Exact Diagonalization of Large Sparse Matrices: A Challenge for Modern
Supercomputers

G. Wellein* G. Hager'

Regionales Rechenzentrum Erlangen, Universitdt Erlangen, 91058 Erlangen, Germany

A. Basermannt
C&C Research Laboratories, NEC Europe Ltd, 53757 Sankt Augustin, Germany

H. Fehske}
Physikalisches Institut, Universitdt Bayreuth, 95440 Bayreuth, Germany

ABSTRACT: Exact diagonalization of very large sparse matrices is a numerical problem common to various fields in
science and engineering. We present an advanced eigenvalue alorithm - the so-called Jacobi-Davidson algorithm - in
combination with an efficient parallel matrix-vector multiplication based on the Jagged Diagonals Storage (JDS) format.
Our JDS implementation allows calculation of several specified eigenvalues with high accuracy both on vector and on
RISC processor based supercomputers. Using a 256 processor CRAY T3E-1200 we were able to discuss the fundamental
question of the metal-insulator transition in one-dimensional half-filled electron-phonon systems and the properties of
the 3/4 filled Peierls-Hubbard Hamiltonian in relation to recent resonant Raman experiments on MX chain [-PtCl]
complexes. In this context we present an extensive performance study on modern supercomputers such as CRAY T3E,

SGI Origin3800, NEC SX5e and Hitachi SR8000.

1 Introduction

Many problems in theoretical physics are related to eigen-
value problems involving large sparse matrices. To inves-
tigate the low energy physics in the framework of the cor-
responding microscopic models, iterative subspace methods
like the Lanczos algorithm [1] or the Davidson algorithm [2]
are commonly used to calculate the ground state and some
excited eigenstates. However these methods show a poor
convergence and stability if the eigenvalues to be computed
are not well separated or even degenerate. In that case,
more advanced methods like the Jacobi-Davidson algorithm
with preconditioning techniques [3, 4] have to be used, pro-
viding both high resolution and rapid convergence.

In general, the computational requirements of these
eigenvalue algorithms are determined by a matrix-vector
multiplication (MVM) involving the large sparse Hamilto-
nian matrix. Thus the efficient use of modern supercomput-
ers strongly depends on a parallel, fast and memory saving
implementation of the matrix-vector multiplication. Con-
sidering the sparsity of the matrix, storage techniques like
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the Compressed Row Storage (CRS) format [5] or the Jagged
Diagonals Storage (JDS) format [5] are used to store the
nonzero elements of the matrix. Using these storage for-
mats, both the memory and cpu-time requirements of the
eigenvalue algorithms scale linearly with the matrix dimen-
sion.

A typical physical problem that requires the application
of high-resolution techniques - such as Jacobi-Davidson -
is the calculation of the eigenvalue spectrum for strongly
interacting electron/spin-phonon systems. As an example,
in section 6 we investigate the 1D Peierls-Hubbard Hamil-
tonian which serves as a generic model for the intensely
studied MX-chain compounds. Most notably, in the strong-
coupling regime we find clear signatures of local lattice
distortions accompanied by intrinsic multi-phonon localiza-
tion. Moreover, we are able to reproduce the observed red
shift of the overtone resonance Raman spectrum.

The paper is organized as follows: In section 2 the Jacobi-
Davidson algorithm is briefly introduced. Section 3 outlines
the basic ideas of the MVM implementation using the JDS
format. A brief survey of the benchmark platforms as well
as the benchmark procedure is given in section 4. The scala-
bility and performance of our MVM implementation is dis-
cussed in section 5. Section 6 presents selected results of
our MX-chain investigations.



2 Large sparse eigenproblems

To solve large sparse Hermitian eigenvalue problems numer-
ically, variants of a method proposed by Davidson [6] are
frequently applied. These solvers use a succession of sub-
spaces where the update of the subspace exploits approxi-
mate inverses of the problem matrix, A. For A, A = AH
or A = AT holds where A denotes A with complex con-
jugate elements and A” = AT (transposed and complex
conjugate).

