Synthetic Aperture Radar Processing at the Arctic Region
Supercomputing Center

Tom Logan, Arctic Region Supercomputing Center

ABSTRACT: 4 scalable parallel Synthetic Aperture Radar (SAR) software correlator has
been implemented on the T3E-900 at the Arctic Region Supercomputing Center. The
implementation produces a full scene (100-km2) image in less than 90 seconds, realizing a
26x speed-up over a similar serial implementation using only 28 processors. This algorithm
was included in a SAR interferometric processing system capable of creating interferograms
in little more than 10 minutes. This paper will discuss implementation details of this system
focusing on the latency-hiding and parallel techniques that allowed an overall 15x speed-up

for what initially seemed a largely serial code.

1 Introduction

This paper will discuss the parallel implementation of
several SAR processing tools at the Arctic Region
Supercomputing Center (ARSC). An introduction to SAR
and the hardware systems used will be covered in this
section. The results of parallelizing a SAR software
correlator and an inteferogram generation procedure will be
the main topics of sections 2 and 3. Section 4 is a
discussion of small-scale parallel implementations of
several seemingly serial codes. Finally, section 5 will
present the overall conclusions of this work.

1.1 Synthetic Aperture Radar (SAR)

Synthetic aperture radar is an active radar imaging system
that provides high resolution images of large areas. The
intensities of pixels in a SAR image are based on the spatial
orientation, roughness, and dielectric constant of the surface
imaged. The utility of SAR derives from its all-weather and
day-night capability and its sensitivity to changes in the
Earth’s surface characteristics. This utility even extends to
penetration of clear ice, dry snow, and dry sand. As such,
SAR can be considered an invaluable tool for remote
sensing, especially in remote regions of the Arctic where
darkness and cloud cover limit the application of optical
sensors.

SAR is an active sensor, transmitting its own energy, and
then measuring the return scattered by the earth’s surface
back to the satellite’s antenna. This is in contrast to optical
sensors, which measure reflected energy transmitted from
an external source, such as the sun. Active radar imaging,
such as that used by SAR, operates by alternating between
sending high power output chirps and receiving low-power
echoes. The returning energy is measured in both
magnitude and phase, which are functions of the amount of
area scattering and the distance to the target. This
information can then be processed from the frequency
domain into a spatial image through a series of Fourier
transforms.

The software in this paper operates on European Remote-
Sensing Satellite (ERS) data. This satellite borne SAR
system images a continuous 100-km wide swath at a 30-
meter spatial resolution.

111 How SAR works

The side-looking nature of SAR provides the scan in the
range, or cross-track, direction. Each output chirp is time
coded. Resolution in the cross-track direction is achieved
by measuring the differences in the round trip times for the
beams, and by signal processing of the phase-encoded pulse.
Returns in the far range will require a longer round trip
time, while areas in the near range will return their signals
in less time. This variation determines which backscatter
values come from a particular area in the cross-track
direction.

The forward motion of the SAR platform provides the scan
in the azimuth, or along-track, direction. Resolution is
gained by measurement of the Doppler effect on the
backscatter beam. The Doppler effect is caused by the fact
that two points at slightly different angles with respect to the
track of a moving observer have different speeds at any
instant relative to that observer. This produces a measurable
shift in the frequency of waves returning to the platform,
distinguishing returns from different areas in the along-track
direction. Using these measurements, resolution
independent of range is theoretically possible. All the more
strange is the fact that the resolution for SAR imaging is
directly proportional to the area of the antenna. Thus, the
smaller the antenna area, the better the attainable resolution.

112 SARProcessing

SAR processing is the transformation of raw SAR signal
data into a spatial image. In its most abstract form, this is
the simple process of performing a frequency domain
correlation of the received signal with a 2-D system transfer
function. In practice, this process is performed in several

1-D steps, including range compression, range migration,
and azimuth compression.

Range compression (RC) is
matched filter pulse compression
accomplished via frequency
domain correlation in the range
direction. The effect is to combine
many range lines into a single
range compressed curve.

