OpenMP Experiences and Conpari sons

Aut hor :

Terry Nel son

Organi zati on:

NAS (NASA Advanced Superconputi ng)

Abstract:

Are prograns using OpenMP really conpletely portable? This paper discusses the

di f ferences of
Ori gi ns.
presented. MPI

Key Wbrds:

OpenMP, MPI, C90, SV1, Origin

1. Site Background

The NAS facility has a long tradition
with Cray vector platforms, but that
technol ogy may be nearing an end at
NAS. The last €90, called vn, for
(John) Von Neumann, was a 16 CPU, 1
G gaword nenmory conputer, and was
deconmi ssi oned 1/ 31/ 02.

Users have been strongly encouraged to
convert their vector codes to NAS Sd
Oigin systens. Since a few users have
thus far been unable to successfully
convert their codes, an interim
repl acement was installed. It is an
SVlex, and is called bright, nanmed for
an Anes scientist, Loren Bright. It
has 32 CPUs, and 4 G gawords nenory,
and was put into service 2/01/02.

There is also at NAS a long tradition
of distributed shared nenory nachi nes
from SGI, including currently the
| argest single-image Origin in
exi stence, the 1024 CPU Chapman.

A partial list of currently installed
Oigins would include:

CPUS NAME

1024 (Chapnan) - 600 MHZ CPUs

512 (Lonax)

512 (Lomax3)

256 (Delil ah)

128 (Hilbert)

runni ng QpenMP applications on the Cray Svl1, C90,
Experi ences with the conversion of user codes to OpenMP will be
and QpenMP coexi stence will

and SGA

al so be di scussed.

128 (Steger)
64 (Hopper)
32 (Turing)
16 (Evel yn)

DAO - 10 nore systens

Surprisingly, | recently heard an SA
executive, 1in listing the | argest
systems, put GFDL, in Princeton, on

top with over 1400 CPUs. Therefore, by
his definition, total of all systens
on site, NAS has an Oigin with 3000
CPUs!

2. C90 --> SViex

Functionally, between the C90 and SVi,
there are rather few differences,
however, the following programs,
written by Dr. Johnny Chang, at NAS,
illustrate how the nachines differ by
nore than sinply nmaintenance costs.

To conpare nmenory transfer speeds:

program mem nt ensi ve
I a nenory access intensive programto
check
I timngs between vn and bri ght

paraneter (niter = 10000, nmax =
1000000)
di rensi on a(nmax), b(nmax)

t0 = second()

call random nunber(a)
t1l = second()
doi = 1,niter

call sub(nnax, a, b)
enddo
t2 = second()

print *,'Time for random nunber
=,t1 - t0

print *,'Tinme for nmenory copy
=,t2 - t1l

stop

end

subrouti ne sub(nnex, a, b)
di rensi on a(nmax), b(nmax)
b =a

return

end

To conpare conputati on speed:

program conpi nt ensi ve
I a conputationally intensive program
to check
I timngs between vn and bright

parameter (niter = 10000000,
nmax = 64)

di nensi on a(nnmax)

t0 = second()

cal |l random nunber (a)

tl = second()

doi = 1,niter

call sub(nnmax, a)
enddo
t2 = second()

print *,'Time for random nunber
=,tl - tO0

print *, 'Time for conputation
=,t2 - tl

st op

end

subrouti ne sub(nnax, a)
di nensi on a(nnax)

a=a*(1.+a*(1.+a*(1l. +a*(1.+a*(1.+a*(1l. +
a*(1.+a*(1.+a*(1.+a)))))))))
a=0.1*a

return

end

These prograns show quite clearly C90
and SV1 menmory and CPU differences.

The results were obtained for single
cpu jobs on quiet systems, neasure
cputime, not wall time, and were

easily reproduci bl e.

the CPU
ti mes

For a nenory-intensive code,
time on the SV1 can be 4
s|l ower than on the C90

For a conputation-intensive code, the
CPU tinme on the SV1 can be 2.5 tines
faster than on the C90

However, when these results were
broadcast, a representative of Cray
poi nted out that he felt they were
unfair to the SV1, because they

i gnored the 32KW datacache which was
available on the SV1, but not on the
C90. And in fact, ny tests showed that

if the SVl 32KW datacache could be
reused, a 57% CPU tine inprovenment
(603 -> 254 sec.) was achieved over
the same SV1 test not taking advantage
of the data cache. O course, this is

just one data point on this issue, and
testing this is a Ilittle tricky,
because the conpiler wll optimze

around tests which are too sinplistic.

Thi nking ahead to code conversions
fromthe Crays to the Origins, is this
attention to the importance of
"multiple reuse of data' anal ogous to
'cache orientation' on the Oigins?

3. SVlex --> Oigins

The SV1 and Origin systens are really
quite disparate systens, with a nunber
of distinct features.

