
1

OpenMP Experiences and Comparisons

Author:

Terry Nelson

Organization:

NAS (NASA Advanced Supercomputing)

Abstract:

Are programs using OpenMP really completely portable? This paper discusses the
differences of running OpenMP applications on the Cray SV1, C90, and SGI
Origins. Experiences with the conversion of user codes to OpenMP will be

presented. MPI and OpenMP coexistence will also be discussed.

Key Words:

OpenMP, MPI, C90, SV1, Origin

1. Site Background

The NAS facility has a long tradition
with Cray vector platforms, but that
technology may be nearing an end at
NAS. The last C90, called vn, for
(John) Von Neumann, was a 16 CPU, 1
Gigaword memory computer, and was
decommissioned 1/31/02.
Users have been strongly encouraged to
convert their vector codes to NAS’ SGI
Origin systems. Since a few users have
thus far been unable to successfully
convert their codes, an interim
replacement was installed. It is an
SV1ex, and is called bright, named for
an Ames scientist, Loren Bright. It
has 32 CPUs, and 4 Gigawords memory,
and was put into service 2/01/02.

There is also at NAS a long tradition
of distributed shared memory machines
from SGI, including currently the
largest single-image Origin in
existence, the 1024 CPU Chapman.
A partial list of currently installed
Origins would include:

CPUS NAME
1024 (Chapman) - 600 MHZ CPUs
512 (Lomax)
512 (Lomax3)
256 (Delilah)
128 (Hilbert)

128 (Steger)
64 (Hopper)
32 (Turing)
16 (Evelyn)
DAO - 10 more systems
...

Surprisingly, I recently heard an SGI
executive, in listing the largest
systems, put GFDL, in Princeton, on
top with over 1400 CPUs. Therefore, by
his definition, total of all systems
on site, NAS has an Origin with 3000
CPUs!

2. C90 --> SV1ex

Functionally, between the C90 and SV1,
there are rather few differences,
however, the following programs,
written by Dr. Johnny Chang, at NAS,
illustrate how the machines differ by
more than simply maintenance costs.
To compare memory transfer speeds:

 program memintensive
! a memory access intensive program to
check
! timings between vn and bright
 parameter (niter = 10000, nmax =
1000000)
 dimension a(nmax), b(nmax)
 t0 = second()

2

 call random_number(a)
 t1 = second()
 do i = 1,niter
 call sub(nmax,a,b)
 enddo
 t2 = second()
 print *,'Time for random_number
=',t1 - t0
 print *,'Time for memory copy
=',t2 - t1
 stop
 end
 subroutine sub(nmax,a,b)
 dimension a(nmax), b(nmax)
 b = a
 return
 end

To compare computation speed:

program compintensive
! a computationally intensive program
to check
! timings between vn and bright
 parameter (niter = 10000000,
nmax = 64)
 dimension a(nmax)
 t0 = second()
 call random_number(a)
 t1 = second()
 do i = 1,niter
 call sub(nmax,a)
 enddo
 t2 = second()
 print *,'Time for random_number
=',t1 - t0
 print *,'Time for computation
=',t2 - t1
 stop
 end
 subroutine sub(nmax,a)
 dimension a(nmax)

a=a*(1.+a*(1.+a*(1.+a*(1.+a*(1.+a*(1.+
a*(1.+a*(1.+a*(1.+a)))))))))
a=0.1*a
 return
 end

These programs show quite clearly C90
and SV1 memory and CPU differences.
The results were obtained for single
cpu jobs on quiet systems, measure
cputime, not wall time, and were
easily reproducible.

For a memory-intensive code, the CPU
time on the SV1 can be 4 times
slower than on the C90.

For a computation-intensive code, the
CPU time on the SV1 can be 2.5 times
faster than on the C90.

However, when these results were
broadcast, a representative of Cray
pointed out that he felt they were
unfair to the SV1, because they
ignored the 32KW datacache which was
available on the SV1, but not on the
C90. And in fact, my tests showed that
if the SV1 32KW datacache could be
reused, a 57% CPU time improvement
(603 -> 254 sec.) was achieved over
the same SV1 test not taking advantage
of the data cache. Of course, this is
just one data point on this issue, and
testing this is a little tricky,
because the compiler will optimize
around tests which are too simplistic.

Thinking ahead to code conversions
from the Crays to the Origins, is this
attention to the importance of
'multiple reuse of data' analogous to
'cache orientation' on the Origins?

