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do i=n-1,1,-1 
    !setup elementary reflector x(1:i),O(i) work 
  
    y(1:i) = dsymv ( a(1:i,1:i), x(1:i) )  
    ! symmetric matrix vector multiply, O(i^2) work 

 
    !...O(i) work generating vectors u(:) and v(:) 
  
    call dsyr2( u(1:i), v(1:i), a(1:i, 1:i) )  
    !  a_ij = a_ij +u_i*v_j – O(i^2) work 
enddo 

 
Figure 1 LAPACK tridiagonalisation 
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ABSTRACT: In a distributed memory parallel programming environment linear algebra 
operations are performed using libraries such as ScaLAPACK[1].  Here we will outline an 
example of a code where a ScaLAPACK eigensolver routine directly inhibits performance. 
We will detail the approach taken to replicate the functionality of ScaLAPACK routine 
PDSYTRD whilst increasing the performance significantly, and thus improving the scalability 
of the code in question. We will detail the mathematical and programming based techniques 
used to achieve the high performance and will outline the direction of future work in this 
area.

1. Introduction 

AIMPRO is a widely used physics code, used for first-
principles simulation of material properties [2]. In solving 
the Schrödinger equation for the electronic structure of 
molecules or solids, the standard real symmetric matrix 
eigenproblem A x = � x must first be solved. Here A is an 
n×n matrix. This equation occurs when solving a partial 
differential eigenvalue equation using a basis set expansion 
and occurs in many applications in science or engineering. 
The standard approach for dense matrices and when a 
substantial proportion (e.g. 10%) of the eigenvectors are 
needed is to reduce the matrix to tridiagonal form. The 
eigenvalues/eigenvectors of this matrix are then more easily 
found. This is done in (e.g.) LAPACK. Here we will discuss 
efficiency of tri-diagonalisation using the householder 
method. For an explanation of this method, and a 
description of tridiagonal matrices, see [3]. 
 
2. Serial Implementation 

 

The design philosophy of ScaLAPACK and LAPACK is to 
use level 3 BLAS wherever possible, but previous 
implementations such as EISPACK used level 1 BLAS.  
Figure 1 shows the structure of the LAPACK code dsytd2, 
focusing only on the main computational ingredients which 
are calls to level-2 BLAS routines dsymv and dsyr2. Here 
routines dsymv and dsyr2 both contribute 2n3/3 flops giving 
a total operation count of 4n3/3. 

Level 3 BLAS routines use matrix blocking to 
improve cache re-use, hence the LAPACK routine dsytrd 
replaces a number of calls to dsyr2 with a single call to the 
level 3 routine dsyr2k. Calls to dsymv remain. The resultant 
performance is therefore intermediate between level 2 and 
level 3 BLAS speeds (but closer to the level 2 
performance). 

 
3. Parallel Implementation 

 
ScaLAPACK builds on the LAPACK design 

philosophy and parallelisation is achieved largely by using 
parallel versions of the underlying BLAS routines. The 
ScaLAPACK tridiagonalisation routine pdsytrd therefore 
utilises the parallel BLAS (PBLAS) routines pdsymv and 
psyr2k. Unfortunately routine pdsytrd performs badly. This 
is due (a) to the poor performance of pdsymv on one node, 
(b) a load imbalance occurs as the preparation of the matrix 
for routine pdsyr2k, itself scaling poorly, only takes place 
on a column of processes. Scaling of the routine drops off 
even on 16 processors (see later Figure 8). Results herein 
are taken from runs on a 512 processor SGI Origin 3800 
system, upon which the majority of this work was carried 
out. 