The SV1 has a vector orientation, and
a flat menory layout. Also, SV1 cpus
are not in general dedicated, so
OpenMP thread directives are really

'requests', not comands.

The Origins have a distributed shared

menory |ayout. Origin cpus, and their
acconpanying nenmory, are in general
dedicated to the life of the job, and
are called cpusets. This is also why
the environment variable, OVP_DYNAM C,
may be set to FALSE

Wher eas Cray options for
parallelization, and memor y
distribution, tend to be 'inside' the

conmpiler, wusing paraneters, SG has

produced a l ong series of
"extensions', in especially two areas,
paral | el | oop control, and data
locality.

handl ed
t he

| oop control
paraneter is
- LNO.

An exanpl e of
through a conpiler
“l oop nest optim zation”,

The —pfa feature was originally from
Kuck and Associates, and is now
superceded by t he “Automati c
Paral l elization Option”, -apo, for

which a separate license is required.

An early attenpt to create a very
extensive |anguage to deal wth the
paral l elizing and scheduling of | oops
and managing their data, produced a
product called ‘PCF . PCF stands for
‘parallel conmputing forum . It was
based in part on work from Sequent
Cor porati on, and resulted in a
proposed ANSI standard, ANSI-X3H5 91-
0023-B. PCF contained directives |ike

C$DOACROSS, C3MP_SCHEDTYPE, C$CHUNK,
C$3COPYI N

As well as extensions |ike
C$PAR BARRI ER, C$PAR CRI TI CAL SECTI ON,
C$PARALLEL DO
C$PAR PDO, C$PAR SI NGLE PROCESS,
and

mul ti processing utility routines

np_bl ock, mp_unbl ock, np_set up,
mp_creat e, np_destr oy,
mp_set _numt hreads, np_barrier,

np_sl ave_wait_for_work, etc.

in the creation
and has a very

PCF was very inportant
of the OpenMP standard,
OpenMP-1i ke feel to it. However, as we
wi || see later on, there are
di f ferences between PCF and OpenMP.

Because of the hierarchical |ayout of

menmory on the Origins, with various
| evel s of cache, node nenories, and
virtual nmenmory, and the criticality of

cache hits and m sses, false sharing,
etc., having the data where you want
it when you want it is a BIG deal. Not

surprisingly there are many ways to
af fect data placenment on Origins.

dpl ace - pre-execution NUMA nenory
pl acenment t ool

dl ook — a tool for
process pl acenent

showi ng nenory and

dprof — a nmenory access profiling
t ool

nume_view — a tool for show ng NUMVA
pl acenment information

The need to pay close attention to the

locality of the program s data,
combi ned wi t h the desire to
parallelize |oops whenever possible,
resulted in a number of SGl

ext ensi ons.

Envi ronnent Vari abl es
_DSM M GRATI ON, _DSM BARRI ER,
_DSM PLACEMENT,
(see man pe_environ)

i nt ended
e.g.

| ndeed, sone extensions are
for use with OpenMP prograns,

data distribution directives
C$DI STRI BUTE, C$DI STRI BUTE_RESHAPE,
C$DYNAM C, etc.

and ! $SG _DI STRI BUTE_RESHAPE, ! $SGI
REDRI TRl BUTE, etc.

Thus, by way of conparison, the SV1
OpenMP was essentially a new
i mpl ement ati on, whereas the OpenMWP
i npl ementation on the Origins is
generally based on PCF and the SG

ext ensi ons.

And besides all this, there is another
very rich product, called shmem
(shared menory). This was initially a
Cray product, which SG obtained
during their merger. It could be
viewed as data oriented (puts and
gets) software with functionality
somewhat |ike MPlI, (or nore precisely,
|’ve been told, MPI -2 one-sided
features).

There are some tricks and guidelines
which may be helpful while testing
OpenMP on the Oigins.

Use loc() to distinguish which data
itenms belong to which thread.

(But be careful if Ml is involved!
Vari ables of the same thread number
spun off by different MPlI processes
may appear to have the sanme |ocation.
They are distinct.)

Use sleep() to have tine to view

process activity.
(This is docunented at
on Cray, not

"man sleep 3C
in a 3F man page, as on

the Origins, and as one woul d expect.)
The attempt to set the number of
threads which the QpenMP job will use
can lead to surprising or confusing
results.

Job control systems (ngs, pbs, |Isf)
my set defaults or limts for the
nunber of cpus the job wll be
permtted to use, (#PBS -1 ncpus=4
in PBS, for exanple), or preset key
environment variabl es l'i ke
OVP_DYNAM C.

On Cray, NCPUS overrul es

onp_num t hr eads.