Figurel: SAR
Processing

S
=+=+"‘+=+=+:+=+"‘+"‘+=+"‘
+"‘+“+"‘+“+"‘+“+“+"‘+“+"‘+
e el

Range migration (RM) shifts pixels
in the range direction to
compensate for the curvature of the
earth and the rotation of the earth
during imaging. The effect is to
straighten out the curves into lines.

Finally, azimuth compression (AC)
is matched filter pulse compression
accomplished via frequency
domain correlation in the azimuth
direction. The effect is to combine
many azimuth points into a single
fully compressed point.

These three processing steps are
each displayed graphically in
figure 1.

For a complete description of SAR processing please refer
to [Curlander] or [Franceschetti].

113 SARInterferometry

Interferometry is a technique that capitalizes on the coherent
phase inherent in SAR imaging. Given a pair of SAR
images covering the same area, any phase differences
between the two correspond to round-trip path length
differences. Given precise knowledge of the distance
between the two platforms during imaging, these path length
differences can be directly related to either surface height or
surface motion [Gens]. Thus, interferometry allows
calculation of surface topography, surface deformation, and
even surface velocity of slow-moving objects (e.g. a glacier
[Fatland]).

1.2 Hardware System

ARSC operates a 272-processor 450 MHz CRAY T3E-900
system with 68 Gbyte of memory and 475 Gbyte of disk
storage. All runs were performed on this system. All
timings were gathered using the rtclock() function.

2 Paralld ASF SAR Processor (PASP)

SAR processing is both I/0O and computationally expensive.
Processing a single ERS scene requires some 300
megabytes of input, 1 gigabyte of output, and roughly 400
giga-operations (100 giga-flop) to perform. As such, it isa
good candidate for high performance computing.

21 Serial Implementation

The starting point for this research was a range-Doppler
processor originally contributed to the Alaska SAR Facility
(ASF) by Howard Zebker of Stanford University [Zebker].
The code, named AISP, was re-written in ANSI C from its
original FORTRAN prior to the port to ARSC.

The data are processed in patches consisting of 4096
azimuth lines by the full width of range samples (5616).
Processing continues until all input patches are completed.

Each output pixel combines returns from an area equal to
the length of the range reference function times the length of
the azimuth reference function. Typical reference function
sizes are 800 in azimuth and 700 in range. This means that
for each 4096 x 5616 patch of raw data, approximately 3300
lines of 4900 samples of valid output are created.

This algorithm can be divided into six steps, 2-6 of which
form the processing loop (see algorithm 1).

Algorithm 1: Range-Doppler SAR Correlator

1) Set-up includes reading metadata information,
determination of the image’'s Doppler centroid, and
calculation of the range reference function.

For Each Patch of Raw Data

2) Range Compression includes reading the raw
signal data, performing a forward FFT,
multiplication of raw data with the range reference
function, inverse FFTing the result, and
transposing the data.

3) Transform is a forward FFT of the newly
transposed data

4) Range Migration migrates samples in the range
direction using sinc function resampling.

5) AzZimuth Compression requires (for each line)
calculation of an azimuth reference function,
FFTing the function, multiplication of the function
with the range migrated data, and inverse FFTing
the result.

6) Output is the final step in which the data is
transposed back into its original format and
written to an output file.

This origina version of the code does all 1/0O in a line-by-
line fashion and uses a portable FFT implementation
obtained from the INFO-MAC hyper archive originaly
authored by John Green.

2.2 Parallel Implementation

The paralel implementation, hereafter referred to as PASP,
divides the problem in both the range and azimuth
directions. In the range direction, the data is split into equal
regions. In the azimuth direction, patch boundaries are used
to distribute the work. The result is that a single group of
PEs process a patch, while multiple groups can be used to
process several patches at once.

Processor groups were implemented in a strict master-slave
form. The master performs all of the input, raw data
distribution, processed data collection, and writes the output
files. The slaves receive the raw signal data, process the
data, and return the results to the master.

221 Data Distribution

Division of the data in the range direction required some
analysis. Because of efficiency issues, FFTs should be run
at exact powers of 2. In this case, the smallest power of 2
greater than the raw data length is used. For the range
direction, this length was originally 8192. It was decided to
reduce this value to 2048. However, this decision places a
minimum on the number of processors per group: given an
FFT of length 2048, with a range reference function of
length 700, the maximum valid pixels per processor will be
1348. If more than 4044 samples are desired, we must have
4 slave processors per group and thus a minimum group size
of 5.

