Sg1

Workload Management
with Cpusets

Sam Watters
SGI Engineering

Overview

¢ The Basics
e Configuration Options
e Features (Command & API)

e Examples
- Example: Definitions
- Example: Strictly Managed System
- Example: Preemption

- Example: Preemption Details - IRIX® 6.5.13-6.5.15
- Example: Preemption Details - IRIX® 6.5.16+
e Review: The Newest Features

e Where We Might Be Going...

The Basics

What is a cpuset?

e A named set of CPUs: control process scheduling

e May be defined as nonexclusive (open) or exclusive
(restricted)
- Nonexlusive: threads attached to the cpuset can only run on

CPUs assigned to the cpuset; threads not attached to the
cpuset also can run on CPUs assigned to the cpuset

- Exclusive: threads attached to the cpuset can only run on CPUs
assigned to the cpuset; threads not attached to the cpuset
cannot run on CPUs assigned to the cpuset

¢ Provides features that control memory management

The Basics

Why use a cpuset?
e Improve memory locality for applications

* Restrict consumption of CPU and memory
resources to specified processes/threads

e Enhance your workload manager

- Used l%y workload management (batch) systems (GRD,
LSF, PBS)

- Advanced scheduling extensions for batch systems
(FNMOC)

e Limit run-time variability
e Reduce interference between jobs

The Basics

How are cpusets used?

e Static cpusets

- Cpusets are defined by administrator after system
startup

— Users attach processes to the existing cpusets
— Cpusets continue to exist after jobs finish executing

e Dynamic Cpusets

- Workload management system creates cpuset when it is
required by a job

— Workload management system attaches job to the newly
created cpuset

— Workload manager destroys cpuset at end of job

The Basics

How are cpusets used? (cont)

¢ Boot cpuset
- Only one boot cpuset can exist on system
— Created during startup of init process
— Init process attaches itself to this cpuset
- Cpuset will always be named boot
— Requires special configuration files and DSO library file

— Init process and all descendents will be attached
(contained) within the boot cpuset

- Need to attach processes to static or dynamic cpusets to
get out of the boot cpuset

The Basics

Requirements for cpuset

¢ Permissions file
- A file name must be provided at cpuset creation
- File is used to determine access permission for cpuset via
the normal UNIX® file permissions

e Read permission: user, group, or world can read information
from cpuset

e Write permission: user, group, or world can attach processes
to the cpuset

- Cpuset created using command line tool: file is also used
to provide configuration information

- Cpuset created using API: file is only used for permissions

The Basics.

Requirements for cpusets (cont.)

¢ Permissions file (cont.)

- Permissions for file can be changed during existence of
cpuset to alter access permissions for the cpuset

- Permissions file can be deleted after creation, but then
permissions cannot be changed

- Boot cpuset permission/configuration file
¢ /etc/config/boot_cpuset.config
e Name

- Every cpuset must be given a unique name
e Name must consist of 2-8 alphanumeric characters

The Basics

Restrictions on CPUs within cpusets

o CP
o CP
o CP

st

st

s

can only belong to one cpuset
O cannot belong to an exclusive cpuset
cannot be both restricted or isolated and a

member of a cpuset

- See mpadmin(1) and sysmp(1) concerning restricted or
isolated CPUs

e Only superuser can create or destroy cpusets

e Runon(1) can only use CPU in cpuset if user also
has write or group write access permission

The Basics

Things you need to know
e Memory Locality Domain (MLD)

- IRIX® attempts to allocate pages on node where MLD is
placed

e Global cpuset (global_cpuset)
— The CPUs not assigned to a cpuset or otherwise restricted
— All systems have a global_cpuset

e Nodes and cpusets

— A node is within a cpuset if a CPU resident to that node
belongs to the cpuset

Configuration Options

Cpuset Configuration File Options
(APl options in parentheses)

e EXCLUSIVE (CPUSET_CPU_EXCLUSIVE)
- Defines the CPUs in the cpuset to be restricted
- If not defined, cpuset is nonexclusive, or open

e CPU (program provides array of CPU ID values)

- Defines that a CPU of set of CPUs will be part of the
cpuset

- Format: CPU 4 or CPU 4,9-16,24-31,47
— CPU numbering always begins with CPU O
— CPU O cannot be in an EXCLUSIVE cpuset

Configuration Options

e MEMORY_LOCAL (CPUSET_MEMORY_LOCAL)

- Threads attached to cpuset:
e MLDs can only placed on nodes with CPUs in cpuset