3. SV1ex --> Origins

The SV1 and Origin systems are really
quite disparate systems, with a number
of distinct features.

The SV1 has a vector orientation, and
a flat memory layout. Also, SV1 cpus
are not in general dedicated, so
OpenMP thread directives are really
'requests', not commands.

The Origins have a distributed shared
memory layout. Origin cpus, and their
accompanying memory, are in general
dedicated to the life of the job, and
are called cpusets. This is also why
the environment variable, OMP_DYNAMIC,
may be set to FALSE.

Whereas Cray options for
parallelization, and memory
distribution, tend to be 'inside' the
compiler, using parameters, SGI has

3

produced a long series of
'extensions', in especially two areas,
parallel loop control, and data
locality.

An example of loop control handled
through a compiler parameter is the
“loop nest optimization”, -LNO.
The –pfa feature was originally from
Kuck and Associates, and is now
superceded by the “Automatic
Parallelization Option”, -apo, for
which a separate license is required.

An early attempt to create a very
extensive language to deal with the
parallelizing and scheduling of loops
and managing their data, produced a
product called ‘PCF’. PCF stands for
‘parallel computing forum’. It was
based in part on work from Sequent
Corporation, and resulted in a
proposed ANSI standard, ANSI-X3H5 91-
0023-B. PCF contained directives like

 C$DOACROSS, C$MP_SCHEDTYPE, C$CHUNK,
C$COPYIN

As well as extensions like

C$PAR BARRIER, C$PAR CRITICAL SECTION,
C$PARALLEL DO
 C$PAR PDO, C$PAR SINGLE PROCESS, ...

and

multiprocessing utility routines
 mp_block, mp_unblock, mp_setup,
m p _ c r e a t e , mp_destroy,
m p _ s e t _ n u m t h r e a d s , mp_barrier,
mp_slave_wait_for_work, etc.

PCF was very important in the creation
of the OpenMP standard, and has a very
OpenMP-like feel to it. However, as we
will see later on, there are
differences between PCF and OpenMP.

Because of the hierarchical layout of
memory on the Origins, with various
levels of cache, node memories, and
virtual memory, and the criticality of
cache hits and misses, false sharing,
etc., having the data where you want
it when you want it is a BIG deal. Not

surprisingly there are many ways to
affect data placement on Origins.

 dplace - pre-execution NUMA memory
placement tool

 dlook – a tool for showing memory and
process placement

 dprof – a memory access profiling
tool

 numa_view – a tool for showing NUMA
placement information

The need to pay close attention to the
locality of the program’s data,
combined with the desire to
parallelize loops whenever possible,
resulted in a number of SGI
extensions.

 Environment Variables
 _DSM_MIGRATION, _DSM_BARRIER,
_DSM_PLACEMENT, ...
 (see man pe_environ)

Indeed, some extensions are intended
for use with OpenMP programs, e.g.

data distribution directives
 C$DISTRIBUTE, C$DISTRIBUTE_RESHAPE,
C$DYNAMIC, etc.
and !$SGI_DISTRIBUTE_RESHAPE, !$SGI
REDRITRIBUTE, etc.………

Thus, by way of comparison, the SV1
OpenMP was essentially a new
implementation, whereas the OpenMP
implementation on the Origins is
generally based on PCF and the SGI
extensions.

And besides all this, there is another
very rich product, called shmem
(shared memory). This was initially a
Cray product, which SGI obtained
during their merger. It could be
viewed as data oriented (puts and
gets) software with functionality
somewhat like MPI, (or more precisely,
I’ve been told, MPI-2 one-sided
features).

There are some tricks and guidelines
which may be helpful while testing
OpenMP on the Origins.

4

Use loc() to distinguish which data
items belong to which thread.
(But be careful if MPI is involved!
Variables of the same thread number
spun off by different MPI processes
may appear to have the same location.
They are distinct.)

Use sleep() to have time to view
process activity.
(This is documented at 'man sleep 3C'
on Cray, not in a 3F man page, as on
the Origins, and as one would expect.)

The attempt to set the number of
threads which the OpenMP job will use
can lead to surprising or confusing
results.

Job control systems (nqs, pbs, lsf)
may set defaults or limits for the
number of cpus the job will be
permitted to use, (#PBS -l ncpus=4
in PBS, for example), or preset key
environment variables like
OMP_DYNAMIC.

On Cray, NCPUS overrules
omp_num_threads.

On SGI, use setenv OMP_NUM_THREADS
(csh environment variable)
or call omp_set_num_threads()
(internal OpenMP call).