A standard-length ASF computer-compatible signal data
(ccsd) file contains approximately 26,000 lines. These
allow for 8 patches per file, and thus up to 8 groups per
processing run. The code was tested using groups of 5-7
processors and with 1, 2, 4, and 8 groups, for an overall
range of 5 to 56 nodes.

Since the signal data is distributed in large enough chunks to
compensate for the reference function overhead, no shared
FFTs are required and there are no global transposes. The
resulting implementation can therefore be considered
embarrassingly parallel.

222 1/ODesign

Each group operates independently of the others. Thus,
each group master performs its own read of the single input
signal data file and associated metadata file. Similarly, each
group performs independent output, in this case to separate
files.

During input, the first set of linesis pre-read into a buffer of
configurable size. The lines are then broadcast to the group
as a single message. Worker PEs are responsible for
unpacking the appropriate section of raw data from each
group of lines received. Once the first set of lines is
broadcast, the master immediately reads the next set while
the workers process the data they’ve received. During
optimization, many different buffer sizes were tried until the

value of 64 lines (718,848 byte messages) proved to
minimize total input time.

During output, the group master assembles each data line
into another configurable size buffer. Each portion of aline
is received in order from the appropriate worker, and placed
directly into the correct position in the output buffer. When
the buffer gets full, it is written to the group’s output file.
Again, during optimization, many different buffer sizes
were tried until the value of 1500 lines proved to minimize
the total output time. Since the workers are sending
portions of a single line, the message sizes vary from only
6K to 10K in length, depending on the group size.

2.3 Other Optimizations

Two other significant optimizations were performed on the
code as well — using CRAY libsci routines and compiler
options. Switching to using the CRAY science library FFT
routine, GGFFT, roughly halved execution time of the
various Fourier transforms required during processing.
Exercising the CRAY compiler options resulted in a nearly
10% decrease in execution time. The options “-~03 —h
aggress, unroll, split” gave the best resultsin this case.

24 Results

PASP shows a speed-up from 5 to 40 on from 5 to 56 PEs,
decreasing the run time from 2101 seconds to just 52 (figure
2). Obvious decreases in run time when going from 1 to 2
and from 2 to 4 groups are apparent (figure 3). Less
obvious is the decrease when going from 4 to 8 groups
(from 28 to 40 processors).

2500 45
2101 140
2000 135
430
% 1500 +—| 1 o5 §
1000 | 1420
+15
500 || 410 o5, + 10
= 161 g 5 15
. || e 2,

T3E T3ES5 T3E7 T3E 14T3E 28T3E 56
Serial

Figure 2: Run Time and Speed-up for PASP

450
400
350
300
250
E 200
150
100
50
5 6 7 10 12 14 20 24 28 40 48 56
NPES

'm Set-upoRC o Transformm Migration s AC m Output|
Figure 3: PASP Run Timesby Task

This decrease in performance can be directly related to the
scalability of the individual tasks in the algorithm. Analysis
shows that the FFTs, the range migration, and the azimuth
compression are completely scalable. Only the routines that
contain 1/O, the range compression and the output, do not
scale. It was found that output to multiple files, as
incorporated in this implementation, actually scaled quite
well, while input from a single file failed to provide any
more than a 4 times speed-up even when 8 groups were
employed (seefigure 4).

12

10

5

'§ 6

&, e A
2 ,///VV

5]:5 25 35 4‘;5 55
NPES

\—Theo-e—Output--RC Transform-—Migration—AC
Figure 4: PASP Scalability by Task

3 Interferogram Generation

On the surface, interferogram generation seems a rather
simple procedure. For each pixel (x,y) in the interferogram
image:

Interferogram phase(x,y) = phasel — phase?
Interferogram amplitude(x,y) = sgrt (pwr1* pwr2)

Where (pwrl,phasel) and (pwr2,phase?) are the power and
phase at point (x,y) of image 1 and image 2, respectively.