On SG, wuse setenv OVP_NUM THREADS
(csh environnment vari abl e)

or call onp_set_numthreads()
(i nternal OpenMP call).
Note that earlier multiprocessing SG

ext ensi ons used np_set_numthreads for
the environment variable, which is

confusingly close to the nane for the
routine for OpenMP to set/reset the
number of threads, cal l
onp_set _num t hreads().
In general, wusers would be well
advised to always set and test for
thenmsel ves whatever CPU or thread
val ues they require.
Process startup mechanisms vary
between the Cray and SGE systens.
SVliex - fork

tfork (for shared memory
usage, the old Cray XMP task fork

using ba - base address, and la -
[imt address)
Oigins - fork

sproc (for shared nmenory)

The Origins are in general threadsafe,
using either the older MPIO library
with f77, or the newer SG library
craylibs. | would not assunme the SV1
OpenMP code is thread safe.

SVlex has f90 -a taskcommon, which
could be viewed as an early version of
THREADPRI VATE.

SV1l requires no
options for OpenhP.
The Origins need -np,
is correctly set to
which is the default).

special conpiler
(and assunme —-MP
—MP: open_np=0N,

Origins produce a directory for ‘.rii’

files call ed rii_files. The
information in this directory is used
to i mplement data distribution
directives, as well as perform
consi stency checks of these directives
across nultiple source files. This

feature can be turned off by conpiling
with —MP: dsmrof f.

SVl MPlI has both nt (tasks)
(processes) npirun options.

and np

On Origins MPl uses only npirun -np.

4. MPI and OpenWP

In the area of parallelization, the
two nmost prom nent paradigns are
probably MPI and OpenMP. Both are well
defined, generally portable standards.
Because they often operate in
di fferent domai ns, i.e. MPI on

di stributed menmory systens, OpenMP in
shared nenory contexts, the question
ari ses whether they can be conbined in

the same program to produce
performance results with would be
superior to those obtained from either
nodel by itself.

The idea is to create nmultilevel
parallelism The notivation can be
better work distribution, or |oad
leveling. This idea is simlar to a

l'ibrary call ed mp (multilevel
parallel), created by Jim Taft at NAS,
whi ch has produced very prom sing

performance gai ns.

In terms of MPI and OpenMP together on
a single application, this author is
aware of considerable efforts on ngjor
codes, but not of significant success
at NAS, although there nmay have been
some success at other sites with this
nodel . However, this still appears to
be an inportant research area and
definitely worth further effort.

In this regard, SA recognized issues
with data locality with prograns using

the “MPI over OpenMP’ nodel and has
worked on an inproved data placenent
schene.

There is an enhancenment available in
SG release of MPT 1.6 (May '02).
According to the SG@ devel oper who was
doi ng thi s enhancenent:

The basic idea for this nodel is that
the MPI processes are spread out to
allow room for the OpenM threads.
The OpenMP threads for each MPI
process are placed near the MPI
parent . There is also an option to
roundrobin the MPlI process' data
segnent across the nodes that its
threads are using. This has been
found to help for higher thread/npi
process counts. Note that this feature
will only be available for Oigin 300
and 3000 series conputers.

The nodel seems to benefit nost
appl i cations where

1) the working data set does not
reside in scache

2) nmore than 4 threads/ MPl process

5. Conversion to OoenM

I ssues

Since OpenMP is purportedly portable,

and the is standard, it is natural to
want to convert codes to it, either
from simlar schemes |ike PCF, other

platforms flavor of OpenMP, or for

initial attenpts at parallelization of
a code. The latter is inportant
because the mve to OpenMP can be
incremental, literally loop by |oop,
unlike simlar attempts to convert

codes to MPI.

So is OpenMP conpletely conpatible to
earlier SA capabilities, i.e. PCF and
its extensions?
Not entirely. For there was
t he NESTED f eat ure.

exampl e,

There was a particular form of NEST
supported in PCF, which allowed you to
exploit parallelism across iterations
of a perfectly nested | oop-nest, e.g.
c$doacross nest(i,j)

This is not in OpenMP, and is
therefore, in a sense, a degradation
on the Oigins.

Paral |l elization of nested DO loops is

defined in the OpenMP standard.
However, it is not often inplenented.
I have been 'assured' this wll be

avail able on the Oigins in the next

f ew nont hs.

OpenWP is a standard, and is supposed
to be portable. Does this inmply that
the SV1 and the Origins handle all
prograns in the same way?

Not necessarily. A particularly
interesting exanple from an actual
user code involved a very short

reducti on operation. The code fragment

is as fol |l ows:

nthreads = 0
I $OVP PARALLEL REDUCTI ON(+: nt hr eads)

nthreads =1

print *, nthreads

nthreads = nthreads + 1
I $OVP END PARALLEL

wite(*,*) nthreads

end
On | RIX, both the f77 and f90
conpil ers object with the nmessage
Error: 1llegal reduction operator for
reduction variabl e nt hreads

On the
compi | er

the SVl {90
code without

ot her hand,
conpil es the

comment. So who is correct? It
IRI X, since the compiler
that the |line

appears
recogni zes

nthreads = 1

reducti on
i ne

is not a |egal
operation. If that

type of
is comrented

out, the code conpiles (as well as on
the SV1).