Note that earlier multiprocessing SGI
extensions used mp_set_num_threads for
the environment variable, which is
confusingly close to the name for the
routine for OpenMP to set/reset the
n u m b e r o f t h r e a d s , c a l l
omp_set_num_threads().

In general, users would be well
advised to always set and test for
themselves whatever CPU or thread
values they require.

Process startup mechanisms vary
between the Cray and SGI systems.

SV1ex - fork
 tfork (for shared memory
usage, the old Cray XMP task fork

using ba - base address, and la -
limit address)
Origins - fork
 sproc (for shared memory)

The Origins are in general threadsafe,
using either the older MPIO library
with f77, or the newer SGI library
craylibs. I would not assume the SV1
OpenMP code is thread safe.

SV1ex has f90 -a taskcommon, which
could be viewed as an early version of
THREADPRIVATE.

SV1 requires no special compiler
options for OpenMP.
The Origins need –mp, (and assume –MP
is correctly set to –MP:open_mp=ON,
which is the default).

Origins produce a directory for ‘.rii’
files called rii_files. The
information in this directory is used
to implement data distribution
directives, as well as perform
consistency checks of these directives
across multiple source files. This
feature can be turned off by compiling
with –MP:dsm=off.

SV1 MPI has both nt (tasks) and np
(processes) mpirun options.

On Origins MPI uses only mpirun -np.

4. MPI and OpenMP

In the area of parallelization, the
two most prominent paradigms are
probably MPI and OpenMP. Both are well
defined, generally portable standards.
Because they often operate in
different domains, i.e. MPI on
distributed memory systems, OpenMP in
shared memory contexts, the question
arises whether they can be combined in
the same program to produce
performance results with would be
superior to those obtained from either
model by itself.

The idea is to create multilevel
parallelism. The motivation can be
better work distribution, or load
leveling. This idea is similar to a

5

library called mlp (multilevel
parallel), created by Jim Taft at NAS,
which has produced very promising
performance gains.

In terms of MPI and OpenMP together on
a single application, this author is
aware of considerable efforts on major
codes, but not of significant success
at NAS, although there may have been
some success at other sites with this
model. However, this still appears to
be an important research area and
definitely worth further effort.

In this regard, SGI recognized issues
with data locality with programs using
the “MPI over OpenMP” model and has
worked on an improved data placement
scheme.

There is an enhancement available in
SGI release of MPT 1.6 (May '02).
According to the SGI developer who was
doing this enhancement:

The basic idea for this model is that
the MPI processes are spread out to
allow room for the OpenMP threads.
The OpenMP threads for each MPI
process are placed near the MPI
parent. There is also an option to
roundrobin the MPI process' data
segment across the nodes that its
threads are using. This has been
found to help for higher thread/mpi
process counts. Note that this feature
will only be available for Origin 300
and 3000 series computers.

The model seems to benefit most
applications where

1) the working data set does not
reside in scache
2) more than 4 threads/MPI process

5. Conversion to OpenMP
issues

Since OpenMP is purportedly portable,
and the is standard, it is natural to
want to convert codes to it, either
from similar schemes like PCF, other
platform’s flavor of OpenMP, or for

initial attempts at parallelization of
a code. The latter is important
because the move to OpenMP can be
incremental, literally loop by loop,
unlike similar attempts to convert
codes to MPI.

So is OpenMP completely compatible to
earlier SGI capabilities, i.e. PCF and
its extensions?

Not entirely. For example, there was
the NESTED feature.

There was a particular form of NEST
supported in PCF, which allowed you to
exploit parallelism across iterations
of a perfectly nested loop-nest, e.g.
c$doacross nest(i,j)

This is not in OpenMP, and is
therefore, in a sense, a degradation
on the Origins.

Parallelization of nested DO loops is
defined in the OpenMP standard.
However, it is not often implemented.
I have been 'assured' this will be
available on the Origins in the next
few months.

OpenMP is a standard, and is supposed
to be portable. Does this imply that
the SV1 and the Origins handle all
programs in the same way?