The difficulty in interferogram generation is that point (x,y)
in image 1 must cover exactly the same ground area as point
(x,y) inimage 2. In the case of SAR inteferometry, images
must be aigned to within 1/16™ or less of a pixel to achieve
maximum scene coherence. This process of aligning two
images is referred to as co-registration and this is the central
problem solved by the register_ccsd script discussed in this
section of the paper.

31 Serial Implementation

The register_ccsd script starts with an input pair of ERS
ccsd files and creates the pair’ s interferogram amplitude and
phase as outpuit.

This script processes each image to the average Doppler
centroid of the pair. In this way, no geometric differences
due to Doppler squint are introduced by the processing.

Algorithm 2: Register_ccsd script

Compute the average Doppler for the pair (estavedop).
Process the master image using the average Doppler
(AISP).

3. Model sub-pixel offsets for the first patch in both the
range and azimuth directions.

3.1. Processthefirst patch of each image (Al SP).
3.2. Determine sub-pixel offsets

3.2.1. Obtain initial patch offset estimate using
image metadata information (resolve).

3.2.2. Refine the initial estimate to pixel accuracy
using FFT amplitude correlation of the two
patches (resolve).

3.2.3. Using the pixel accurate offset, determine
many sub-pixel offsets via complex image
chip correlation (FICO). Verify offsets by
performing both forward and reverse
correlation

3.3. Using linear regression, fit chip correlation
offsetsinto a function of range (fit_line).

4. Model sub-pixel offsets for the last patch in both the
range and azimuth directions. (Using procedure from
steps 3.1 - 3.5).

5. Using the two linear functions derived in steps 3 and 4,
calculate the “ patch deltas,” which include the initial
offsets and the amount the offsets change per patch
(calc_deltas).

6. Process the slave image using the average Doppler and
patch deltas (AISP).

7. Convert the complex SAR images into amplitude and

phase representation and generate the interferogram

(c2p, igram).

NP

To co-register one image to another, the second image,
referred to as the slave, is resampled to closely line up with
the first image, which is referred to as the master. However,
each resampling performed on an image decreases its
resolution. In order to avoid this resolution degradation,

PASP allows an image to be resampled using linear
mapping coefficients during range migration. Since the data

is already resampled during range migration, this processing
schema ensures no further resolution is lost in co-
registration of the pair. Instead, when the slave image is
processed, it is automatically co-registered with the master.
The process is summarized in agorithm 2.

3.2 Parallel Implementation

In order to determine the parallel implementation required,
examination of each of the programs called by the
register_ccsd script was performed. Run times for the serial
code are summarized in Tables 1 and 2. Run times of the
register_ccsd script show that AISP takes 57% of the time
and FICO takes 30%, while the actual interferogram
generation (using c2p, igram) requires roughly 11%. The
other programs combined amount to only 2%. Because the
programs fit_line and calc_deltas require only a few seconds
each, they are not represented in these tables.

Algorithm Step
1 40

Estavedop
2 AISP 2098
31 AISP 262
31 AISP 262
3.21-3.22 Resolve 50
323 FICO 702
323 FICO 702
41 AISP 262
41 AISP 262
4.21-422 Resolve 50
4.23 FICO 702
4.23 FICO 702
6 AISP 2098
7 c2p, igram 1040

Total 9232

Table1: Serial Run Timesfor Register_ccsd

Program Total %
AISP 5244 56.8
FICO 2808 304

c2p, igram 1040 113
Resolve 100 11
Estavedop 40 04

Table 2: Run Time percentage for Register _ccsd

321 Paralle FICO

Since PASP was already implemented, the next algorithm to
scrutinize was FICO. FICO — or the Fast Interferometric
COrrelator — operates by comparing image chips of small
size (16 x 16 pixels) from the slave image with image chips
of slightly larger size from the master image (32 x 32
pixels). Chips are chosen from a regular grid of
configurable size (10x10 being the default). For each pair
of chips, acorrelation is performed that results in the offset
of the center of the slave chip from the center of the master
chip. Each successful correlation offset is then written to
file.

