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CRAY SV1 – Target Applications
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Motivation
o In biological simulations is important to have accurate

representation of the system being studied
o Most chemical processes take place in a solvent

Realistic simulations require some sort of representation 
of the solvent or solvent environment
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Solvent Effects

In simulations with waters of solvation, the water
component tends to be the most CPU intensive
part of the calculation

- Systems where solvent has high-degree of interaction
  with solute => use solvent explicitly

- Systems where solvent does not interact with the
  solute but it provides an environment that affects
  the behavior of the solute => use solvent environment
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Simulations Limitations

Simulations of more realistic systems in 
presence of solvent is limited by using 
explicit waters of solvation
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Continuum Models

The computation time can be reduced by representing
solvent effects by a modified set of interactions between
atoms that mimic relevant features of a particular solvent

Continuum models represent the solvent effects in
a uniform medium having the average properties
of the real solvent and surrounding the solute near 
the surface of the solute
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Discrete Hydration
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Solvation Free Energy

∆∆∆∆Gsol = ∆∆∆∆Gelec + ∆∆∆∆Gvdw + ∆∆∆∆Gcav

“The solution free energy (∆∆∆∆Gsol) is the free energy change
to transfer a molecule from vacuum to solvent”
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Electrostatic Contribution to
the Free Energy of Solvation

+ a

ε

Born Model: ∆∆∆∆Gelec = -q2/2a( 1 – 1/εεεε)
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 Generalized Born (GB) Equation

Gelec = (1 – 1/εεεε)ΣΣΣΣΣΣΣΣqiqj/rij – 0.5(1 – 1/εεεε)ΣΣΣΣqi
2/ai

qi:   charges
εεεε:    dielectric constant
ai:   born radii
rij:   interparticle distance 
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Non-electrostatic Contributions to
the Solvation Energy

Gcav + Gvdw = ΣΣΣΣσσσσiSAi

SAi(A2): total solvent-accessible area
σσσσi(Kcal/MolA2): empirical solvation parameter
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Generalized Born Routine Optimization

do i = 1, n
   do j = 1, n

do i = 1, n

do i = 1, n
   do j = i+1, n

do i = 1, n
   do j = 1, n

Compute effective Born radii

Calculate the surface area

Calculate several electrostatic terms

Perform reductions
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Original Loop 200
  485.  1-----<       do i=1,maxi
  486.  1               xi = x(3*i-2)
  487.  1               yi = x(3*i-1)
  488.  1               zi = x(3*i  )
  489.  1               qi = charge(i)
  490.  1               if( igb.eq.1 ) then
  491.  1                 qid = dielfac * qi
  492.  1                 ri = reff(i)
  493.  1               endif
  494.  1               iaci = ntypes * (iac(i) - 1)
  495.  1               jexcl = iexcl
  496.  1               jexcl_last = iexcl + numex(i) -1
  497.  1               nexcl = natex( jexcl )
  498.  1               if( jexcl .gt. jexcl_last ) nexcl = 0
  499.  1               dumx = 0.0d0
  500.  1               dumy = 0.0d0
  501.  1               dumz = 0.0d0
  502.  1       c
  503.  1       cdir$ ivdep
  504.  1 2---<         do 200 j=i+1,natom
  505.  1 2     c
  506.  1 2     c         -- check the exclusion list for eel and vdw:
  507.  1 2     c
  508.  1 2               skip = .false.
  509.  1 2               if( j .eq. nexcl ) then
  510.  1 2                 skip = .true.
  511.  1 2                 jexcl = jexcl + 1
  512.  1 2                 nexcl = natex( jexcl )
  513.  1 2                 if( jexcl .gt. jexcl_last ) nexcl = 0
  514.  1 2               endif
  515.  1 2     c
  516.  1 2               de = 0.0
  517.  1 2     c
  518.  1 2               xij = xi - x(3*j-2)

Several recurrences
within the loop
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Loop 200 – Step 1
   

 129.  1-----<       do i=1,maxi
  130.  1               xi = x(3*i-2)
  131.  1               yi = x(3*i-1)
  132.  1               zi = x(3*i  )
  133.  1               qi = charge(i)
  134.  1               iaci = ntypes * (iac(i) - 1)
  135.  1               jexcl = iexcl
  136.  1               jexcl_last = iexcl + numex(i) -1
  137.  1               nexcl = natex( jexcl )
  138.  1               if( jexcl .gt. jexcl_last ) nexcl = 0
  139.  1               dumx = 0.0d0
  140.  1               dumy = 0.0d0
  141.  1               dumz = 0.0d0
  142.  1       c
  143.  1               skipv(i+1:natom)=.false.
  144.  1 Vr--<         do jj=jexcl,jexcl_last
  145.  1 Vr              skipv(natex(jj))=.true.
  146.  1 Vr-->         enddo
  147.  1               nkeep=0
  148.  1 2---<         do j=i+1,natom
  149.  1 2               xij = xi - x(3*j-2)
  150.  1 2               if( abs(xij) .gt. cutxyz ) go to 2001
  151.  1 2               yij = yi - x(3*j-1)
  152.  1 2               if( abs(yij) .gt. cutxyz ) go to 2001
  153.  1 2               zij = zi - x(3*j  )
  154.  1 2               if( abs(zij) .gt. cutxyz ) go to 2001
  155.  1 2     c
  156.  1 2               r2 = xij*xij + yij*yij + zij*zij
  157.  1 2               if( r2.gt.cut ) go to 2001
  158.  1 2               nkeep=nkeep+1;keepj(nkeep)=j
  159.  1 2     2001      continue
  160.  1 2--->         enddo
  161.  1             if(igb.eq.1)then
  162.  1       cdir$ ivdep
  163.  1 V---<       do 200 jj=1,nkeep
  164.  1 V             j=keepj(jj)

Remove recurrence 
from nexcl
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CRAY SV1 Architectural Features

Processor:
300 MHz, 32 CPUs
Cache:
256 KB, 4-way set associative
Memory Size:
4GW
Mainframe:
SN3202, ICE
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Single CPU Performance

gb_rna: RNA in a generalized Born Solvent, 10 MD Steps
               640 atoms, 20 residues

Mflops
Time (sec.)

64
210

290
46

Scalar Vector (Optimized)
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Myoglobin Single CPU
Performance on a CRAY SV1

Myoglobin: 
153 residues 2492 atoms
1000 MD Steps

377 Mflop/s

“Mb is a relatively simple
oxygen-binding protein
found in almost all 
mammals, primarily in
muscle tissue”
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Mflops versus Number of Atoms
for Four Different Proteins
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Myoglobin Multiple CPU
Performance on CRAY SV1
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Summary

o Calculations based on the GB formalism spend more than 90%
of the CPU in one routine (egb.f)

o All the loop indices are directly related to the number of
atoms

o All the do-loops that compute all the different contributions
within the GB formalism can be vectorized

o Mflops increases as the size of the system increases
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Future Work

o Profile and optimized cases that use discrete or
explicit solvent

o Quantify performance differences between
continuum and discrete solvation models
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