Now, this code seens to stand at the
edge of the theory, since reductions
al nost invariably involve an operation
over a DO |oop, although neither the
1.1 or 2.0 OpenMP standard appear to
rule out this type of usage. So what
was the wuser’'s intent? He is using
this construct to count the nunber of

threads current at this tinme. It ran
correctly on IBM and Linux systens, as

well as the ‘corrected’ version on
IRIX. But the SV1 does not perform a
reduction in this case, and so wll
print ‘1" at the end of this fragnment.
Is there another example of a
Cray/Origin 'divergence' involving
OpenvP?

For a |line such as

| $OMP PARALLEL DO PRI VATE(i am
| $OMP& FI RSTPRI VATE(sum),
LASTPRI VATE(sum)

The Origin f77 and f90 conmpilers
pr oduce
"prog.f", line 8: Error: FIRSTPRI VATE

and LASTPRI VATE on sane vari able not
yet inplemented for PARALLEL DO

These lines conpile correctly on the
Cray.
However, the form

| $OMP PARALLEL PRI VATE(i am)
| $OMP DO FI RSTPRI VATE(sum),
LASTPRI VATE(sum)

conpil es on both platformns.

What kind of problems occur in
converting real codes? In the world of
OpenMP theory, almst all of the

attention is on the parallelizing,

variabl e handling, and scheduling of

DO I|oops, and less frequently on
parallel regions. This is all of
val ue, but how does a real world code
differ from this portrait? Very
likely, in the nmddle of that very
nat ur al DO |loop you want to
parallelize, there will be calls, and

not sinply calls, but long call trees.
These require a sonewhat different
focus than all of the theory referred
to above.

The book "Parallel Progranmng in
OpenMP", which | highly reconmend at
the end of this paper, devotes around
8 pages out of mre than 200 to
deal i ng wi th t hese types of
situations. The usual nonenclature for
these call trees is the dynanic extent
of the | oop

So what cautions are appropriate? |
woul d propose an almost biblica
adnoni tion:

He who saves his code shall lose it.

SAVE and f77/90 -static can cause
problems in OpenMP prograns if the
vari abl es concerned should really be
scoped private. (The static parameter
statically allocates all | ocal
vari abl es. Such vari abl es are
initialized to zero and exist for the
life of the program) However, on the
Origins, there i s a
static_threadprivate parameter,
simlar to —static, which could solve
many of these probl ens.

| f call trees are invol ved,
TASKPRI VATE common bl ocks will Iikely
be required.

In OpenMP 2.0 THREADPRI VATE may be
applied to variables as well as COVWON
bl ocks. However, there is no estimate
as to when this version of the
standard will be inplenented on the
Oigins.

Converting codes to OpenMP, issues
i nvol ving which variables need to be
PRI VATE will probably need to be
deternmi ned on a case by case basis, not
deduced from cpu=1 cases.

O is the code parallelized from a
past life? As we saw, the system used
to parallelize the code may not mmtch
OpenMP conpl etely. Moreover one nust
watch out for issues of thread safety.
And renenmber that, since the order in
whi ch threads run varies, actions such
as REDUCTI ON can have different val ues
on separate runs. One nust know the
al | owabl e variation in precision.

6. Sunmmary/ Concl usi ons

- As system sizes continue to
increase in ternms of the nunber of
nodes or cpus, understandi ng nodel s

such as MPlI processes running
OpenMP threads will only grow in
i mportance.

- As distributed shared menory
systens becone ever nobre prom nent,
OpenMP grows in significance as the
programmi ng nodel of choice.

- Conversion of codes to OpenW
focuses nost of all on the question
of which variables must be scoped
private in the parallel 1oop or
regi on.

di stribution
supported and
enhance program

- Earlier SaGl dat a
directives are still
can greatly

performance, because of
| ayout of the Origins.

the nenory

7. References

Par al | el Programm ng in
(Chandra et al)

OpenWP

WWW. onp. or g is the primary site for
OpenMP i nf or mati on.

techpubs. sgi.com |ibrary/ is the
SA site dor online docunentation

WWW. nas. nasa. gov for nmore
information on activities ongoing at
NAS, and docunentation on the systens
t here.

About the Author:

Terry Nel son

Scientific Conputing Consultant

Terry Nelson, in a past life, spent 23
years with Control Data, and currently
wor ks for Conmputer Sciences Corp. at
the NAS facility at the NASA Anes
Research Center.

M S 258-6

Mffett Field, Ca. 94035
(650) 604-4292

t nel son@as. nasa. gov