¢ |IRIX® attempts to allocate pages on nodes where MLDs are
placed

- Threads not attached to cpuset
¢ Imposes no added restriction on MLD placement

e MEMORY_EXCLUSIVE (CPUSET_MEMORY_EXCLUSIVE)

- Threads attached to cpuset:
¢ Imposes no added restriction on MLD placement
- Threads not attached to cpuset
e MLDs cannot be placed on nodes with CPUs in cpuset

Configuration Options

e MEMORY_MANDATORY (CPUSET_MEMORY_MANDATORY)

- Implies that MEMORY_LOCAL and MEMORY_EXCLUSIVE
are set

- Threads attached to cpuset

e MLDs can only placed on nodes with CPUs in cpuset
- Threads not attached to cpuset

e MLDs cannot be placed on nodes with CPUs in cpuset

- If memory requests cannot be satisfied, allocating
process Will sleep until memory becomes available

- Process will be killed if no more memory can be allocated
— POLICY_* options will further affect behavior

Configuration Options

e POLICY_PAGE (CPUSET_POLICY_PAGE)

- Default policy if no policy is specified

- IRIX® will page user pages to swap file to free physical
memory on nodes

- If swap is exhausted, process will be killed

e POLICY_KILL (CPUSET_POLICY_KILL)

- IRIX will free as much space as possible from kernel heaps
on nodes

- No attempt made to page user pages to swap file
- Process will be killed if no more memory can be allocated

Configuration Options

e MEMORY_KERNEL_AVOID
(CPUSET_KERNEL_MEMORY_AVOID)

- Only prevents system buffer cache from being placed on
nodes with CPUs in cpuset

— WARNING: only effective for certain workload patterns
and will result in severe performance penalties

Features

Cpuset Creation

e Command Line
- cpuset -q gname -c -f filename

o API

- cpusetCreate(char *qgname, cpuset_QueueDef_t *qdef)

¢ Descriptions
- gname is the name of the cpuset (queue)
— filename is the name of the permissions/config file

— qdef provides the configuration information and name of
permissions file to the API

Features

Command Line Example

e cpuset -q myqueue -c -f /tmp/myqueue.cpuset
® myqueue.cpuset

EXCLUSIVE
MEMORY_LOCAL
MEMORY_EXCLUSIVE

CPU 8-11

Features

APl Example - data structures

/* cpuset queue definition structure */

typedef struct {
int flags; /* CPU & memory options */
char *permfile;/* permission file name */
cpuset_CPUList_t *cpu; /* ref to list of CPUs */

} cpuset_QueueDef_t;

/* cpuset CPU list structure */

typedef struct {
int count; /* number of CPUs in list */
int *list; /* list of CPUs */

} cpuset_CPUList_t

Features

APl Example - programming

char *permfile = “/tmp/myqueue.cpuset”
int cpuids[4] = {8,9,10,11};
cpuset_CPUList_t cpu = {4, cpuids}

cpuset_QueueDef_t qgdef = {0, permfile, &cpu}

char *gname = “myqueue’;

gdef->flags = CPUSET_CPU_EXCLUSIVE | CPUSET_MEMORY_LOCAL
| CPCUSET_MEMORY_EXCLUSIVE;
if ('cpusetCreate(gname, &qdef)) {
perror(“cpusetCreate”);
exit(1);

Features

Attaching process to cpusets

e Command Line

- cpuset -q gname -A command
e Run command in cpuset named gname

o API

- cpusetAttach(char *qgname)
e Attaches current process to cpuset named gname
- cpusetAttachPID(char *gname, pid_t pid)
e Attaches process identified by pid to cpuset name gname

Features

Command

cpuset [-q cpuset_name [-A command] | [-c -f filename] |
[-d]I[-IT-m]I[-QII [-p]1I-CI-Ql-h
-q cpuset_name -A command
— Runs the command on the cpuset identified by cpuset_name
-q cpuset_name -c -f filename

- Creates the cpuset cpuset_name using filename as the
configuration/permissions file

-q cpuset_name -l
— List all processes attached to the cpuset
- cpuset_name -m
- Move all attached processes out of cpuset
-q cpuset_name -d
— Destroy the cpuset (cannot have any processes attached)

Features

Command

e -g cpuset-name -Q
— List all CPUs in the cpuset
e - cpuset_name -p

— List all permissions: ACLs, MAC labels, flags, CPUs and number of
processes for the cpuset

