Arctic Biology

- Arctic and subarctic focus
- Cooperate with Canada, Russia, circumpolar nations
- \$68 million annual research budget
- Sponsors include: NSF, NASA, NOAA, DOD, USDA, DOE, DOI, industry foundations, state/local government

Center for Global Change & Arctic System Research

Cooperative Institute for Arctic Research

International Arctic Research Center

Institute of Northern Engineering

School of Agriculture & Land Resources Management

ARCTIC REGION SUPERCOMPUTING CENTER

From Numbers to Images

ARCTIC REGION SUPERCOMPUTING CENTER

User Satisfaction

- Keeping different types of users happy
 - Small and new users
 - Large users
 - Challenge users
- Working individually with users
 - Code and system optimization for better utilization of systems
 - * More flexible use of processors
 - Optimal use of storage
 - Better scripts and data management

Tools.

- Debugging, performance monitors.
 - * Totalview, write.
 - * Apprentice, PAT, VAMPIR (both MPI and shmem), write.
 - * Develop user skills and encourage application.
- Languages and libraries.
 - * HPF, pghpf for a few suitable projects and rapid development work.
 - Coarray and future trends.

Use of Tools

- Ocean acoustics model modified so that the control processor reads next data slice while other processors compute particle paths
- Several codes modified to run on a range of processors in order to "fit" into system
- Input/output modified for maneuvering submarine challenge data analysis code to better use ARSC system

VAMPIR tool example.

- VAMPIR allows users to inspect message passing.
 - * Considerable detail and information available.
 - * Easy to identify areas for improvement in algorithm. Great help when fine tuning across different architectures/problem sizes etc.
 - Also VERY useful for training and explaining how code works.

What is needed to encourage use.

- Good system configuration.
 - * Friendly queue structure and explain why it is so.
 - * Big fast filesystems.
 - + Both for data storage and checkpointing.
 - * Safe jobs from users.
 - + And good habits while jobs are running.
- Encouragement.

Individual Support

- ARSC makes an effort to interact directly with all users
- Individual support for users focuses on three areas
 - * Tool utilization to inspect and improve code performance
 - * Suitable configuration and use of scheduling systems
 - * File system configuration and good data management practices to make optimal use of available resources
- Proactive inquiry of rogue code behavior noticed by staff

Job Scheduling

- Well-publicized and enforced queue policy
- Special queue designed for Challenge Projects
 - * Next available execution slot
- Modify queue structure to fit user needs
- Assist users in chaining jobs rather than submitting multiple jobs
 - More equitable sharing of resources among users
- Dedicated sessions arranged as required
 - * Application of tools
 - *** Demonstrations**

Encouragement.

- Centre users.
 - * Peer pressure is much better than expert advice.
 - ***** ARSC T3E newsletter.
- Vendors of hardware and software.
 - * Need convincing to support tools.
 - ***** HPCrequirements task force.
- 'Regularity and Good Habits.

ARSC T3E Newsletter.

- Regular email distribution of T3E and parallel information and tricks of the trade to both users and other interested parties.
 - * Over 300 subscribers. WWW reference point.
 - Passed round within many organisations, including SGI/Cray and other supercomputer centres.
 - * Aims at applying peer pressure. Users are more likely to follow the example of fellow researchers that expert advice.

Task Force on Requirements for HPC Software and Tools.

- Many wise and experienced people carefully selected from HPC sites, vendors, users, government etc.
- Considered what was productive, what would be productive.
- Generated a list of required software for both users and systems.
- Find all the details at:
 - * http://www.nacse/org/projects/HPCreqts/

Regularity and Good Habits.

- Ever noticed some of the best codes are those that have moved around more.
- Testing software, computationally and, in some cases, scientifically.
- Basic checks and balances, in scripts in particular.
- Users ask "what can they do at home"?
 - * It is hard to do testing and development work at a fine scale on a production supercomputer.

Role of PC Clusters.

- PC Clusters are not the enemy,
 - * if you make them your friend!
- Provide valuable resources.
 - * Good training and development environment if well configured and supported.
 - Don Morton, University of Montana, Dept. Comp. Sci.
 - → Paper at the Spring 1999 CUG in Minneapolis.
 - + Training course, similar tools, experiences in crossing from cluster to a supercomputer environment.

Benefits?

- Tools help users generate correct and faster code!
 - * Tools make it easier/possible for users to generate correct and faster code.
- Good tools encourage users to modify/improve code.
 - * Safely, with confidence.
- Robustness of code leads to the ability to take advantage of new systems or expansions.
- Centre gets an active community and more results.

What Next?

- Does hardware matter?
 - * Most users have an MPI code so any MPP will do?
- Tools make a difference?
 - * Finding bad spots in a code and look to improve these.
 - * How to support mixed mode programming.
 - + MPI v shmem v openMP v co-Array v HPF v ??
 - * Looking at better algorithms.
 - * Rapid growth away from authors original problem size.

Conclusion.

- Centres/Vendors must provide support for good tools, both for programming and system activity.
 - * Items can come from ISV/Opensource.
- Centre and users must work together to arrive at suitable configurations.
 - * Essential for a diverse userbase such as that at ARSC.
- Future looks challenging from any direction.
 - * But, in such an environment the best things happen.