Much like the SAR processor, this problem was readily
distributed in an embarrassingly parallel manner. The
parallel implementation of this program, PFICO, again uses
a strict master-slave paradigm. In this case, a single master
reads the image chips, distributes them to workers in a
round-robin fashion, receives the results of the correlations,
and writes the output file. The workers simply receive their
designated chips, perform the correlation, and return the
results. This algorithm scaled quite well, attaining nearly
100% efficiency out to 56 processors (Figure 5).

Figure5: Parallel FICO Run Times

160 ‘ 14

140 { + 12

120

5 6 7 10 12 14 20 24 28 40 48 56
NPES

[mmRun Time ~ Speed-up ~ Theo|

3.22 Other Optimizations

Algorithmically, only one significant change was made to
register_ccsd. Since PASP creates individual patch files
rather than a single large output file, the first and last patch
of the master image are created in step 2 (see algorithm 2),
and are available for the patch correlations. This removed
the need for two calls to the processor.

Beyond PASP and FICO, none of the other register_ccsd
sub-programs would lend themselves to a scalable parallel
implementation. However, using implementations aimed at
small-scale parallelism, further run-time reductions were
realized. Please refer to Section 4 of this paper for an
explanation of these programs and their results.

3.3 Results

By parallelizing 87% of the original work and employing
small-scale parallelism for another 12%, an overall speed-up
of from 4 to 19 was achieved when using from 5 to 56
processors on the new register_ccsd implementation.
Contributions of individual programs as well as the
optimizations performed are summarized in Table 3.
Starting from a serial code that required more than 2 hours
30 minutes, the parallel code requires just 30 minutes on 5
processors and only 10 minutes when using 28 processors
(Figure 6). It was noted that although nearly 99% of the
original code was parallelized to some extent, by the time 56
PEs are employed, only 50% of the time is spent in the

scalable programs (PASP and PFICO) while the other 50%
istaken up by non-scalable or seria algorithms (Figure 7).

Original Optimization Speed-up

Fstavedon DLIO 36

AISP PASP 410 39

Resolve None None

FICO PFICO 3.6 to 56

c2p c2igram (quad) 8.5
Overall 4410186

Table 3: Register_ccsd Optimizations

1800
1600 -
1400 -
1200 -
1000
800 -
600
400 -
200

0 I AT
5 6 7 10 12 14 20 24 28 40 48 56

NPES

Figure6: Parallel Register_ccsd Run Times
100%
80%

60%

40%

20%

‘ - b 0%
5 6 7 10 12 14 20 24 28 40 48 56
NPES
[m scalablem non-scalabl e

Figure7: TimeDistribution for Parallel Register _ccsd

4 DUO Programs

SAR processing includes several programs that seem to be
quite serial in nature, or rather would not seem to be
candidates for parallel platforms. These include algorithms
with large volumes of /O that require only small amounts
of work. One example is the complex to polar coordinate
conversion performed by c2p, which requires 1 Gbyte of
input and 1 Gbyte of output per SAR frame, but only a
square root of the sum of squares and an arctangent
calculation per pixel.

In an attempt to speed-up these types of programs, small-
scale parallelism, referred to here as DUO programming,
was employed.

4.1 M otivation

DUO programming is an attempt to exploit whatever 1/O
paralelism is available on a system. The approach is to
partition an algorithm into 2 phases, input and output, that
can run simultaneously on separate processors. The
generalized algorithm can be summarized as follows:

Original Program
WHILE NOT DONE
READ INPUT DATA LINE
PERFORM SIMPLE OPERATION
WRITE OUTPUT DATA LINE

DUO Version of Program
WHILE NOT DONE

IF(MY_PE==0)
READ INPUT DATA LINE
SEND DATA LINETOPE 1

IF(MY_PE==1)
RECEIVE DATA LINE FROM PE O
PERFORM SIMPLE OPERATION
WRITE OUTPUT DATA LINE

4.2 c2igram Optimizations

As an example of the effectiveness of DUO programming, a
specific example will now be presented. In the original
register_ccsd script, the two co-registered images are turned
into an interferogram using complex to polar coordinate
conversion (c2p) and interferogram generation (igram)
programs. However, since PASP writes individual patch
files, another piece of code that assembles the patches into a
single file was required. Thus the initial ‘parallel’
interferogram generation section of register_ccsd was:

1) Assemble patchesinto full file
Simple Unix ‘cat’ like command
2) Complex to polar conversion for each SAR image
phase = atan2(imaginary,real)
power = squared magnitude of complex value
3) Interferogram generation
phase = phasel — phase2
amplitude = sgrt(power1* power?2)

This code required roughly 5.6 Gbytes of input, 4.9 Gbytes
of output, and atotal run time of 1169 seconds.