¢ -C

— List the name of the cpuset to which the current process is
attached

*Q

— List the names of all existing cpusets
e -h

— Print command usage

Features

Command
New in 6.5.17

e -q from_cpuset,to_cpuset -M idtype -i id

- Move processes identified bfy id, and migrate the memory they
own, from current cpuset (from_cpuset) to destination cpuset
Igﬁg cp Léslst) The idtype specified can be either ASH, JID, PGID,

or

e -g from_cpuset,to_cpuset -T idtype -i id

— Move processes identified by id, from current cpuset
(from_cpuset) to destination cpuset (to_cpuset). No memory
Esngmgrg;csd The idtype specified can be either ASH, JID, PGID,

or

Features

APl (Management Functions)

- int cpusetCreate(char *qname, cpuset_QueueDef_t *qdef)
e Create a cpuset

int cpusetAttach(char *gname)
e Attach current process to cpuset

int cpusetAttachPID(char *gname, pid_t pid)
e Attach specified process to cpuset

int cpusetDetachPID(char *gname, pid_t pid)
e Detach specified process from cpuset

- int cpusetDetachAll(char *gname)
e Detach all processes from cpuset

int cpusetDestroy(char *gname)
¢ Destroy (remove) the cpuset

Features

APl (Management Functions)
eNew in 6.5.16

- cpusetMove

e Moves the process or group of processes between cpusets
or into the global_cpuset

e Memory (MLDs and pages) does not migrate
- cpusetMoveMigrate

e Moves the process or group of processes between cpusets
or into the global_cpuset

e Memory (MLDs and pages) is migrated
— Two-step move allows reduction of memory migrations

when you need to change system state before final
placement

Features

APl (Management Functions)
eNew in 6.5.16

- int cpusetMove(char *from_gname, char *to_qgname, int type, uint64_t
id)
e Move processes from one cpuset to another without moving memory
¢ The type indicates the id value is an ASH, jid, pid, pgid, sid

- int cpusetMoveMigrate(char *from_gname, char *to_gname, int type,
unit64_t id)

® Move processes from one cpuset to another and also move MLDs
and pages (memory)

¢ The type indicates the id value is an ASH, jid, pid, pgid, sid

Features

API (Info Functions)

- int cpusetGetCPUCount(void)
e Get number of CPUs configured on the system
cpuset_CPU_list _t *cpusetGetCPUList(char *gname)
e Get list of CPUs contained in a cpuset
- cpuset_NamelList_t *cpusetGetName(pid_t pid)
e Get name of cpuset the process, pid, is attached to
- cpuset_NamelList_t *cpusetGetNameList(void)
e Get names of all existing cpusets
— cpuset_PIDList_t *cpusetGetPIDList(char *qname)
e Get list of processes PIDs attached to the cpuset
- cpuset_Properties_t *cpusetProperties(char *gname)
e Get list of properties for cpuset

Features

APl (Memory Mgmt Functions)

- cpuset_QueueDef_t *cpusetAllocQueueDef(int count)
e Allocate a queue definition with room form count CPUs
- void cpusetFreeQueueDef(cpuset_QueueDef_t *qdef)
® Free memory allocated for the referenced queue definition
- void cpusetFreeCPUList(cpuset_CPUList_t *cpu)
® Free memory allocated for the referenced CPU list
- void cpusetFreeNameList(cpuset_NameList_t *name)
® Free memory allocated for the referenced name list
- void cpusetFreePIDList(cpuset_PIDList_t *pid)
® Free memory allocated for the referenced PID list
- void cpusetFreePropertiedcpuset_Properties_t *csp)
® Free memory allocated for the referenced cpuset properties list

Example: Definitions

LIy Oty Ot LITT] II_I_IIImlﬂ\.CPUs(4oneachnode)
2B B B ¥ ¢ sGI® 3000 family node (4
ol o CPUs and local

- R R Ins s and local memory)

¢ 16 node system with 64
CPUs

N16 R R N9

EnEN T ¢ CPUs are numbered from O
N15 N14 N13 N12 N11 N10 to 63 (thls iS hOW CPUS are
LIy Oty [t L] 1y Ot norma"y ldentlfled)

CPU numbering for each e On each node, the CPUs
node is: are identified as CPU a, b, c

e CPUa=(Nx4)-4 and d (you might see CPUs
e CPUb=(Nx4)-3 identified this way in the

} /hw filesystem)
e CPUc=(Nx4)-2

e CPUd=(Nx4)-1

Example: Strictly Managed System

LI O [T (1] [l [OOTTd .The cpusetcreated
3 M i B |BE during system initialization
EEEE HEEN . .
- r R s e Created by init process

¢ The init process attaches

itself to cpuset

Ni6~ R R = N9 _ _
SN T e All threads will run in
e K Nl R Ral i cpuset unless attached to
L] Oy et L] O] adlfferentcpuset
e /etc/config/boot_cpuset.config ¢ All CPUs outside
MEMORY_MANDATORY cpuset reserved for
POLICY_PAGE dedicated processing