In some runs of AIMPRO, matrices of dimension of 
order 2000 are repeatedly diagonalised on a large number of 
processors, and ScaLAPACK is not sufficient or 
appropriate for this purpose.  
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Figure 4      Synchronisation for Data Transfer 

 

     1        0.000129  entry          10        0.000359   pdsyr2 
     2        0.004264  reflector generation  11        0.104754   summation 
     3        0.019923  vector copies            12        0.001907   entry 
     4        0.407934  bcast                        1133                00..220088446611      ttrraannssppoossee 
     5        0.001052  barriers                     14        0.605466   update 
     6        0.001217  update                      15        0.001203   barriers 
     7        0.708108  bcast                        1166                00..224400008844      ssuumm  &&  bbccaasstt    8        0.002171 copies                      1177                00..773366558833      ttrraannssppoossee  
     9        0.008711 update                      18        0.000085   exit 
 

FFiigguurree  33      PPrrooffiilliinngg  tthhee  ppaarraalllleell  rroouuttiinnee  
EExxppoosseess  ppaarraalllleell  iinneeffffiicciieennccyy  

 

do i=n-1,1,-1 
  
    if(i==n-1)then 
    y(1:i) = dsymv ( a(1:i,1:i), x(1:i) )  
    else 
    call dsyr2( u(1:i), v(1:i), a(1:i, 1:i) ) 
    y(1:i) = dsymv ( a(1:i,1:i), x(1:i) )  
    endif 
    … 
    do dsyr2 !BUT ONLY FOR COLUMN "i" of a                       
(remainder done in next iteration). 
  
   enddo 
   call dsyr2 (just for the last iteration)  

 
Figure 2 Fusing BLAS for better cache re-use 

 
 
4. Modified coding strategy 
 
 An alternative parallel tridiagonal solver could follow the 
approach shown in Figure 2, where the level 2 BLAS 
implementations dsyr2 and dsymv are used instead of their 
level 3 counterparts, but dsyr2 is removed from the end of 
one previous iteration and fused with dsymv at the start of 
the next. This delayed update of the matrix exposes more 
flops per element of matrix a(i,j) loaded into cache, 
enabling the serial performance to be boosted. The 
disadvantage is that a special “blas” routine must be 
handwritten to achieve this. 

The resultant routine gives a serial performance close to the 
LAPACK equivalent without the need for level 3 BLAS. 
Hence any parallelisation begins at the same initial 
performance. The efficiency of parallelisation will now 
depend firstly on how well the handwritten “blas” routine 
scales and also on how any additional communication 
operations perform. 

ScaLAPACK’s block-scattered distribution means 
that apart from a very small number of diagonal blocks, we 
deal mainly with rectangular matrices. This makes the 
parallel version of the hand-written BLAS routine even 
simpler than the serial one. The resultant parallel routine 
performs 50% quicker than the ScaLAPACK equivalent and 
scales better. One advantage of this new code is that the 
parallel inefficiencies have been exposed rather than being 
hidden deep in library calls and we can now continue to 
improve scalability. 

 
 
5.  Optimisation of Communication 
 
With full profiling, the main areas of parallel inefficiency 
can be pinpointed. Figure 3 shows the full profiling output 
for the parallel routine. Clearly sections 13, 16 and 17 are 
troublesome. Sections 4,7 and 14 appear to contribute 
heavily to the execution time also, though these sections 
scale well, whilst the designated sections actually see an 
increase in execution time with number of processors. 
These areas of the code correspond to a distributed matrix 
transposition (sections 13 and 16) and a vector summation 
and broadcast (section 17).  

ScaLAPACK routine pbdtrnv transposes a vector held 
in block-cyclic distribution from a row process to a column 
process or vice-versa. Though a seemingly simple 
operation, routine pbdtrnv is complex and over-engineered, 
being 800 lines of code with calls to blacs and potentially 
MPI underneath. This implementation must have a 
significant latency. Figure 6 shows the individual 
performance of pbdtrnv. We cannot hope for speed-up here 
since the amount of work increases per-processor with the 
number of processors, but the significant increase in 
execution time must be improved upon if the parallel 
tridiagonal routine is to scale as a whole. Since the routine 
is communication heavy, it is likely that the best 
optimisations lay in decreasing the latency of data transfer. 
There are a number of techniques that can achieve this 
 

• Switch to using 1-sided communications 
• Tune to the requirements of program 
• Remove barriers 
• Exploit grid shape 
• Look out for additional cache-reuse opportunity 

 
Data transfer was performed using shmem put/get 
operations or using shmem_ptr, which gives the address of 
a remote data object that can then be used as a local object 
via a Cray pointer. The latency of a shmem_get is around 
10% of an MPI_SEND for the data size in question and 
shmem_ptr can be even quicker, especially on a globally 
addressable system such as the SGI Origin for obvious 
reasons.  