The basic idea is: Let V¥ be a subspace of R" with
an orthonormal basis wf, ..., wk and W the matrix with
columns w;-“, S = WHAW, 5\;“ the eigenvalues of S, and
T a matrix with the eigenvectors of S as columns. The

columns w;“ of WT are approximations to eigenvectors of

A with Ritz values 5\;“ =

eigenvalues of A. Let us assume that 5\;?8,...,5\5‘?3“_1 €
[Mower> Aupper]- For j € js,..., jsti—1 define

(xf)HA:U;? that approximate

¢f = (A- M)k, rk = (A— N1 gk,

(1)

k1 ko pk k
and V = span(V*Urj U...Ur; |

) where A is
an easy to invert approximation to A (A = diag(A4) in
[6]). Then V¥*! is an (m +1)-dimensional subspace of R",
and the repetition of the procedure above gives, in gen-
eral, improved approximations to eigenvalues and -vectors.
Restarting may increase efficiency.

For good convergence, V¥ has to contain crude approx-
imations to all eigenvectors of A with eigenvalues smaller
than Ajpwer [6]. The approximate inverse of A must not be
too accurate, otherwise the method stagnates. The reason
for this was investigated in [3, 7] and leads to the Jacobi-
Davidson method with an improved definition of r;?:

The projection (I —z% (%)) in (2) is not easy to incor-
porate into the matrix, but there is no need to do so, and
solving (2) is only slightly more expensive than solving (1).

For the choice A = I, the Jacobi-Davidson algorithm ex-
pands the subspace in the same way as the (Generalized)
Davidson or the Arnoldi method; for A = A, it corresponds
to a Shift-and-Invert method with optimal shift. In the lat-
ter case, the Jacobi-Davidson algorithm converges quadrat-
ically. Stagnation which can occur for both Davidson and
Shift-and-Invert is avoided by the projection [3, 7].

The character of the Jacobi-Davidson method is deter-
mined by the approximation A to A. Suited algorithms
to obtain an approximate solution of the preconditioning
system (2) are discussed in [8].

3 Implementation of matrix-vector
multiplication

The performance of the Jacobi-Davidson method is mainly
determined by a sparse MVM. The extreme sparsity of the
matrices used in this work (~ 10-20 nonzero elements per
row, matrix dimension up to 108) calls for a solution where
only the nonzero elements are stored. In a previous work
[10] it was demonstrated that the CRS format which is
widely used has serious drawbacks on vector processors due
to short vector lengths and provides only a minor perfor-
mance benefit on RISC processors. To achieve high perfor-
mance on a wide range of supercomputer architectures, the
JDS scheme was implemented.

The JDS format

The JDS format is a very general storage scheme for sparse
matrices making no assumptions about the sparsity struc-
ture. To illustrate the principles of the scheme, we introduce
an 8 x 8 matrix A with nonzero elements a;;.

In a compression step, the zero elements are removed,
nonzero elements are shifted to the left and the rows are
made equal in length by padding them with trailing zeros.
To prevent storing theses trailing zeros, the rows are then
rearranged according to the number of nonzeros per row:

3.1

(a7 O 0 0 0 0 0 0]
0 a22 Q23 0 0 0 0 0
0 a32 asz3 az4 0 azg O 0
A= 0 0 a43 aGaa as45 Gae Qa7 Q48
0 0 0 ass ass ase asy O
0 0 O aes aes aes asr O
0 0 0 amnu ars arg arr O
| 0 0 0 asg4 0 0 0 agg_
4
-Cl43 Qa4 Q45 G466 Qa7 (148-
ars ars arg ary 0 0
az2 asz ass ags O 0
asy ass ase asy 0 0
ags ags ags asgr 0 0
ans a3 0 0 0 0
ags agg O 0 0 0
i 0 0 0 0 0

The columns of the compressed and permuted matrix are
called Jagged Diagonals. Obviously, the number of these
Jagged Diagonals is equal to the maximum number max nz
of nonzeros per row.