CPU O-7

Example: Strictly Managed System

11 OO O T OO O ¢Cpuset deﬁned
N2 N3 N4 N5 N6 N7 _
EEEE [ITT]
N1 R R N8
N16 R R N9
[TTT] [TTT]
N15| |[N14| |N13 N12| [N11| |N10
010 010 O 010 O O™
e /tmp/cyan.cpuset
EXCLUSIVE

MEMORY_LOCAL
MEMORY _EXCLUSIVE

CPU 48-63

Example: Strictly Managed System

OO0 OO0 O (LI OO0 O]
N2 N3 N4 NS5 N6 N7
ESEE R
N1 R R N8
N16 R R N9
(T [TTT]
N15 N14 N13 N12 N11

(111 OO O (II11 O O

e /tmp/purple.cpuset

EXCLUSIVE
MEMORY_MANDATORY
POLICY_PAGE

CPU 38-47

e Cpuset

e Cpuset

defined

defined

Example: Strictly Managed System

EESEpuNNNNERENEN

L] LI I

(L] O] LT

N2 N3 N4 NS5 N6 N7
EEES (LLT]
N1 R R N8
N16 R R N9
[(TTT] [TTT]

N15 N14 N13 N12 N11

1M1 O111 O11d

e /tmp/gold.cpuset

EXCLUSIVE

CPU 32-37

MEMORY_LOCAL

e Cpuset defined

e Cpuset defined

e Cpuset purple defined

- EXCLUSIVE | MEMORY_MANDATORY |
POLICY_KILL

Example: Strictly Managed System

[T OO [[T [0 [0 QCpuset defined
N2 N3 N4 N5 N6 N7 _

EEER Eun e Cpuset defined
N = R R = N8 .

e Cpuset purple defined

N16 R R N9
== s - E)éEII_éJYS_IKIIELL MEMORY_MANDATORY |
N15 N14 N13 N12 N11 .
L Ol (117 OO0 COIT1d .Cpuset deflned
e Cannot “split” memory on a node. i
* If two (or more) cpusets contain o IRIX® <=6.5.18: Possible to get
CPUs on the same node, they all some strange interaction

share the memory on that node

e Threads running in those cpusets * IRIX® > 6.5.18: Memory

can cause memory conflicts management will follow the
stricter limitation

Example: Preemption

EEEE LT [T (LT T [T LT .Cpuset deflned

N2 N3 N4 N5 N6 N7 -

ol T ¢ Cpuset defined

N = R R J= N8 .

N0 r e e Cpuset purple defined
= = GGRYEERR- oo
N15 N14 N13 N12 N11 N10 .
= = B e We need to run a prime

job that requires 32
CPUs

e To define cpuset for
Brime job, need to
orrow space from
existing cpusets

Example: Preemption

010 [O T O O .Processesinpurple
] ™ NSNS A cpuset are suspended
TIT] . and then detached

N1 R R N8

- using cpusetDetachPID()

o N . * Memory used by

= ! processes in purple
iy vy [v cpuset still exist on
Ll Oy et 111 O] O nOdesg-12

e /tmp/prime.cpuset e The purple cpuset is
EXCLUSIVE destroyed
MEMORY_MANDATORY

POLICY_PAGE - using cpusetDestroy()

CPU 8-39

Example: Preemption

EEEEpmIINIEnuENE L] [l [T .Theprlmecpusetls

N2 N3 N4 NS N6 N7 Created

EEEE (L] .

= R R Ing - using cpusetCreate()

¢ Prime job must be able

i w . to run in amount of
S = memory that is left on
v Kl N nodes in prime cpuset
Ll Oy et 11 O COI1d

e /tmp/prime.cpuset

EXCLUSIVE

MEMORY_MANDATORY

POLICY_PAGE

CPU 8-39

Example: Preemption

[T E e [T OO0 OO .Thejobrunninginthe
N2 N3 N4 NS5 N6 N7 pl‘lme cpuset |S
Dﬂ?: " . (e complete, so cpuset is
N e destroyed
- using cpusetDestroy()
N16 R R
= =m *® Memory used by
N15| |N14| |NI3 processes. In p.urple
LT il [l (111 11 [Cpuset Stl" eXIStS On
nodes 9-12
e The purple cpuset is
recreated

- using cpusetCreate()

Example: Preemption

D [(EE [Em oD D e The processes originally
N2| N3] |Nd4 NS|O[N6] N in the purple cpuset are
) e reattached

