
Created by Neevia Document Converter trial version http://www.neevia.com

High Performance Linear Algebra 1

do i=n-1,1,-1
 !setup elementary reflector x(1:i),O(i) work

 y(1:i) = dsymv (a(1:i,1:i), x(1:i))
 ! symmetric matrix vector multiply, O(i^2) work

 !...O(i) work generating vectors u(:) and v(:)

 call dsyr2(u(1:i), v(1:i), a(1:i, 1:i))
 ! a_ij = a_ij +u_i*v_j – O(i^2) work
enddo

Figure 1 LAPACK tridiagonalisation

High-Performance Linear Algebra

P. R. Briddon, University of Newcastle-Upon-Tyne, and
Adrian P. Tate, CSAR, University of Manchester

ABSTRACT: In a distributed memory parallel programming environment linear algebra
operations are performed using libraries such as ScaLAPACK[1]. Here we will outline an
example of a code where a ScaLAPACK eigensolver routine directly inhibits performance.
We will detail the approach taken to replicate the functionality of ScaLAPACK routine
PDSYTRD whilst increasing the performance significantly, and thus improving the scalability
of the code in question. We will detail the mathematical and programming based techniques
used to achieve the high performance and will outline the direction of future work in this
area.

1. Introduction

AIMPRO is a widely used physics code, used for first-
principles simulation of material properties [2]. In solving
the Schrödinger equation for the electronic structure of
molecules or solids, the standard real symmetric matrix
eigenproblem A x = � x must first be solved. Here A is an
n×n matrix. This equation occurs when solving a partial
differential eigenvalue equation using a basis set expansion
and occurs in many applications in science or engineering.
The standard approach for dense matrices and when a
substantial proportion (e.g. 10%) of the eigenvectors are
needed is to reduce the matrix to tridiagonal form. The
eigenvalues/eigenvectors of this matrix are then more easily
found. This is done in (e.g.) LAPACK. Here we will discuss
efficiency of tri-diagonalisation using the householder
method. For an explanation of this method, and a
description of tridiagonal matrices, see [3].

2. Serial Implementation

The design philosophy of ScaLAPACK and LAPACK is to
use level 3 BLAS wherever possible, but previous
implementations such as EISPACK used level 1 BLAS.
Figure 1 shows the structure of the LAPACK code dsytd2,
focusing only on the main computational ingredients which
are calls to level-2 BLAS routines dsymv and dsyr2. Here
routines dsymv and dsyr2 both contribute 2n3/3 flops giving
a total operation count of 4n3/3.

Level 3 BLAS routines use matrix blocking to
improve cache re-use, hence the LAPACK routine dsytrd
replaces a number of calls to dsyr2 with a single call to the
level 3 routine dsyr2k. Calls to dsymv remain. The resultant
performance is therefore intermediate between level 2 and
level 3 BLAS speeds (but closer to the level 2
performance).

3. Parallel Implementation

ScaLAPACK builds on the LAPACK design

philosophy and parallelisation is achieved largely by using
parallel versions of the underlying BLAS routines. The
ScaLAPACK tridiagonalisation routine pdsytrd therefore
utilises the parallel BLAS (PBLAS) routines pdsymv and
psyr2k. Unfortunately routine pdsytrd performs badly. This
is due (a) to the poor performance of pdsymv on one node,
(b) a load imbalance occurs as the preparation of the matrix
for routine pdsyr2k, itself scaling poorly, only takes place
on a column of processes. Scaling of the routine drops off
even on 16 processors (see later Figure 8). Results herein
are taken from runs on a 512 processor SGI Origin 3800
system, upon which the majority of this work was carried
out.

In some runs of AIMPRO, matrices of dimension of
order 2000 are repeatedly diagonalised on a large number of
processors, and ScaLAPACK is not sufficient or
appropriate for this purpose.