3.2 JDS matrix-vector multiplication

The MVM is performed along the Jagged Diagonals, pro-
viding an inner loop length essentially equal to the ma-



trix dimension (Dpsqt). To minimize indirect memory ac-
cesses, vectors involved in the MVM are permuted once,
so that they automatically carry the same permuted order
as the matrix rows. The numerical core of the MVM is

for j =1,..,maxnz do
for i=1,.. (jdptr(j +1) — jdptr(j)) do
y(3) = y(i) + value(jd-ptr(j) + i — 1).
& x(col ind(jd ptr(j) +i—1))
end for
end for

Figure 1: MVM in JDS format: y =y + Ax. The nonzero
elements of A are stored in the linear array value, stringing
the Jagged Diagonals together one by one. col_ind(:),
an array of the same length, contains the corresponding
column indices. The pointer array jd_ptr(:) consists of
the array indices belonging to the first elements of each
Jagged Diagonal in value(:).

given in Fig. 1. The innermost loop requires one store and
four load operations (including one indirect load) to per-
form two floating-point operations (Flop). In other words,
the performance of the MVM is clearly determined by the
quality of the memory access. Even for present-day vector
processors such as NEC SX5e with a peak performance to
memory bandwidth ratio of one word per Flop, we do not
expect the MVM performance to exceed 20%-25% of the
peak performance. The performance on RISC systems is
even worse [9]. To reduce the load operations associated
with the vector components of y, we have splitted the outer
j loop into several loops over Jagged Diagonals with equal
length by introducing an outermost loop k (cf. Fig. 2),
which enables then unrolling of the j loop by the compiler.
Since there are several groups containing 4-5 Jagged Diago-

for k =1,..,dif_jds do
length=i_length(k)
for j = j_start(k),.., j_end(k) do
for i =1,..,1ength do
y(1) = y(i) + value(jd-ptr(j) +i—1)-
& x(col ind(jd-ptr(j) +i—1))
end for
end for
end for

Figure 2: Modified JDS MVM with an outer k loop running
over dif_jds blocks of Jagged Diagonals with different loop
lengths.

nals with the same length in our matrices, this modification
gives in general a performance improvement especially for
RISC processors.

3.3 Parallel implementation

For parallel computers with distributed memory, we use a
row-wise distribution of matrix and vector elements among
the processes involved in eigenvalue computation (cf. Fig.
3). Matrix elements requiring access to vector data stored
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Figure 3: Distribution of matrix and vector elements on 4
processes (Pg — P3). All nonzero matrix elements are filled.
Matrix elements causing communication are marked black
and local matrix elements are colored red.

on remote processes (nonlocal vector elements) cause com-
munication. Since the matrix does not change during eigen-
value computation, a definite communication scheme is con-
structed once, allowing an efficient way of exchanging data
as well as an overlapping of communication and computa-
tion in the MVM step.

Each process transforms its local rows into the JDS for-
mat as described above (see also Ref. [10]). In order to
maintain a numerical core similar to that shown in Fig. 1,
local and nonlocal vector elements of x are stored in the
same array. It is apparent that a Jagged Diagonal can only
be released for computation if the corresponding nonlocal
vector elements have successfully been received.

The parallel MVM implementation is based on MPI and
uses non-blocking communication routines. After all com-
munication calls have been initialized, we check repeatedly
for the completion of any receive call and release Jagged
Diagonals for computation if possible. This MVM imple-
mentation allows overlapping of communication and com-
putation if asynchronous data transfer is supported by the
hardware.

4 Benchmark Issues

4.1 Benchmark platforms

The benchmarks runs presented in section 5 have been per-
formed on the platforms given in Table 1. Since the MVM
performance is mainly determined by the memory band-
width a brief summary of the memory hierarchy is given for
each processor.