N1 R R N8

- using cpusetAttachPID()
e The processes in the

N16 R R N9
[TT — purple cpuset are
N15| |N14| [N13 a2l Int1l INto continued

(L] O] LT (I [T [OIId

Example: Preemption Details
6.5.13-6.5.15

pl1 |p2 |p3 | p4

pPS

po6

p’/

p8

pl2

pl11

p10

Need to remove purple cpuset
so you can reuse those nodes
in a new cpuset for a prime
job

Use cpusetDetachAll() to

move processes out of purple
cpuset

Purple cpuset is destroyed
with cpusetDestroy()

New cpuset, prime, is created
with CpusetCreate() & job
attached with cpusetAttach()

What happens to the memory
used by the processes
detached from the purple
cpuset (p1-p12)?

Example: Preemption Details
6.5.13-6.5.15

pl12

p11

p10

P9

e The MLDs and pages for the

p1-p12 process stay on the
nodes where they were placed
and allocated

Memory will most likely be
remote to the processes

Use of this memory could
interfere with execution of
prime job in prime cpuset

Will introduce variability for
p1-p12 and prime job

Best to suspend p1-p12

Example: Preemption Details
6.5.13-6.5.15

pl1 |p2 |p3 | p4

PS| p6 | p7 | p8

p12p11p10| p9

e When prime job is
complete, you can destroy
prime cpuset

¢ To continue p1-p12, need
to re-create purple cpuset

e Need to reuse CPUs and
nodes previously used by
purple,or else memory
placement will be
undesireable

e Use cpusetAttachPid() to
move process back to
purple cpuset

e Need to keep track of
processes that have to be
moved between cpusets.

¢ Not ideal, but this scheme

Example: Preemption Details

6.5.16+

pl

p2

p3

p4

pPS

po6

p7

p8

pl2

pl11

p10

e Same situation as
previous example

e Use cpusetMove() to
move p1-p12 processes
out of purple cpuset

e Use cpusetDestroy() to
destroy purple cpuset

e What will happen to the
memory used by p1-
p127?

Example: Preemption Details

6.5.16+

p12|— | — | p1

e cpusetMove() only
moves the processes

e The MLDs and pages do
not move with the
processes.

¢ Purple cpuset was
destroyed after
processes moved out of
cpuset.

Example: Preemption Details
6.5.16+

e cpusetCreate() creates
new purple cpuset

e cpusetMoveMigrate()
moves processes from the
global_cpuset to the purple
cpuset and migrates the
memory owned by the

_ processes.
]

p12| — | — | p1

Example: Preemption Details

6.5.16+

p12| — |

e cpusetCreate() used to
create the prime cpuset.

e cpusetAttach() used to
attach new job to prime
cpuset

¢ Processes in purple cpuset
continue to execute with
degraded performance.

e The p1-p12 processes and
the prime job can each
continue to run without
experiencing external
interference.

Example: Preemption Details

6.5.16+

pT

p2

p3

p4

p6

p12

p11

p10

e When prime job completes,
cpusetDestroy() removes
prime cpuset.

e cpusetMove() is used to
move processes out of
purple cpuset.

¢ Following move, use
cpusetDestroy() to remove
the purple cpuset.

Example: Preemption Details

6.5.16+

pPS

po6

p’/

p8

pl12

p11

p10

e cpusetCreate() used to
create new purple
cpuset.

e cpusetMoveMigrate()
used to move processes
and migrate memory
into purple cpuset.

¢ |deal scheme, allows
preemption of CPUs and
memory

Review: The Newest Features

®6.5.16

— Work done in VM system to allow migration of MLDs &
pages
e Useful when the migration can be “triggered” based upon
known system state

- Checkpoint/Restart (cpr) modified to allow migration
e On restart, user may supply option to allow migration

e When you restart a Ig‘ob in a cpuset, it does not have to
contain the same CPUs/nodes

- Interfaces added to cpusets to allow migration of
processes+memory between cpusets

e Move processes+memory directly between cpuset A to
cpuset B

e Move processes out of cpuset A, destroy cpuset A, create
cpuset B, move processes+memory to cpuset B

Where We Might Be Going

e Beyond 6.5.16

- Enhance cpuset permissions

e Remove requirement for permissions file
» will still be able to use a permissions file

¢ Provide permissions scheme similar to access control lists
» designhate at user or group level
» designate level of access: read or run

e Resolves issue concerning persistent vnode reference

» means the filesystem where permissions file was
located at cpuset creation cannot be unmounted
until the cpuset is destroyed - even if the file is
deleted

— Ability to alter cpuset resources on-the-fly