Though shmem or MPI-1sided operations can be 
much quicker there is an obvious concern in terms of 
synchronisation. Remote data objects must be accessible 
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            Figure 5      Synchronisation Sharing 

and unused by the process in question, similarly both 
processes must reside within the routine in question, since 
the data object may be changed to a later value in the code 
and could be accessed too early by the local process. Hence, 
despite the inherent performance gain, synchronisation is 
essential and can result in the performance being decreased. 
Global barrier routines scale very badly and can be 

unnecessary for point-to-point data-transfer. Instead, the 
target and host (remote and local) processors can 
synchronise exclusively with one another using the method 
shown in Figure 4. Here the remote processor spins on the 
value of a ‘safety’ integer, which is updated to a release 
value at the appropriate time by the local processor. This 
can be achieved by using the shmem_fence, shmem_wait or 
shmem_wait_until functions or through a shmem_ptr being 
located on a safety integer which is updated by the host 
process at an appropriate time. 

Using this method, point to point transfer can be 
orchestrated at a significantly lower latency than through 
using global barriers.  To achieve the lowest latency 
possible features of the code must be grouped together to 
enable as much synchronisation sharing as possible. In this 
case, three consecutive transposes are performed on vectors 
named u, v and x. Since the transpositions will occur with 
the same communication pattern each time, the 

synchronisation overhead is unnecessary for each 
transposition. Instead, multiple data transfer can be 
performed at the same point within the transposition 

routine, as shown in Figure 6. This decreases the latency 
and increases the performance of the tridiagonal routine 
significantly.  
 AIMPRO uses a square BLACS grid wherever 
possible and encourages the user to do so. This can be 
exploited by considering the nature of block-cyclic 
distribution. For a description of block-cyclic distribution, 
see [4]. In the case of a vector transpose, on square grids the 
resultant transpose will involve a data transfer to only 1 
target processor, and the transpose equates to a regular-
distribution transpose. Clearly this can be exploited, since 
the routine can knowingly perform this simple operation 
efficiently due to low communication costs. Routine hptran, 
the developed replacement for pbdtrnv, recognises a square 
grid and performs this very simple operation, resulting in a 
high perfrormance gain for square grids. Additionally, the 
routine performs the transposition of several identical 
vectors held simultaneously in the blacs grid. The resultant 
operation is a series of NP point to point operations for 
square grids or 2NP operations for n x 2n grids, 3NP for n x 
3n etc. Figure 6 shows the overall performance for hptran in 
comparison to ScaLAPACK routine pbdtrnv, with the 
extreme performance gain of square grids being evident. 

As revealed in Figure 3, sections 16 and 17 
comprised an additional performance overhead and scaling 
impediment. The series of operations in this section begins 
with a vector summation of V along a process row, i.e. 
  

 If a series of column Vectors Vt ,t=0,M-1 of vector 
length p are distributed in columns of a blacs 
process grid of length N and width M, then the 
vector Vnm represents the local vector held on the 
process with BLACS grid row co-ordinate n and 
column co-ordinate m, and Vcr is the summation 
over the rth BLACS process row ,where 

 

 ( )
1

0

          1,   ,r=0,N-1
M

r rt
t

Vc V i i p
−

=
= =�          (1.1) 

  
Similarly, row vector Y must be summed over the process 
column 
 

 If a series of row Vectors Yt ,t=1,N of vector length 
p are distributed in columns of a blacs process grid 
of length N and width M, then the vector Ynm 

represents the local vector held on the process with 
BLACS grid row co-ordinate n and column co-
ordinate m, and Yrr is the summation over the rth 
BLACS process column ,where 
 