4211 Seria

The first step in optimizing this part of the process was to
combine these three programs into a single executable. This
executable, named c2igram, reads the patch complex files
and writes only the interferogram. This reduced the file
reads by a factor of 3, the file writes by a factor of 5, and the
run time to just 500 seconds. This version of the program
required about 320 seconds of file time and yet only 175
seconds of actual calculations were performed.

4212 DUO

Since the file time exceeded the work time, DUO
programming was employed to take advantage of 1/O
paralelism on the system. PE O is the reader, performing
the reads and sending the data onto PE 1. PE 1 isthe writer,
catching the data, performing the calculations, and writing
the output interferogram. As a latency-hiding precaution,
the reader pre-caches the next block of data before it is
needed. The result of the DUO program was a reduction of
the run time to 256 seconds — almost half that of the serial
version. Examination of the task times for the DUO version
showed 196 seconds of read time, 145 seconds of work
time, and 109 seconds of write time (Table 4).

WET File Work
PE O 38 196 0
PE 1 2 109 145
Total 40 305 145

Table4: DUO c2igram Task Times

4213 TRIO

It is reasonable to assume that if the work time can be
hidden (performed in parallel with the I/O) that the best to
hope for is reduction of program execution to the longer of
the read or write time — in this case roughly 200 seconds.
Due to the success of the DUO version, a TRIO version was
examined next. In this case, PE O is the reader, PE 1 is the
worker, and PE 2 is the writer. The resulting code produced
only moderate returns, dropping the run time to 211 seconds
(Table5).

WET File Work
PE O 0 192 0
PE 1 63 0 148
PE 2 94 114 3
Total 157 306 151

Table5: TRIO c2igram Task Times

4214 QUAD

It was noticed that the read time had become the limiting
factor in the TRIO implementation of c2igram. In an
attempt to further exploit parallel 1/O, a 4 processor, or
QUAD, version of the program was next implemented. This
time, PE O reads the patches of the first SAR image, PE 1
reads the patches of the second SAR image, PE 2 is the
worker receiving data from both readers and sending results
on to PE 3, which is the writer. This idea worked quite
well, nearly halving the read time, and reducing the overall
run time to just 138 seconds (Table 6). This version nearly
eliminated total wait time, reducing it from 157 seconds for
the TRIO version to a mere 21 seconds. At this point, the
input, work, and output phases of the processing require
nearly equal time, and all three are being performed
simultaneously.

WET File Work
PE O 0 114 0
PE 1 0 124 0
PE 2 8 0 126
PE 3 13 122 3
Total 21 360 129

Table 6: QUAD c2igram Task Times

4.3 Results

DUO programs proved to be fairly useful for reducing the
run-times of apparently serial codes by exploiting the 1/0
paralelism of the T3E. Of four different DUO programs
implemented, speed-ups of from 1.6 to 3.6 were realized
(table 7).

Serial DUIO Sneed-11n
c2n 7263 sec 100 sec 26
COH 351 sec 223 sec 1.6
ML 249 sec 129 sec 1.9
Estavedop 40 sec 11 sec 3.6

Table 7: DUO Program Results
Figure 8: c2igram Optimization Stages

1200

1169
1000 +——

800 +—

E 600 |
%0

400 +—

256
— 211

200 +— — 138

0 i B

Original Serial Duo Trio Quad

This idea was also extended to TRIO and QUAD versions
of the program c2igram, showing a speed-up of 8.5 over the
initial procedure and 3.6 over the first combined serial
version (figure 8).

