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Parallel programming is still hard

« Programming is too tedious

« Architecture changes too often

« Locality optimization competes with load balancing
« Dynamic load re-balancing changes “who’s where”
« Data layout for irregular data structures is painful

« Memory per node is often insufficient

. Data races are far too common

« Debugging tools are primitive

Some of these problems should be correctable.
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Languages: chickens or eggs?

« Hardware has driven parallel languages for a while
- Vectors
. loop programming practice
. pragmas and directives
- Multicomputers
. PVM and MPI
- Distributed shared memory
. shmem and MPI-2 single-sided communication
. co—-array Fortran and UPC
- Grid computing
. Java and Jini
« Language efforts for shared memory have languished

- but there are major issues there as well
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Languages should drive architecture

Languages bridge architecture to applications
A language should outlive any architecture
o users need the continuity a language provides
A language should enhance programmer productivity
- goodness knows more of this is needed
Architectures are not programming models
- shared memory is a good example
Architectural changes can help language performance
- especially with communication and synchronization
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Avoid message passing’

The sender must know too much about the receiver
- does the thread still exist?
- whereis it?
o IS it running?
o IS it ready for this message?

Assembling and disassembling messages is expensive
o especially with a subroutine interface

MPI-2 “single-sided” messaging is not much better
- the receiver has to set up a region
- the sender still has to know too much

Message passing is okay for client-server applications
o but it will more likely be DCOM than MPI

1 between threads
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Shmem

Shmem is a distributed memory access library
It does put and get to multiple memory “images”

Communication is processor-to-memory rather than
processor-to-processor or thread-to-thread

- an image can easily support multiple threads per
image
. allowing SMP nodes with multiple threads per processor

- the threads can be nameless
. greatly facilitating dynamic scheduling

Synchronization is memory-based

o Or asystem-wide barrier
Most multiprocessor vendors are implementing it
Unfortunately, shmem is pretty low-level
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Co-array Fortran and UPC

These languages have distributed data built in
Addresses are two-dimensional: image and offset

- images are identical name spaces, one per “node”

o subscripting is used to specify which image

- the programmer controls data layout and scheduling
Programs directly load and store remote data

o just as for local data

- data types are handled by the compiler, not the
library

o the subscripting allows arbitrary communication
These are significantly higher level than MPI
Shmem is a potential implementation path

- but of course native implementations are best
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Automatic scheduling: HPF

HPF offers block or cyclic data distribution

- independently for each dimension of an array
Scheduling is via the owner-computes rule

o s = u*x +w*vis computed by the owner(s) of s
The parallelism model is generally flat

- all nodes are working on the same loop nest

- global barrier synchronization is sufficient
Compilers for HPF have come a long way

Extensions have been added for layout of irregular data
structures

- experimentation with these features is ongoing
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An array-oriented language: ZPL

This language comes from Larry Snyder’s group at the
University of Washington

It has built-in abstractions for the common cases:
- data layout including mesh boundaries
o communications patterns, e.g. dimension broadcast
- high level data operators, e.g. reduction and scan
It is fairly general and exceptionally high level
The best implementation uses C and shmem
o The compiler optimizes communication quite well
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Bulk-synchrony: BSP

The BSP idea is basically
repeat{compute; communicate}until done
Synchronization is removed as a concern
Data layout and scheduling are automatic
Reductions and scans are built-in
The parallelism model is flat
- hested parallelism is up to the programmer
Most computing problems can be solved this way
- given enough communications bandwidth
The BSP idea is especially popular in the U.K.
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Nested parallelism: NESL and ADL

These languages exploit arbitrary data parallelism

o sparse linear algebra, for example
apply-to-all or map describes the parallelism
Segmented scans and reductions are also available
Both need hardware or software multithreading

- to schedule the heterogeneous work in each node
The data distribution approach varies

- NESL linearizes the data to one vector and blocks it

. this strategy sometimes violates the owner-computes
rule

- ADL uses programmer-supplied partition functions
. these can vary as the computation progresses
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Avoid shared memory?

Variables directly reflect the memory hardware
Programs schedule values into variables
o for parallel programs, this is pretty tricky
Variable references must be properly synchronized
- barriers
. tend to oversynchronize the computation
- wait and signal
. are better, but need accurate dependence information

There are alternatives to ordinary variables
o producer-consumer variables
- single-assignment variables
- linear variables

2 as a programming model
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Producer-consumer variables

P-C variables force alternation of loads and stores

- premature references are forced to wait
They support value passing
o reductions and recurrences, for example
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They also can implement barriers and wait/signal
The Cray MTA hardware implements them directly
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Single-assignment variables

These are not variables at all, but dynamic constants
- any loads that precede the store are forced to wait
S-A variables can be used to eliminate data races
- e.g.layers of s-a variables instead of barriers
A key issue with s-a variables is when to reclaim them
- for efficiency, dependence analysis is required

- alternatives are reference counts or garbage
collection

The programmer usually knows which load is last
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Linear variables

« These are s—a variables that also can only be used once

- there is need for functions that make copies of values
. Fortran 90 can do this already: x(k:1,m:n) =y

- there is no uncertainty about which load is last

« No reference counting or garbage collection is needed
- memory management can be very efficient

« Producer-consumer synchronization adds leverage
- locations can be re-used for sequences of values
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Avoid functional programming?

Dealing with state in functional languages is awkward
- streams (e.g. for 1/0)
- histogramming
- other updating examples
Support for “stateful” computation is important
- for efficiency and expressiveness
State operations must commute in a generalized sense

o i.e.invariants must be preserved but the final state
may differ depending on the order of the operations

Parallel state transformations are non-deterministic
o atomicity is required to ensure consistency
This sounds a lot like data base transactions. ..

3in its pure form
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A transactional example

« An adaptive irregular mesh needs transactions to create
and destroy mesh points safely
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Javaspaces

Javaspaces is an adaptation of the Linda language to Java
and the Jini distributed object system

lease = space.write(object, txn,lease req)

places an object in the space as part of transaction txn for
lease milliseconds

object = space.take(template, txn,timeout) takesan
object matching template from the space as part of
transaction txn unless timeout has expired

object = space.read(template, txn,timeout) reads an
object matching template from the space as part of
transaction txn unless timeout has expired

txn.commit () Or txn.abort () depending on the success of
the steps of transaction txn
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Transactions on the Cray MTA

The MTA hardware supports producer-consumer
variables using full-empty bits

A trap occurs after a thread has waited for a while

- hormally, the trap handler then enqueues the thread
state for later resumption when the thread can
succeed

Two-phase commit can be implemented by producing
incrementally a linked list of the objects to be acquired

o producing into the link in an object also locks it

o if the linking process blocks, the trap handler can
“back out” by consuming its links in reverse order

When all objects are locked, the transaction commits
- object modification must be postponed until then
Finally, the list is unlocked to complete the transaction
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Conclusions

Parallel programming is still hard
Languages can help make it easier
- some may make it harder, so be careful out there
Language should drive architecture more than it does
o> communication requirements
- synchronization requirements

If we want a bigger market for high performance
computing, we have to make them easier to use
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