The CRAY T3E-1200 system is based on the DEC
Alpha 21164-600 MHz processor and equipped with 512
MByte per processor. For the benchmark runs we have
enabled the stream buffers, which analyze the memory ac-
cess pattern and prefetch data from main memory to L2
cache at runtime. The MPI implementation is based on the
CRAY mpt.1.4.0.2.

The NEC SX5e vector processor runs at a frequency
of 250 MHz using eight-track vector pipelines for arith-
metic and memory operations. There is one load and one
load/store pipeline which can either work in parallel as two
load pipelines or as a single store pipeline. This configura-
tion provides a single processor performance of 1.6 GFlop/s
for the vector triad with vectors longer than 1000, which is
roughly 2.2 times the performance of a single CRAY T90
vector processor (cf. Ref. [11]).

The SGI Origin3800 uses the MIPS R12000-400 MHz
processor with a total of 56 GByte distributed shared mem-
ory and a large L2 cache with a bandwidth of 4.2 GByte/s.
In the benchmark runs all processors of a compute node
have been used and each MPI process has been fixed to
one processor. The benchmark platform ran CPUSETS in
combination with LSF.

#CPUs L1

Platform Memory PEAK | BW L2

NEC SX5e 32 —
HLR Stuttgart 80 4.0 3201 _

CRAY T3E-1200 540 8
NIC Juelich 270 1.2 0-6 0.096

SGI Origin3800 128 32

TU Dresden 56 0-8 08 8
HITACHI SR8000-F1 | 112 x 8 128
LRZ Munich 900 15 4.0 —

Table 1: Specifications of the benchmark platforms. The
second column shows the total number of processors and
the aggregate memory in GByte. The rightmost columns
(3-5) contain single processor specifications, including the
performance numbers (PEAK) in GFlop/s, the memory
bandwidth (BW) per processor in GByte/s and the sizes of
the L1 (in KByte) and L2 cache (in MByte) for the RISC
processor based systems. Please note that the HITACHI
SR8000 platform is based on eight-way SMP nodes and the
NEC SX5e comprises SMP nodes with 16 vector processors
each.

The HITACHI SR8000-F1 processor is basically a
IBM PowerPC running at 375 MHz with some important
modifications in hardware and instruction set, including
a large floating point register set as well as prefetch and
preload instructions. In combination with an extensive

software pipelining done by the compiler these extensions
form the so called Pseudo-Vector-Processing (PVP) feature,
which provides a continuous stream of data from the main
memory to the processor avoiding the penalties of memory
latency. Eight processors form a shared memory (SMP)
node with a memory bandwidth of 32 GByte/s which is
the same as for a single NEC SXbe processor. Hardware
support for fast collective thread operations is provided.
Therefore the system can efficiently be used either as a
vector-like computer running one process comprising eight
threads (vector-mode on one node or as an MPP assigning
one process to each processor (MPP-mode).

4.2 Benchmark procedure

All of the performance data presented in this report have
been measured on non-dedicated platforms. With the ex-
ception of the NEC SX5e memories as well as processors
have been solely used by our benchmark program while the
interconnects have been shared with other users. Since we
had to share memory and processors on the NEC SX5e the
corresponding performance data presented in section 5 give
a lower limit only.

For each benchmark run we have executed at least 200
MVM steps and give the average performance number. In
the benchmark runs the Hamilton matrix of a microscopic
electron-phonon model (cf. section 6) was used and we have
fixed the parameters in such a manner that the matrix size
can be increased without changing the basic structure of
the matrix.

5 Performance analysis

The aim of the performance analysis is to discuss scalability
both of the platforms and of the MVM implementation as
well as quality of the memory access.

5.1 Sequential performance

Thus, first the sequential performance as a function of the
problem size D4 is discussed (see Fig. 4).