Created by Neevia Document Converter trial version http://www.neevia.com

Created by Neevia Document Converter trial version http://www.neevia.comHigh Performance Linear Algebra 2

� �

��������
��	
���

Figure 4 Synchronisation for Data Transfer

 1 0.000129 entry 10 0.000359 pdsyr2
 2 0.004264 reflector generation 11 0.104754 summation
 3 0.019923 vector copies 12 0.001907 entry
 4 0.407934 bcast 1133 00..220088446611 ttrraannssppoossee
 5 0.001052 barriers 14 0.605466 update
 6 0.001217 update 15 0.001203 barriers
 7 0.708108 bcast 1166 00..224400008844 ssuumm && bbccaasstt 8 0.002171 copies 1177 00..773366558833 ttrraannssppoossee
 9 0.008711 update 18 0.000085 exit

FFiigguurree 33 PPrrooffiilliinngg tthhee ppaarraalllleell rroouuttiinnee
EExxppoosseess ppaarraalllleell iinneeffffiicciieennccyy

do i=n-1,1,-1

 if(i==n-1)then
 y(1:i) = dsymv (a(1:i,1:i), x(1:i))
 else
 call dsyr2(u(1:i), v(1:i), a(1:i, 1:i))
 y(1:i) = dsymv (a(1:i,1:i), x(1:i))
 endif
 …
 do dsyr2 !BUT ONLY FOR COLUMN "i" of a
(remainder done in next iteration).

 enddo
 call dsyr2 (just for the last iteration)

Figure 2 Fusing BLAS for better cache re-use

4. Modified coding strategy

 An alternative parallel tridiagonal solver could follow the
approach shown in Figure 2, where the level 2 BLAS
implementations dsyr2 and dsymv are used instead of their
level 3 counterparts, but dsyr2 is removed from the end of
one previous iteration and fused with dsymv at the start of
the next. This delayed update of the matrix exposes more
flops per element of matrix a(i,j) loaded into cache,
enabling the serial performance to be boosted. The
disadvantage is that a special “blas” routine must be
handwritten to achieve this.

The resultant routine gives a serial performance close to the
LAPACK equivalent without the need for level 3 BLAS.
Hence any parallelisation begins at the same initial
performance. The efficiency of parallelisation will now
depend firstly on how well the handwritten “blas” routine
scales and also on how any additional communication
operations perform.

ScaLAPACK’s block-scattered distribution means
that apart from a very small number of diagonal blocks, we
deal mainly with rectangular matrices. This makes the
parallel version of the hand-written BLAS routine even
simpler than the serial one. The resultant parallel routine
performs 50% quicker than the ScaLAPACK equivalent and
scales better. One advantage of this new code is that the
parallel inefficiencies have been exposed rather than being
hidden deep in library calls and we can now continue to
improve scalability.

5. Optimisation of Communication

With full profiling, the main areas of parallel inefficiency
can be pinpointed. Figure 3 shows the full profiling output
for the parallel routine. Clearly sections 13, 16 and 17 are
troublesome. Sections 4,7 and 14 appear to contribute
heavily to the execution time also, though these sections
scale well, whilst the designated sections actually see an
increase in execution time with number of processors.
These areas of the code correspond to a distributed matrix
transposition (sections 13 and 16) and a vector summation
and broadcast (section 17).

ScaLAPACK routine pbdtrnv transposes a vector held
in block-cyclic distribution from a row process to a column
process or vice-versa. Though a seemingly simple
operation, routine pbdtrnv is complex and over-engineered,
being 800 lines of code with calls to blacs and potentially
MPI underneath. This implementation must have a
significant latency. Figure 6 shows the individual
performance of pbdtrnv. We cannot hope for speed-up here
since the amount of work increases per-processor with the
number of processors, but the significant increase in
execution time must be improved upon if the parallel
tridiagonal routine is to scale as a whole. Since the routine
is communication heavy, it is likely that the best
optimisations lay in decreasing the latency of data transfer.
There are a number of techniques that can achieve this

• Switch to using 1-sided communications
• Tune to the requirements of program
• Remove barriers
• Exploit grid shape
• Look out for additional cache-reuse opportunity

Data transfer was performed using shmem put/get
operations or using shmem_ptr, which gives the address of
a remote data object that can then be used as a local object
via a Cray pointer. The latency of a shmem_get is around
10% of an MPI_SEND for the data size in question and
shmem_ptr can be even quicker, especially on a globally
addressable system such as the SGI Origin for obvious
reasons.