Not necessarily. A particularly
interesting example from an actual
user code involved a very short
reduction operation. The code fragment
is as follows:

 nthreads = 0
!$OMP PARALLEL REDUCTION(+:nthreads)
 nthreads = 1
 print *, nthreads
 nthreads = nthreads + 1
!$OMP END PARALLEL
 write(*,*) nthreads
 end

On IRIX, both the f77 and f90
compilers object with the message
Error: Illegal reduction operator for
reduction variable nthreads

On the other hand, the SV1 f90
compiler compiles the code without

6

comment. So who is correct? It appears
IRIX, since the compiler recognizes
that the line

 nthreads = 1

is not a legal reduction type of
operation. If that line is commented
out, the code compiles (as well as on
the SV1).
Now, this code seems to stand at the
edge of the theory, since reductions
almost invariably involve an operation
over a DO loop, although neither the
1.1 or 2.0 OpenMP standard appear to
rule out this type of usage. So what
was the user’s intent? He is using
this construct to count the number of
threads current at this time. It ran
correctly on IBM and Linux systems, as
well as the ‘corrected’ version on
IRIX. But the SV1 does not perform a
reduction in this case, and so will
print ‘1’ at the end of this fragment.

Is there another example of a
Cray/Origin 'divergence' involving
OpenMP?

For a line such as

!$OMP PARALLEL DO PRIVATE(iam)
!$OMP& FIRSTPRIVATE(sum),
LASTPRIVATE(sum)

The Origin f77 and f90 compilers
produce

"prog.f", line 8: Error: FIRSTPRIVATE
and LASTPRIVATE on same variable not
yet implemented for PARALLEL DO

These lines compile correctly on the
Cray.

However, the form

!$OMP PARALLEL PRIVATE(iam)
!$OMP DO FIRSTPRIVATE(sum),
LASTPRIVATE(sum)

compiles on both platforms.

What kind of problems occur in
converting real codes? In the world of
OpenMP theory, almost all of the
attention is on the parallelizing,

variable handling, and scheduling of
DO loops, and less frequently on
parallel regions. This is all of
value, but how does a real world code
differ from this portrait? Very
likely, in the middle of that very
natural DO loop you want to
parallelize, there will be calls, and
not simply calls, but long call trees.
These require a somewhat different
focus than all of the theory referred
to above.
The book "Parallel Programming in
OpenMP", which I highly recommend at
the end of this paper, devotes around
8 pages out of more than 200 to
dealing with these types of
situations. The usual nomenclature for
these call trees is the dynamic extent
of the loop.

So what cautions are appropriate? I
would propose an almost biblical
admonition:

He who saves his code shall lose it.

SAVE and f77/90 –static can cause
problems in OpenMP programs if the
variables concerned should really be
scoped private. (The static parameter
statically allocates all local
variables. Such variables are
initialized to zero and exist for the
life of the program.) However, on the
O r i g i n s , t h e r e i s a
static_threadprivate parameter,
similar to –static, which could solve
many of these problems.

If call trees are involved,
TASKPRIVATE common blocks will likely
be required.

In OpenMP 2.0 THREADPRIVATE may be
applied to variables as well as COMMON
blocks. However, there is no estimate
as to when this version of the
standard will be implemented on the
Origins.

Converting codes to OpenMP, issues
involving which variables need to be
PRIVATE will probably need to be
determined on a case by case basis,not
deduced from cpu=1 cases.

7

Or is the code parallelized from a
past life? As we saw, the system used
to parallelize the code may not match
OpenMP completely. Moreover one must
watch out for issues of thread safety.
And remember that, since the order in
which threads run varies, actions such
as REDUCTION can have different values
on separate runs. One must know the
allowable variation in precision.

6. Summary/Conclusions

- As system sizes continue to
increase in terms of the number of
nodes or cpus, understanding models
such as MPI processes running
OpenMP threads will only grow in
importance.

- As distributed shared memory
systems become ever more prominent,
OpenMP grows in significance as the
programming model of choice.

- Conversion of codes to OpenMP
focuses most of all on the question
of which variables must be scoped
private in the parallel loop or
region.

- Earlier SGI data distribution
directives are still supported and
can greatly enhance program

performance, because of the memory
layout of the Origins.

7. References

Parallel Programming in OpenMP
(Chandra et al)

www.omp.org is the primary site for
OpenMP information.

techpubs.sgi.com/library/ is the
SGI site dor online documentation

www.nas.nasa.gov for more
information on activities ongoing at
NAS, and documentation on the systems
there.

About the Author:

Terry Nelson
Scientific Computing Consultant
Terry Nelson, in a past life, spent 23
years with Control Data, and currently
works for Computer Sciences Corp. at
the NAS facility at the NASA Ames
Research Center.

M/S 258-6
Moffett Field, Ca. 94035
(650) 604-4292
tnelson@nas.nasa.gov