For the SGI Origin we recover the well-known cache ef-
fect: At small problem sizes cached data can be reused
giving a performance of about 110 MFlop/s. Consistent
with the large L2 cache size the performance drops around
Dysqt ~ 10* — 10° and a performance of about 35 MFlop/s
is sustained for local memory access. If the matrix size
is further increased (D,,q; > 2.5 x 10%) nonlocal memory
on remote compute nodes has to be allocated. Although
the network could in principle sustain the same memory-
bandwidth for local and remote memory the performance
decreases to 25 MFlop/s due to the higher latencies for re-
mote memory accesses.
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Figure 4: Single processor performance as a function of the
matrix dimension Djys,;. The inset depicts a comparison
of one NEC SX5e processor and one HITACHI SR8000
node running in vector-mode.

Since the problem sizes in Fig. 4 start at Dpq; ~ 103
there is only a minor cache-effect for CRAY T3E and HI-
TACHI SR8000, due to their small cache sizes. For the HI-
TACHI SR8000 the picture changes completely if we enable
the PVP feature. Then the compiler will generate a pseudo-
vectorisation of the inner loop, using prefetch streams for
the contiguous memory accesses and preload streams for the
indirect load. As a consequence a vector-like characterisic
is established for the RISC processor: The performance in-
creases with increasing problem size and saturates at long
loop lengths. With an asymptotic performance of about
90 MFlop/s, the HITACHI SR8000 is able to maintain a
reasonable portion of its high memory-bandwidth and out-
performs present-day RISC processors by a factor of 2.5 or
even more. Therefore PVP has always been enabled in what
follows.

It is straightforward to use the HITACHI SR8000 in the
vector-mode by enabling the automatic parallelisation com-
piler feature which generates a shared-memory parallelisa-
tion of the inner loop in Fig. 1. In the inset of Fig. 4 the
MVM performance of one HITACHI SR8000 SMP node
(eight processors) is shown together with the measurements
for one NEC SX5e vector processor. Again the HITACHI
SR8000 realizes a vector-like characteristic and saturates at
a performance of about 600 MFlop/s or 75 MFlop/s per
processor. The decrease of roughly 15% compared to the
single processor performance indicates some memory con-
tention problems in the vector-mode. Nonetheless one SMP
node achieves the same performance as the NEC SX5e at
large problem sizes. Of course this can be attributed to the

memory bandwidth which is the same for both systems. On
the other hand, if we reach the small problem size region
the vector processor outperforms the SMP node by far be-
cause the vector start-up times are 2-3 orders of magnitude
shorter than the corresponding collective thread operations
on the SMP node.

5.2 Parallel performance

Next we discuss the scalability of code and platforms.
Because of the well balanced ratio between local and re-
mote memory bandwidth the CRAY T3E is widely regarded
as a paradigm for scalabiltity. Thus the scalability of our
MVM implentation was tested on the CRAY T3E consid-
ering the aggregate performance and the parallel efficiency

= T(].)/(NpTOC X T(Nproc)) (3)

(T(Nproc) is the time per MVM step on Np,oc processes) as
a function of processors used (see Fig. 5). At fixed matrix

€1 (Nproc)
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Figure 5: MVM scalability on CRAY T3E for different ma-
trix sizes. The inset shows the corresponding parallel effi-
ciencies €;. Due to the memory requirements a minimum
processor number of 64 had to be used for D, = 1.4 x 107
whereas the asymptotic value for the one processor run in
Fig. 4 has been used to calculate the parallel efficiency.

dimension for small to intermediate processor numbers (up
to 96) a parallel efficieny of more than 75% can be sustained,
which improves with increasing problem size to about 90%.
Although a drop in the efficiency is found at 128 processors
our MVM basically provides a scalable algorithm because
it exceeds an efficiency of 70% even for 256 processors.

In the next step we discuss the MVM performance on
SGI Origin3800 when compared to the CRAY T3E (see Fig.



