
1

How Shall We Program
High Performance Computers?

Burton Smith
Cray Inc.

2

Parallel programming is still hard

! Programming is too tedious
! Architecture changes too often
! Locality optimization competes with load balancing
! Dynamic load re-balancing changes “who’s where”
! Data layout for irregular data structures is painful
! Memory per node is often insufficient
! Data races are far too common
! Debugging tools are primitive
! . . .
Some of these problems should be correctable.

3

Languages: chickens or eggs?

! Hardware has driven parallel languages for a while
" Vectors

loop programming practice
pragmas and directives

" Multicomputers
PVM and MPI

" Distributed shared memory
shmem and MPI-2 single-sided communication
co-array Fortran and UPC

" Grid computing
Java and Jini

! Language efforts for shared memory have languished
" but there are major issues there as well

4

Languages should drive architecture

! Languages bridge architecture to applications
! A language should outlive any architecture

" users need the continuity a language provides
! A language should enhance programmer productivity

" goodness knows more of this is needed
! Architectures are not programming models

" shared memory is a good example
! Architectural changes can help language performance

" especially with communication and synchronization

5

Avoid message passing1

! The sender must know too much about the receiver
" does the thread still exist?
" where is it?
" is it running?
" is it ready for this message?

! Assembling and disassembling messages is expensive
" especially with a subroutine interface

! MPI-2 “single-sided” messaging is not much better
" the receiver has to set up a region
" the sender still has to know too much

! Message passing is okay for client-server applications
" but it will more likely be DCOM than MPI

1 between threads

6

Shmem

! Shmem is a distributed memory access library
! It does put and get to multiple memory “images”
! Communication is processor-to-memory rather than

processor-to-processor or thread-to-thread
" an image can easily support multiple threads per

image
allowing SMP nodes with multiple threads per processor

" the threads can be nameless
greatly facilitating dynamic scheduling

! Synchronization is memory-based
" or a system-wide barrier

! Most multiprocessor vendors are implementing it
! Unfortunately, shmem is pretty low-level

7

Co-array Fortran and UPC

! These languages have distributed data built in
! Addresses are two-dimensional: image and offset

" images are identical name spaces, one per “node”
" subscripting is used to specify which image
" the programmer controls data layout and scheduling

! Programs directly load and store remote data
" just as for local data
" data types are handled by the compiler, not the

library
" the subscripting allows arbitrary communication

! These are significantly higher level than MPI
! Shmem is a potential implementation path

" but of course native implementations are best

8

Automatic scheduling: HPF

! HPF offers block or cyclic data distribution
" independently for each dimension of an array

! Scheduling is via the owner-computes rule
" s = u*x +w*v is computed by the owner(s) of s

! The parallelism model is generally flat
" all nodes are working on the same loop nest
" global barrier synchronization is sufficient

! Compilers for HPF have come a long way
! Extensions have been added for layout of irregular data

structures
" experimentation with these features is ongoing

9

An array-oriented language: ZPL

! This language comes from Larry Snyder’s group at the
University of Washington

! It has built-in abstractions for the common cases:
" data layout including mesh boundaries
" communications patterns, e.g. dimension broadcast
" high level data operators, e.g. reduction and scan

! It is fairly general and exceptionally high level
! The best implementation uses C and shmem

" The compiler optimizes communication quite well

10

Bulk-synchrony: BSP

! The BSP idea is basically
repeat{compute; communicate}until done

! Synchronization is removed as a concern
! Data layout and scheduling are automatic
! Reductions and scans are built-in
! The parallelism model is flat

" nested parallelism is up to the programmer
! Most computing problems can be solved this way

" given enough communications bandwidth
! The BSP idea is especially popular in the U.K.

11

Nested parallelism: NESL and ADL

! These languages exploit arbitrary data parallelism
" sparse linear algebra, for example

! apply-to-all or map describes the parallelism
! Segmented scans and reductions are also available
! Both need hardware or software multithreading

" to schedule the heterogeneous work in each node
! The data distribution approach varies

" NESL linearizes the data to one vector and blocks it
this strategy sometimes violates the owner-computes

rule
" ADL uses programmer-supplied partition functions

these can vary as the computation progresses

12

Avoid shared memory2

! Variables directly reflect the memory hardware
! Programs schedule values into variables

" for parallel programs, this is pretty tricky
! Variable references must be properly synchronized

" barriers
tend to oversynchronize the computation

" wait and signal
are better, but need accurate dependence information

! There are alternatives to ordinary variables
" producer-consumer variables
" single-assignment variables
" linear variables

2 as a programming model

13

! P-C variables force alternation of loads and stores
" premature references are forced to wait

! They support value passing
" reductions and recurrences, for example

! They also can implement barriers and wait/signal
! The Cray MTA hardware implements them directly

Producer-consumer variables

14

Single-assignment variables

! These are not variables at all, but dynamic constants
" any loads that precede the store are forced to wait

! S-A variables can be used to eliminate data races
" e.g. layers of s-a variables instead of barriers

! A key issue with s-a variables is when to reclaim them
" for efficiency, dependence analysis is required
" alternatives are reference counts or garbage

collection
! The programmer usually knows which load is last

15

Linear variables

! These are s-a variables that also can only be used once
" there is need for functions that make copies of values

Fortran 90 can do this already: x(k:l,m:n) = y
" there is no uncertainty about which load is last

! No reference counting or garbage collection is needed
" memory management can be very efficient

! Producer-consumer synchronization adds leverage
" locations can be re-used for sequences of values

16

Avoid functional programming3

! Dealing with state in functional languages is awkward
" streams (e.g. for I/O)
" histogramming
" other updating examples

! Support for “stateful” computation is important
" for efficiency and expressiveness

! State operations must commute in a generalized sense
" i.e. invariants must be preserved but the final state

may differ depending on the order of the operations
! Parallel state transformations are non-deterministic

" atomicity is required to ensure consistency
! This sounds a lot like data base transactions . . .

3 in its pure form

17

A transactional example

! An adaptive irregular mesh needs transactions to create
and destroy mesh points safely

18

Javaspaces

! Javaspaces is an adaptation of the Linda language to Java
and the Jini distributed object system

! lease = space.write(object,txn,lease_req)
places an object in the space as part of transaction txn for
lease milliseconds

! object = space.take(template,txn,timeout) takes an
object matching template from the space as part of
transaction txn unless timeout has expired

! object = space.read(template,txn,timeout) reads an
object matching template from the space as part of
transaction txn unless timeout has expired

! txn.commit()or txn.abort() depending on the success of
the steps of transaction txn

19

Transactions on the Cray MTA

! The MTA hardware supports producer-consumer
variables using full-empty bits

! A trap occurs after a thread has waited for a while
" normally, the trap handler then enqueues the thread

state for later resumption when the thread can
succeed

! Two-phase commit can be implemented by producing
incrementally a linked list of the objects to be acquired

" producing into the link in an object also locks it
" if the linking process blocks, the trap handler can

“back out” by consuming its links in reverse order
! When all objects are locked, the transaction commits

" object modification must be postponed until then
! Finally, the list is unlocked to complete the transaction

20

Conclusions

! Parallel programming is still hard
! Languages can help make it easier

" some may make it harder, so be careful out there
! Language should drive architecture more than it does

" communication requirements
" synchronization requirements

! If we want a bigger market for high performance
computing, we have to make them easier to use