Though shmem or MPI-1sided operations can be
much quicker there is an obvious concern in terms of
synchronisation. Remote data objects must be accessible

Created by Neevia Document Converter trial version http://www.neevia.com

Created by Neevia Document Converter trial version http://www.neevia.comCreated by Neevia Document Converter trial version http://www.neevia.com
High Performance Linear Algebra 3

�

�

 Figure 5 Synchronisation Sharing

and unused by the process in question, similarly both
processes must reside within the routine in question, since
the data object may be changed to a later value in the code
and could be accessed too early by the local process. Hence,
despite the inherent performance gain, synchronisation is
essential and can result in the performance being decreased.
Global barrier routines scale very badly and can be

unnecessary for point-to-point data-transfer. Instead, the
target and host (remote and local) processors can
synchronise exclusively with one another using the method
shown in Figure 4. Here the remote processor spins on the
value of a ‘safety’ integer, which is updated to a release
value at the appropriate time by the local processor. This
can be achieved by using the shmem_fence, shmem_wait or
shmem_wait_until functions or through a shmem_ptr being
located on a safety integer which is updated by the host
process at an appropriate time.

Using this method, point to point transfer can be
orchestrated at a significantly lower latency than through
using global barriers. To achieve the lowest latency
possible features of the code must be grouped together to
enable as much synchronisation sharing as possible. In this
case, three consecutive transposes are performed on vectors
named u, v and x. Since the transpositions will occur with
the same communication pattern each time, the

synchronisation overhead is unnecessary for each
transposition. Instead, multiple data transfer can be
performed at the same point within the transposition

routine, as shown in Figure 6. This decreases the latency
and increases the performance of the tridiagonal routine
significantly.
 AIMPRO uses a square BLACS grid wherever
possible and encourages the user to do so. This can be
exploited by considering the nature of block-cyclic
distribution. For a description of block-cyclic distribution,
see [4]. In the case of a vector transpose, on square grids the
resultant transpose will involve a data transfer to only 1
target processor, and the transpose equates to a regular-
distribution transpose. Clearly this can be exploited, since
the routine can knowingly perform this simple operation
efficiently due to low communication costs. Routine hptran,
the developed replacement for pbdtrnv, recognises a square
grid and performs this very simple operation, resulting in a
high perfrormance gain for square grids. Additionally, the
routine performs the transposition of several identical
vectors held simultaneously in the blacs grid. The resultant
operation is a series of NP point to point operations for
square grids or 2NP operations for n x 2n grids, 3NP for n x
3n etc. Figure 6 shows the overall performance for hptran in
comparison to ScaLAPACK routine pbdtrnv, with the
extreme performance gain of square grids being evident.

As revealed in Figure 3, sections 16 and 17
comprised an additional performance overhead and scaling
impediment. The series of operations in this section begins
with a vector summation of V along a process row, i.e.

 If a series of column Vectors Vt ,t=0,M-1 of vector
length p are distributed in columns of a blacs
process grid of length N and width M, then the
vector Vnm represents the local vector held on the
process with BLACS grid row co-ordinate n and
column co-ordinate m, and Vcr is the summation
over the rth BLACS process row ,where

 ()
1

0

 1, ,r=0,N-1
M

r rt
t

Vc V i i p
−

=
= =� (1.1)

Similarly, row vector Y must be summed over the process
column

 If a series of row Vectors Yt ,t=1,N of vector length
p are distributed in columns of a blacs process grid
of length N and width M, then the vector Ynm

represents the local vector held on the process with
BLACS grid row co-ordinate n and column co-
ordinate m, and Yrr is the summation over the rth
BLACS process column ,where

()
1

0

 1, ,r=0,M-1
N

r rt
t

Yr Y i i p
−

=
= =� (1.2)

�

����

���

����

���

����

���

����

� � �	 �� 	� ��� ��	

��
����������������

��
�
�
��
�
�
�
�
�

�����
�

����

Figure 6 Perfromance of transpose section of tridiagonal routine
and ScaLAPACK equivalent

Created by Neevia Document Converter trial version http://www.neevia.com

Created by Neevia Document Converter trial version http://www.neevia.comCreated by Neevia Document Converter trial version http://www.neevia.comCreated by Neevia Document Converter trial version http://www.neevia.com
High Performance Linear Algebra 4

Figure 7 Comparison of the sum/broadcast area of ScaLAPACK and
optimised codes

Figure 8 Relative Speed-up of pdsyrtd and the hand made
equivalent routine, plus the hand made routine with optimised

routines HPTRAN and HPBSUM included

Since the vector summation of Yr and Vc is required, yr
must first be transposed.