6). At fixed problem size we find that the performance gap
between SGI Origin and CRAY T3E widens with increasing
processor number, while the parallel efficiency €; is lower
on the SGI Origin. In that context we have to discuss two
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Figure 6: MVM scalability on CRAY T3E and SGI Origin
at a fixed matrix size (Dprq; = 1.2 x 10°%). The inset shows
the corresponding parallel efficiencies €; and ez (SGI Origin)
based on the one and two processor run, respectively.

effects:

1. With increasing processor number the effective prob-
lem size per processor is reduced, which is equivalent
with a shift to smaller values of D ,;,; for the one pro-
cessor performance characteristics given in Fig. 4. Be-
cause of the large L2 cache size on the SGI Origin (e.g.
the total L2 cache of 16 SGI Origin processors can in
principle hold all nonzero elements of the matrix used
in Fig. 6) this effect increases the performance gap
between both systems.

2. On the SGI Origin two processors have to share one
path to the memory. Since our problem is mainly
bound by the memory bandwidth it is more reasonable
to discuss the scalability of the MVM with respect to
the aggregate memory bandwidth. This effect can be
taken into account by calculating a modified parallel
efficiency €; which is determined via equation (3) but
now based on the runtime of two processors (see inset of
Fig. 6). Supported by the cache effect our MVM imple-
mentation achieves superlinear speedup with respect to
€2 on SGI Origin. When increasing the problem size
at a fixed processor number, however, the cache effect
may reduce the performance gap between CRAY T3E
and SGI Origin.

Finally a brief comparison of the CRAY T3E with a
vector computer (NEC SXb5e) and a SMP based, vector-
like system (HITACHI SR8000) is given in Fig. 7. It is
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Figure 7: Aggregate MVM performance on CRAY T3E,
NEC SX5e and HITACHI SR8000 at a fixed matrix size
(Dprar = 1.2 x 10%). For the HITACHI SR8000 vector-
mode one MPT process comprises eight processors, while in
all other cases the number of MPI processes is equal to the
number of processors.

not surprising that the vector computer provides oustand-
ing single and multiprocessor performance, e.g. 4 NEC
SXbe processors achieve approximately the same perfor-
mance as 96 CRAY T3E processors do. Although the HI-
TACHI SR8000 outperforms the CRAY T3E by a factor
of more than four when considering the single processor
performance (cf. Fig. 4), the gap decreases dramatically
at larger processor numbers using the HITACHI SR8000
MPP-mode (one MPI process is assigned to each proces-
sor). Two reasons mainly account for the poor scalability of
the HITACHI SR8000 MPP-mode: First the ratio between
inter-node communication bandwidth (1 GByte/s) and lo-
cal memory bandwidth (32 GByte/s) is not as balanced as
for the CRAY T3E. Second, the MPI performance suffers a
drop if a large number of outstanding messages has to be
governed [12]. Due to the eight-way SMP node architecture,
the HITACHI SR8000 can also be used with a “hybrid pro-
gramming model” (vector-mode) which uses both message-
passing model (between SMP nodes) and shared-memory
model (within SMP node) simultaneously. Evidently the
vector-mode scales significantly better than the MPP-mode
because the number of MPI processes as well as the num-
ber of outstanding MPI messages is reduced by a factor of
roughly 8.

In summary the CRAY T3E still offers exceptional scala-
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Figure 8: Basic structure of the [Pt(en):][Pt(en)2Xs] -
(ClOy4)4 chain material (not shown, for clarity, are the H
atoms of the (en) ligands and the ClO; counter-ions.

bility but suffers serious drawbacks when considering mem-
ory intensive applications such as sparse MVM. This prob-
lem is approached by present-day supercomputers in two
different ways: Vector or vector-like systems provide single
processors or SMP nodes with large memories, high-peak
performance and tremendous memory-bandwidth. On the
other hand MPP-like RISC based systems offer scalable and
well balanced networks together with large aggregate L2
cache sizes.