( )
1

0

          1,   ,r=0,M-1
N
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Figure 6 Perfromance of transpose section of tridiagonal routine 
and ScaLAPACK equivalent 
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Figure 7   Comparison of the sum/broadcast area of ScaLAPACK and 
optimised codes 

Figure  8    Relative Speed-up of pdsyrtd and the hand made 
equivalent routine, plus the hand made routine with optimised 

routines HPTRAN and HPBSUM included 

Since the vector summation of Yr and Vc is required, yr 
must first be transposed. 
  
 If Yrt represents the partial accumalation of Yr on 

column t then 
 

                ( ) ( )     t=0,M-1T T
t tYr Yr=                       (1.3) 

 
 
Vectors YrT and Yc can then be added together 
  

  ( )      t=0,N-1T
t t tXc Yr Vc= +                 (1.4) 

 
And the resultant vector broadcast over all process columns 
 

1     r=0,M-1    t=0,N-1tr tXc Xc=  (1.5) 

Alternative routines using 1-sided operations can be readily 
constructed for each of the steps. Ideally, sections of this 
series of mathematical operations could be fused together 
within one routine to reduce overhead, but the nature of the 
operations prevents this; where we have a summation over a 
BLACS process row followed by a summation of a separate 
vector over a process column the two operations cannot 
possibly be synchronised together, since the communication 
patterns are ‘opposite’ and the degree of synchronisation 
would be at least as aggressive as a global barrier. Hence 
each section must remain distinct and the synchronisation 
overheads accumulate, with the resultant shmem routines 
being no more efficient than the MPI-BLACS equivalent. 
However, if the order of mathematics is re-considered, 
synchronisation sharing may be possible. Consider the 
following re-ordering of Equations 1.1 to 1.3. 
 

 The series of Row Vectors Yt ,t=0,N-1 are 
transposed, giving a series of column vectors YT t 
,t=0,M-1 
 Simultaneously the summations of YT and V are 
calculated,i.e 
 

( ) ( )
1 1

0 0

       1,   ,r=0,N-1
M N

T
r rt r rt

t t

Vc V i Y Y i i p
− −

= =

= = =� �   (1.6) 

 
Additionally, the tailored routine can now create the 
summation from equation 1.4 within the same subroutine by 
adding elements as they arrive, and the broadcast of 
equation 1.5, can to an extent be included in this same 
synchronisation overhead. Hence we have a series of 5 
operations, now optimised using 1-sided communications 
with minimal synchronisation overhead. Figure 7 shows the 
significant performance gain this optimal routine has over 
the blacs-mpi equivalent.  

When applied to the tridiagonalisation replacement 
for ScaLAPACK, the poor scaling has been improved 
tremendously. The speed-up drop off of pdsytrd on even  8 
processors proves its inadequacy for HPC work, whilst the  
hand-made equivalent continues to show speed up from 128 
to 256 processors. Figure 8 shows the overall speed-up 
figures for the original ScaLAPACK routine, the 
replacement and the best times after optimisation of 
communication. The obvious scaling advantage and the 

significant performance gain allow AIMPRO to compute 
eigenvalues much more efficiently and will contribute to the 
move towards producing a capability-enabled AIMPRO 
code. 
 
6  Conclusions 
 
The excellent functionality of ScaLAPACK solvers are not 
being questioned, though it has been proven that their 
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performance, at least in one case, can be bettered in the limit 
where a smaller matrix problem must be solved on a larger 
number of processes than was envisaged by the developers 
of the library. More robust scaling behaviour will become 
increasingly important both with the concentration of 
funding into high-capability systems and also, at the lower 
end of the market, with the proliferation of less tightly 
coupled “commodity” Beowulf systems. It is hoped that 
future work by the authors will lead to improvements in 
linear algebra, and will contribute in both of these limits. 
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