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Magnetohydrodynamics

� 3D Navier Stokes
� Steady state
� Primitive variables
� Viscous incompressible fluid

�  3D Magnetohydrodynamics
� Steady state
� Primitive variables
� Viscous incompressible fluid

�  Typical methods
� Decouple the physics
� Use different solvers – difficult to parallelise!

�

� Fully coupled, direct numerical solution (DNS)
� DNS - Benchmark solutions for simpler algorithms

Electrically conducting fluid
Applied magnetic field
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Discretisaton using the finite element method
�  20 node quadrilateral bricks

�  MHD Degrees of Freedom –  60v  60B  8P

� Solution carried out element by element
� Iterative solution algorithm BiCGStab(l)
� BiCGStab(l) necessary to deal with unsymmetric stiffness matrix

� Leads naturally to a parallel implementation
�  Simple distribution of elements across processors
�  Equal number of equations per processor

Solution Strategy
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For its set of elements, each processor
� Gathers the equations it needs (communication)

� Performs, EBE, matrix vector computations (Kr=f)
� Scatters the results (communication)

Essence of the Parallel Implementation

Do 1, N

N = Elements
Per processor

Single
element
stiffness

 matrix [K]

1st 

Nth

=

Storage of [K]

r f

EBE
Some local, some scattered

across processors
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Speed up versus problem size
216, 1000, 1728 elements

Performance decreases as problem size increases
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Speed up versus problem size
27000 elements

...and decreases    
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� %Peak performance also decreases with increasing problem size

� `
� And decreases with more processors

� Single processor ~  6% -  24 processors ~ 2-3%

Preliminary Performance Findings 3
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It turns out the reason is mainly inefficient cache use
� Due to the storage required for N element stiffness matrices [K]

Which is made worse when the memory is shared with other
users (Origin2000)

Why is the performance poor?

Increasing stiffness
Matrix storage

FAST
Processor

Fast Slow

L1 L2
Cache
Subsystem

M
em

ory

SLOW
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Consider the Navier-Stokes part

For elements of identical shape and material property – duplication
� Store C11 once for each element
� Originally ~200 elements, now ~8000 elements fit in cache

1st 
Element

0
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**** **** ****

**** ****
**** ****
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Reducing Element Stiffness Storage 2

Consider the full Magnetohydrodyamics stiffness matrix
� There are 13 unique submatrices for each element
� Each submatrix has 400 entries
� Storage still a problem even if each element is identical

Break up the element matrix vector computation, replacing

do iel=1,nels_pp
   u ’ =  matmul ( C11 , x ’ )
end do
do iel=1,nels_pp
   u ’ =  matmul ( C55 , x ’ )
end do
do iel=1,nels_pp
   u ’ =  matmul ( C15 , x ’ )
end do

do iel=1,nels_pp
   u=matmul(ke,x)
end do
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Speed up
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Convergence Variability

What does it mean?
� The number of iterations to a converged solution changes

depending on whether the problem is solved in serial or parallel
� It also depends on the number of processors
� It can also varies from one run to the next (not commonly)

Reasons why it is disturbing?
� The algorithm has not changed

� Only some details that seem unimportant!

� How do you check that the parallel program is working properly?
� Does this mean the answer is wrong?
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A Typical Convergence History
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Why is there variability?

Has the solution method changed? - No
� No - important
� The parallel algorithm is essentially the same as the serial
� Other parallel methods change the algorithm (Schwartz)
� In these, variation in iteration count is common

Is there a bug in the program? - No
� Parallel programs are notoriously difficult to debug
� There’s no bug and the problem seems to be roundoff
� Even though we are using double precision!

Prove it.
� How?
� Simulate the parallel program with a serial one.
� Hand code the ‘messages’
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What’s the difference?  Summation Order

1 2

3 4

Serial

1

3

2

4

Parallel

1+2+3+4 1+3 2+4+/=

Subtotals            …worse if 1>>3  etc
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Convergence Variability
What happens to BiCGStab(l)?

� Over successive ‘external’ iterations
� The convergence paths diverge and converge
� The algorithm is self correcting, by design

Are the results reliable?
� Computation is terminated by a tolerance test
� Experience – results always agree within set tolerance
� Will they always agree? – mathematics problem!

What about other iterative algorithms?
� Other experience with PCG
� May not be a problem for positive definite matrices
� Some variability with BIOT consolidation
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Navier Stokes Test Problem

3D Cubic lid-driven cavity - 4 million equations

Cube
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Streamlines

Fast

Slow
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Velocity Magnitude 1
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Velocity Magnitude 2
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Performance vs Reynolds Number

Reynolds
Number

Parallel
Time
Minutes

Serial
Time
Days

%Peak
Perf.

Gflops

10 20 2-3 23 47

100 47 8-9 29 59

1000
 

180 >1
month

29 59
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Flow through a rectangular duct
� Electrically insulating walls
� Uniform pressure gradient
� Externally applied magnetic field
� Only a small example ~ 4,000 equations

MHD Test Problem

Symmetry
plane

Parabolic
inlet velocity

Applied field
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MHD Duct Flow 1

The fluid drags the magnetic field

The magnetic field distorts the fluid flow

Magnetic field
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MHD Duct Flow 2
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Summary

Performance
� Modern parallel architectures – cache dominated
� Coupling physics has a storage penalty
� Scaling to large numbers of processors

Roundoff and convergence variability
� A ‘forgotten’ issue returns with parallel computation
� EBE method still gives the correct answer
� How trustworthy are other parallel algorithms?

Future work?
� Should be able to add ‘more physics’
� Mesh generation + visualisaton, perhaps now the bottleneck!
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Domain Decomposition

Examples
� Calculation of the area under a curve by numerical

integration

� 3D grid problem
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The ‘Greedy’ Algorithm



May 2002 © University of Manchester

Research Objectives

Parallelisation of  a suite of finite element programs
� Multi-purpose

� Structural Building design
� Geomechanics Tunneling/foundation design
� Fluid Mechanics Contaminant transport
� Forced Vibrations Earthquake engineering
� Fully coupled “Multiphysics” Magnetohydrodynamics

� General approach based on MPI

Virtual prototyping
� Real time interactive finite element analysis

Teaching
� Encouraging non-specialists to use parallel computers