6 Application: Localized vibra-
tional modes in one-dimensional
charge-density-wave systems

Quasi-one-dimensional MX solids, consisting of chains of
transition-metal ions (M= Pt, Pd, Ni) bridged by halogens
(X= Cl, Br, I), have been the subject of intense experimen-
tal and theoretical study because the various compounds
of the family exhibit a remarkable range of strengths of
competing electron-electron and electron-lattice forces, and
consequent physical properties [13]. A particularly inter-
esting class are the PtX compounds, which are typically
Peierls distorted, where the charge disproportionation (al-
ternating valence) of the M sublattice is stabilized by a
structural distortion of the X sublattice (see Fig. 8). It has
been suggested that in strong-CDW (charge-density-wave)
MX materials a dynamical, intrinsic localization of vibra-
tional energy in a small segment of the MX chain might
take place because both nonlinearity (anharmonicity) and
discreteness are present with sufficient strengths. Indeed,
very recently, the experimental observation of such intrinsi-
cally localized vibrational modes (ILM’s) has been reported
in [Pt(en)s][Pt(en)2X2](ClO4)4 (en= ethylenediamine) [15],
subsequently denoted by PtCl. In isotopically pure PtCl
the source of the nonlinearity is the strong coupling be-
tween electronic and lattice degrees of freedom, and con-

sequently resonance Raman spectroscopy has been used as
an ideal experimental technique to measure the energy of
the characteristic lattice vibrations associated with the local
distortions of these multiphonon gap states. In resonance
Raman spectroscopy the material is illuminated with light
that is in resonance with a specific electronic transition.
The signals from the (fundamental and overtone) vibra-
tional modes that are coupled to the electronic transition
are greatly enhanced. Resonant Raman spectra on strong-
CDW PtCl exhibiting such an amplification were obtained
using Ar* laser illumination at 514 nm, which roughly cor-
responds to the band edge (= 2.5 eV) of an intervalence
charge transfer (IVCT) transition between Pt!! and PtV
(see Fig. 9). The photo-excited transition into the IVCT
band is connected with the excitation of the fundamental
Raman active symmetric Cl-Pt-Cl stretch and a progression
of many overtones. The ILM’s are identified by the strong
redshifts they impose upon the overtone resonance Raman
spectra.

To discuss the complex interplay of charge, spin and lat-
tice degrees in the PtCl MX-material, we consider a 3/4-
filled, two-band tight-binding Hubbard model

Hel = Zeanlao -t Z C}aacl’a’o + Z Uanlaj‘nlaJ’ ’ (4)

laoc {(lal'a’) o la

supplemented by the coupling of the MX electron system
to the Raman- and IR-phonon modes

Hapn = Anlbp +0f) Z(nm — nys)
1

+Am1 (brr1 + blgy) Z(”m + s — gy — 1y3) 5 (5)
1

and the lattice contribution in harmonic approximation

(6)
Egs. (4)-(6) constitute the so-called Peierls-Hubbard model
(PHM). Here c;rw (€00 ) creates (annihilates) an electron
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Figure 9: Mixed-valence ground state and IVCT to an ex-
cited state without charge disproportionation (a); lattice
relaxation and formation of a charge-transfer exciton (b).




with spin projection o in a Wannier state at site {/,a}, and
N4, 15 the corresponding fermion number operator. The

phonon destruction (creation) operators are denoted by b,
Modeling the MX chain materials, {,1' label the unit cells
and we use the convention that the M (X) atoms sit on
even (odd) sites denoted by the intra-cell index a, o’ = 2,4
(1, 3). Their on-site energies €, can be parameterized by
the difference between metal and halogen electron affini-
ties A = g, — ex. The other parameters of the PHM
are the NN transfer amplitude ¢, the on-site (Hubbard)
electron-electron interactions Uy, the electron-phonon cou-
plings (A, Ajgy), and the bare phonon frequencies ("wr,
“wiry)- For the PtCl CDW system, A = 1.2, Upy = 0.8,
Ucr = 0, "wr = 0.05 and “wir; = 0.06 seem to be appro-
priate, where the energy scale is given by ¢t = 1.54 eV.