5 Conclusions

It has been said that supercomputing is the reduction of a
CPU bound program into an I/O bound program. In
general, this is done by optimizing the calculation kernel to
a minimum time, and then employing latency hiding
techniques to “hide” I/O and distribution in the work. If
work time is greater than work distribution time, and both
can be performed at once, then the overhead is hidden and
the program is reduced as far as possible. This strategy was
employed successfully with the program PASP, showing at
least 70% efficiency for up to 56 nodes (figure 9). It was
only the I/O that dropped efficiency this low — the other
tasks scaled almost perfectly (even super-linearly in some
cases — see figure 10). For this application, 96% or more

efficiency was obtained for up to 4 readers from a single file
when using a constant group size, while 8 readers showed
only 48% efficiency. In contrast, for a constant group size,
nearly 90% efficiency can be maintained for up to 8 writers
when writing to individual files. The conclusion here is that
on the T3E, parallel input from a single file can be
performed on up to 4 nodes with little side-effect, while
parallel output can be performed on up to 8 nodes when
writing to separate files.

100%
| 90%
N 80%
—! 70%
- 60%
- 50%
- 40%
- 30%
L 20%
- 10%
0%

Efficiency

5 6 7 10 12 14 20 24 28 40 48 56
NPES
Figure 9: PASP Efficiency

120%

\\/ x*\ /\ /\\,, 80%

60%

=+ 100%

Efficiency

40%

20%

0%

5 é ‘7 iO 1‘2 i4 éO é4 28 4‘0 48 56
NPES
| RC Transform—Migration —AC — Output]
Figure 10: PASP Efficiency by Task

Not so obvious candidates for high performance computing
are the I/0 bound programs that inevitably accompany SAR
processing packages. It is clear that whenever the kernel
processing time is less than the I/O time, efficiency will be
lost when trying to employ parallelism. Indeed, computation
must dominate I/O for scalable parallelism. Also obvious is
that a program can not execute faster than the minimum /O
time required. Thus, to reduce I/O bound programs one
needs to either decrease 1/0 time or hide I/O time in
processing time — in essence to reduce an I/O bound
program to being CPU bound! To do this, small-scale
parallelism can be employed using DUO, TRIO, or QUAD
programs to partition work into input and output phases. In

reality, I/0O is not unlimitedly parallel, however a small
degree of parallelism does exist and can be taken advantage
of. For the examples given in this paper, speed-ups from
1.6 to 3.6 have been realized with this technique while using
only 2 to 4 processors.

Acknowledgements

The author would like to acknowledge Howard Zebker and
Rob Fatland for contribution of the serial algorithms used
herein, Rick Guritz for stead-fast leadership during the
implementation phase, Rudiger Gens for support during the
writing of this paper, and Guy Robinson for his cheerful
assistance throughout the entire process.

About the Author

Tom Logan is an MPP Specialist at the Arctic Region
Supercomputing Center. Prior to employment at ARSC, he
was employed for 6 years as a software engineer with the
Alaska SAR Facility where he gained his expertise in SAR
processing. Tom can be reached at

Arctic Region Supercomputing Center
University of Alaska Fairbanks

PO Box 756020

Fairbanks, AK 99775-6020 USA

E-mail: logan@arsc.edu

References

Curlander, J.C. and McDonough, R.N., (1991), Synthetic
Aperture Radar: Systems and Signal Processing., John
Wiley and Sons, New York.

Fatland, Dennis R. and Lingle, C.S., (1994), The surface
Velocity Field on Bagley Icefield, Alaska, Fall AGU,
December 1994,

Franceschetti, G. and Lanari, R., (1999), Synthetic Aperture
Radar Processing, CRC Press, New York.

Gens, R. and Genderen, J.L. van, (1996), SAR

interferometry — issues, techniques, applications.
International Journal of Remote Sensing, vol. 17, pp.
1803-1835.

Zebker, H.A., C.L. Werner, P.A. Rosen, and Hensley, S.,
(1994), Accuracy of Topographic Maps Derived from
ERS-1 Interferometric Radar, IEEE Transactions on
Geoscience and Remote Sensing, Vol. 32, pp 823-836.

