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Motivation

o Gaussian takes into account resources
available at run time and tries to
choose the best algorithm for a
particular platform

o Gaussian cannot choose the number of
processors for any type of input nor it
can select a machine in a
heterogeneous environment
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Gaussian Architecture
o Gaussian 98 is a connected system of programs for

performing a variety of semiempirical, density
functional theory and ab initio calculations

o It consists of more than 4000 subroutines organized
into  programs which communicate through disk
files.  Each subprogram is a link.  Links are
organized in overlays.
- Overlay 0 is responsible to start the program,

including reading the input file.
- Once the route card is read, the proper set of

overlays/options/links is selected for a
particular run.

- Overlay 99 (L9999) terminates the run.
o Currently one source code supports all versions
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Shared and Distributed Memory
Parallel Versions

o Gaussian is parallelized either through
shared memory or Linda

o Parallel processing in Gaussian is
transparent to the user through
subroutines that implement
parallelism
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Link 0 Prallel Command

%nproc = N 

Requests that the job use up to N
processors.  On parallel machines,
the numbers of processors to use in
production can be set in the Default.
Route file.  If %Nproc nor the Dafault.
Route file is used, Gaussian will use
only 1 processor
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Shared Memory Parallel Input

%mem=16MW
%nproc=2
#p hf/6-311++G** 

H2O test 

0 1
o
h 1 r
h 1 2 2 a

r = 0.98
a = 109.
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Distributed Memory Parallel
Input

%mem=16MW
%nproclinda=2
#p hf/6-311++G** 

H2O test 

0 1
o
h 1 r
h 1 2 2 a

r = 0.98
a = 109.
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Gaussian Usage

HF & DFT

MP2

MP4 & QCI

Other
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Algorithm

Setup Setup Setup
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 Integrals
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 Integrals Evaluate

 Integrals

Form
Fock Matrix
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Density
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Density
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System Resources

• O(N33.5)CPU and Disk
• limited by disk capacity
• I/O bound

• integrals computed once

• O(N33.5)CPU 
• N4/8 - N4/4 memory
• single CPU
• memory needed
- 100 basis = 100 MB
- 200 basis = 200 MB
- 300 basis = 8100MB

• integrals computed once
• fast

•O(N2.32.3)CPU 
• integrals computed 
• many times

• modest memory
• large systems
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Parallelization of two-electron
Integrals

loop over Nproc
  loop over total angular momentum
    loop over degrees of bra and ket contraction
      do integrals for 1/Nproc of shell quartets
    end loop
  end loop
  add integral contributions to partial Fock matrix
end loop
loop over Nproc (serial code)
  add 1/Nproc Fock matrix contributions
endloop
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Parallelized Links

Link Description
502
506
508
510
602
703
906
913
914

1002
1014
1110
1112

Closed and open shell SCF solution
GVB solution
Quadratically convergent SCF solution
MCSCF solution
One-electron properties
Two-electron integrals and derivatives
MP2 energies and derivatives
CI, CC, QCI, MP3 and MP4
Excited states
CPHF solution
Coupled-Perturbed CI singles
Two-electron contributions to Fock derivatives
Forms most terms in MP2 2nd derivatives

Turner, Trucks, and Frisch, ACS Symposium Series 592, 1995
Sosa, Ochterski, Carpenter, and Frisch, J. Comp. Chem. 19, 1053(1998)
Sosa, Scalmani, Gomperts, and Frisch, Theochem., Parallel Comp. 2000
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CRAY SV1 Architectural Features

Processor:
300 MHz, 32 CPUs
Cache:
256 KB, 4-way set associative
Memory Size:
4GW
Mainframe:
SN3202, ICE
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Memory Allocations for Parallel Runs

For each additional CPU:
mem_add = 0.75 * ( mem_1_cpu )

Total:
mem = ( mem_1_cpu ) + ( nproc - 1 ) * ( mem_1_cpu ) * 3/4

mem_1_cpu: Memory required for single CPU run
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Performance

