Professional Services CUG Interactive Session

May 2002

Contents

- A Computing Platform to solve a problem
- A Scientific Problem looking for a solution

The Newest Cray – Release in 2003

Cray SV2

Unprecedented system capability

- Tens of TFLOPS in a Single System Image (SSI)
- Focus on sustained performance on the most challenging problems

Very powerful single processors

 High ILP, high bandwidth vector memory system

Best in the world scalability

- Latency tolerance via streaming vector processors
- Very high-performance, tightly integrated network
- Uniquely scalable system software (T3E Unicos/mk technology)

A grand challenge machine for our HPC customers' biggest issues.

Apply to all major grand challenge problems?

Government-Research

Aerospace

Automotive

Bioinformatics

Chemical/Pharmaceutical

Petroleum

Weather/Environmental

Academic Research

Naval Research Laboratory Washington, DC & Steries Space Center, MS & Memorey, CA

Operations Review January 2002

The Cray Product Line

- High Performance vector CPUs
 - 2.0 GFLOPS SV1e CPU (500Mhz)
 - Configurable as a 8.0 GFLOPS in MSP mode
 - Increased Cache bandwidth
 - Reduced Cache latency
 - First Customer shipment was March, 2001
- SSD capability with SV1ex memory
 - 32 or 96 GBytes of internal SSD (can be larger)
- High Reliability CMOS/SDRAM Technology
 - Over 10,000 Hours hardware MTTI for SV1 systems
- SV1e/ex systems can be clustered for additional capacity

SV1 focused to solve problems with DNA Sequencing

- Nucleotide encoding: 600M characters/sec.
- Difference counting: 200M positions/sec.
 - For a 32 nucleotide sequence, this
 is 6.4 billion nucleotides/second
- Reverse complement: 4 billion nucleotides/sec.
 - For example, the complete human genome can be reverse complemented in about 1 second

Targeted System – SX-6

Vector

CPU: 64 GFLOPS

Max. 1024 CPUs

(8 TFLOPS) in 128 nodes

Memory: DDR-SDRAM

Max. 8 TB

I/O: Max. 800+GB/s

IXS: 1 TB/sec

Heat: 36,000 kJ/h

Power: 10 kVA

"Providing a high performance vector platform for North American Commercial and Industrial customers."

- Practice Leader
 - · Steve Sugiyama
- Marketing Platform Manager
 - · Per Nyberg
- High Level Processes for SX-6
 - · System Configuration and Quotes
 - Code Benchmarks
 - System NEC Order Management
 - Integration and Factory Test
 - System Installation and Set Up
 - Acceptance Testing
- Field & Central Service
 - Analyst Support
 - Hardware Maintenance
- Also see Professional Services

High-end vector capabilities delivered to our customers today.

Problem types for the SX

Weather prediction

Virtual Engine Prototyping

Crash Simulation

Computational Fluid Dynamics

Targeted System – MTA-2

Multithreaded

CPU: .75 GFLOPS

Max. 256 CPUs

(192 GFLOPS)

Memory: SDRAM

Max. 1 TB

200 MB/p/s I/O:

bi-directional

IXS: 4GB/s/p

latency 0.8 micros av

Heat: Water cooled

Power: .8 kVA/p

Targeted for customer problems requiring:

- Fine Grain parallelism
- Irregular parallelism and communication
- Data location transparency
- High bandwidth global interconnect

E.g. Visualization & MCNP

Practice Leader

- David Harper
- Marketing Platform Manager
 - Gail Alverson
- **High Level Processes for MTA**
 - Solution Design
 - System Configuration and Quotes
 - System Development & Manufacturing
 - Integration and Factory Test
 - System Installation and Set Up
 - Acceptance Testing
- Field & Central Service
 - Analyst Support
 - Hardware Maintenance
- Also see Professional Services

Truly different technology that is guided by our customers' computational problems

Problem types for the MTA

- Perspective Visualization
- Direct Volume Rendering with Backward Raytracing
- Interactive/Real Time Visualization
- Monte Carlo Simulation for Radiotherapy Dose Analysis to Electric Power Simulations

Targeted System – HPC Cluster

Scalar

Built to Spec

CPU: P3 & Beyond "Current to Moore's Law"

IXS: Quadrix Myrinet GigE

OS: Linux

HPC Cluster Solution

Provided by professional services.

"A solution leveraging Dell's high quality hardware technology and Cray's deep HPC knowledge."

- Practice Leader
 - Frank Chism
- Marketing Platform Manager
 - John Levesque
- High Level Processes for Clusters
 - Solution Design
 - Systems Design and Configuration
 - Custom System Assembly
 - Code port
 - Integration and Factory Test
 - System Installation and Set Up
 - Acceptance Testing
- Field & Central Service
 - Analyst Support
 - Hardware Maintenance
- Also see Professional Services

There are n! cluster technology choices, Cray delivers ONE! that meets your needs.

Problem types for the HPC Cluster

 Standard Scientific ISV codes such as LS-DYNA for Crash Simulation

Applications spawned from ASCI

- Interaction with three-dimensional models using mesh refinement
- Deflagration

Contents

- A Computing Platform to solve a problem
- A Scientific Problem looking for a solution

HPC Solutions

Cray HPCS Methodology

The 9-Step approach to HPCS Solutions ensure customer value throughout the lifecycle, allowing problems to become true business opportunities.

What's the Problem

The user needs high resolution and higher frequency forecasts to build the best potential simulation for dispersion of harmful gas given multiple environmental conditions

The foundation of the problem: data, wisdom and action

Basic Components Involved

Model

What points in the value chain have unique computational needs

Methodically Build the Solution

Deploying the Solution

Questions

HPC Solutions

?

Thank You

Wayne J. Kugel
HPC Solutions Director

wjkugel@cray.com