 If Yrt represents the partial accumalation of Yr on

column t then

 () () t=0,M-1T T
t tYr Yr= (1.3)

Vectors YrT and Yc can then be added together

 () t=0,N-1T
t t tXc Yr Vc= + (1.4)

And the resultant vector broadcast over all process columns

1 r=0,M-1 t=0,N-1tr tXc Xc= (1.5)

Alternative routines using 1-sided operations can be readily
constructed for each of the steps. Ideally, sections of this
series of mathematical operations could be fused together
within one routine to reduce overhead, but the nature of the
operations prevents this; where we have a summation over a
BLACS process row followed by a summation of a separate
vector over a process column the two operations cannot
possibly be synchronised together, since the communication
patterns are ‘opposite’ and the degree of synchronisation
would be at least as aggressive as a global barrier. Hence
each section must remain distinct and the synchronisation
overheads accumulate, with the resultant shmem routines
being no more efficient than the MPI-BLACS equivalent.
However, if the order of mathematics is re-considered,
synchronisation sharing may be possible. Consider the
following re-ordering of Equations 1.1 to 1.3.

 The series of Row Vectors Yt ,t=0,N-1 are
transposed, giving a series of column vectors YT t
,t=0,M-1
 Simultaneously the summations of YT and V are
calculated,i.e

() ()
1 1

0 0

 1, ,r=0,N-1
M N

T
r rt r rt

t t

Vc V i Y Y i i p
− −

= =

= = =� � (1.6)

Additionally, the tailored routine can now create the
summation from equation 1.4 within the same subroutine by
adding elements as they arrive, and the broadcast of
equation 1.5, can to an extent be included in this same
synchronisation overhead. Hence we have a series of 5
operations, now optimised using 1-sided communications
with minimal synchronisation overhead. Figure 7 shows the
significant performance gain this optimal routine has over
the blacs-mpi equivalent.

When applied to the tridiagonalisation replacement
for ScaLAPACK, the poor scaling has been improved
tremendously. The speed-up drop off of pdsytrd on even 8
processors proves its inadequacy for HPC work, whilst the
hand-made equivalent continues to show speed up from 128
to 256 processors. Figure 8 shows the overall speed-up
figures for the original ScaLAPACK routine, the
replacement and the best times after optimisation of
communication. The obvious scaling advantage and the

significant performance gain allow AIMPRO to compute
eigenvalues much more efficiently and will contribute to the
move towards producing a capability-enabled AIMPRO
code.

6 Conclusions

The excellent functionality of ScaLAPACK solvers are not
being questioned, though it has been proven that their

0
5

10
15
20
25
30
35
40
45
50

1 2 4 8 16 32 64 128 256

Number of PE's

S
pe

ed
-u

p

ScaLAPACK

Replacement

 Optimised
Replacement

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16 32 64 128 256

Numer of PEs

Ti
m

e
(s

ec
s)

HBSUM

Scalapack/B
LACS

Created by Neevia Document Converter trial version http://www.neevia.com

Created by Neevia Document Converter trial version http://www.neevia.comCreated by Neevia Document Converter trial version http://www.neevia.comCreated by Neevia Document Converter trial version http://www.neevia.comCreated by Neevia Document Converter trial version http://www.neevia.com
High Performance Linear Algebra 5

performance, at least in one case, can be bettered in the limit
where a smaller matrix problem must be solved on a larger
number of processes than was envisaged by the developers
of the library. More robust scaling behaviour will become
increasingly important both with the concentration of
funding into high-capability systems and also, at the lower
end of the market, with the proliferation of less tightly
coupled “commodity” Beowulf systems. It is hoped that
future work by the authors will lead to improvements in
linear algebra, and will contribute in both of these limits.

References
[1] ScaLAPACK www.nelib.org/scalapack
[2] AIMPRO Consortium http://aimpro.ncl.ac.uk/
[3] High am, NJ Accuracy and Stability of Numerical
Algorithms, SIAM, 1996
[4] Demmel et al, ScaLAPACK users guide