Speedup:                                 S = ts/tp

Efficiency:                                e = S/Nproc

Extrapolated speedup:               s = 1/[(p/Nproc) + (1-p)]

Percentage of parallel code:       p = a / b

a = SNproc - Smproc

b = ( 1 - 1/Nproc )xSNproc - ( 1 - 1/Mproc )xSMproc 
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Single CPU performance as a
Function of Basis Sets

Basis Sets
STO-3G
6-311G
6-311G(d)
6-311G(d,p)
6-311+G(d,p)
6-311++G(d,p)
6-311++G(2d,2p)

Mflop/s
  81.73
129.09
133.07
131.91
136.11
129.35
123.25

αααα-pinene
B3-LYP 
Single Point Energy
C10H16
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Single CPU performance as a
Function of the Number of
Atoms

α-pinene Valinomycin

81.75 Mflop/s 100.06 Mflop/s

B3-LYP/STO-3G
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αααα-pinene: Scalability as a Function of
Basis Sets
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αααα-pinene: Scalability as a Function of
Dunning’s Basis Sets
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Scalability as a Function of the Size of the
System
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C20H42: Scalability as a Function of
Molecular Symmetry
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Differences in Scalability Between HF
and B3-LYP
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Total versus Individual Links
Speedups

Ideal
STO-3G[L502]
STO-3G[total]
6-311++G(2d,2p)[L502]
6-311++G(2d,2p)[total]

1
1
1
1
1

2
1.96
1.88
2.04
2.03

4
3.65
3.28
4.04
4.00

8
6.42
5.04
7.62
7.45

16
 9.64
 5.88
12.54
12.06

32
12.27
  6.13
16.70
15.71

Case SpeedUp

αααα-pinene
C10H16

G98->
l1->l101->l202->l301-l302->l303->l401->l502->l601->
l9999
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C20H42: MP2 Single CPU
Performance

STO-3G 8     MW
64   MW
300 MW

Disk Based
Fully Direct
Incore

OVN mem.
OVN mem.

122.95
143.15
355.67

Basis Set Mem. Algorithm Mem. Usage MFlops

Point Group C2H
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MP2 as a Function of Basis Sets

STO-3G
6-311G
6-311G(d)
6-311G(d,p)
6-311+G(d,p)
6-311++G(d,p)

122.95
112.14
205.66
192.98
157.86
148.28

OVN,61 occ.
OVN,61 occ.
ON2,31 occ.
ON2,31 occ.
ON2,31 occ
ON2,31 occ.

   209
 4459
 5363
 9025
15730
19072

Basis Sets Mflop/s Mem. Used Mbytes
Point Group C2H

142
386
486
612
692
734

B.F.
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MP4 Calculations: Mflops as a Function of the
Basis Sets
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Summary
o It is evident from these simple calculations that clear

(performance) patterns can be established based on different
Gaussian parameters

o Parameters considered in this study were: basis sets, number
of atoms, symmetry and level of theory

o Single CPU performance shows a directly proportional
dependency on the size of the parameters

o Multiple CPU performance also shows a dependency on these
parameters
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Future Work

o Extend this type of analysis to include more
options (keywords) within Gaussian

o Write a fairly general document with this
information

o Use this information to prioritize options
that require optimization ( vectorization or
scalability )
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Gaussian Information
 Official Gaussian site: http://www.gaussian.com
 CRAY Gaussian site: http://home.cray.com/~cpsosa/
 Gaussian News@ CRAY
 gaussian@cray.com
 References:
C.P. Sosa, J. Ochterski, J. Carpenter, M. J. Frisch, “Ab Initio on the CRAY T3E MPP
Supercomputer . II”, J. Comp. Chem., 19, 1053(1998).
C. P. Sosa and J. Carpenter, “Running Gaussian in a Combined CRAY PVP and T3E
Environment”, CUG, Spring 1997, San Jose, CA