In order to understand the evolution of the experimen-
tally observed overtone structure [15] one has to calculate
the level shift of the n'" excited R-active doublet,

(1) (n)
nwy’ —w
Tn = = ) 1 (7)
w
R
with wl({‘) = (B, — Ey), in the framework of the non-

adiabatic PHM.

Therefore, in a first step, we determined the low-lying
excitations of the N = 8 site PHM with periodic boundary
conditions at selected electron-phonon couplings, applying
the Jacobi-Davidson algorithm outlined in the preceding
sections.

Figure 10 shows the energy-level diagram within single-
mode approximation (Aig1 = 0), where the left column dis-
plays the spectrum of the decoupled system for comparison.
Above each electronic level (solid bars) there is a ladder of
overtones (dashed bars) with rungs separated by the bare
phonon frequency “wr. Of course, at any finite electron-
phonon coupling, the electron and lattice degrees are no
longer independent and as a result the excitation spectrum
is changed. At weak coupling, however, to a good approxi-
mation the ground state is still a zero-phonon state. Then
excitations can be obtained simply by adding phonons to
the ground state. With increasing electron-phonon inter-
action strength a strong mixing of electrons and phonons
takes place, such that both quantum objects completely
lose their individual identity. As a result the ground state
is basically a multiphonon state. At this point it seems rea-
sonable to make contact with polaron physics and consider
the CDW state of PtCl as built up by ordered bipolarons
residing at the Pt!''~? sites (for a more detailed discus-
sion see Ref. [16]). Note that the ground state and, as
AR increases, a growing number of excited states show a
twofold degeneracy (within numerical accuracy). The rea-
son is the existence of two degenerate CDW ground states
in the strong-coupling limit, with large spectral weights of
the | 14, T, 14, 0)e1 or | T4, 0, T, T4 )1 electronic basis states.

0.05 0.08 0.10

0.8

0.2

0.1

Figure 10: Low-energy part of the eigenvalue spectrum of
the Peierls-Hubbard model (single-mode approximation).
Twofold degenerate states are marked by bold bars; dashed
bars denote the bare phonon overtones of the electronic lev-
els for the Ag = 0 case.

That means the charge distribution exhibits a CACB mod-
ulation.

In the configuration space of the Raman-active normal
coordinate this gives rise to the formation of an adiabatic
double-well potential. Within one minimum of the double-
well potential the low-lying excitations exhibit a large over-
lap with the displaced oscillator states. As a consequence of
the electron-lattice interaction, however, the multiphonon
excitations are somewhat shifted from multiples of the bare
phonon frequencies mg xwr . The important point we would
like to emphasize is the weak anharmonicity of the double-
well potential even at low-energies, provided we consider
reasonable coupling strengths. This nonlinearity, induced
by the coupling to the itinerant interacting electron sys-
tem, is the origin of the redshift of the overtones depicted
in Fig. 11. One can state that in the intermediate (but still
strong-coupling) region, the Raman-active mode dynami-
cally self-generates a non-harmonic lattice potential lead-
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Figure 11: Relative red shift of the lowest-energy peaks,
normalized by the fundamental frequency wl({l ) given in the
inset, as a function of the final quanta of the vibrational
energy.

ing to an attractive interaction of Raman phonon quanta
located at the same Pt5Cly unit, with the result that quasi-
localized multi-phonon bound states occur in the system.
Translational symmetry is restored by quantum mechani-
cal tunneling of those quasiparticles. The nearly perfect
quantitative reproduction of the redshift observed in PtCl
was obtained using the interaction strengths Ag = 0.1 and
Ar1 = 0.026.

To summarize, we have shown that a dynamical coupling
to the Raman- and infrared-active phonon modes, even in
the adiabatic strong-coupling regime, strongly influences
the ground-state and spectral properties of the Peierls-
Hubbard model. In particular, at appropriate electron-
phonon interaction strengths, the effective lattice potential,
dynamically self-generated in the process of carrier local-
ization, exhibits a significant nonlinearity, leading to the
experimentally observed localization of vibrational energy
in PtCl.
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