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ABSTRACT: Analysis of the low-temperature thermodynamic properties of many-body
quantum systems requires the determination of the smallest eigenvalues of a very sparse
matrix. Techniques developed at NRL to solve this problem use a Lanczos method that
requires many multiplications of the sparse matrix by a dense vector, an operation ideally
suited to the mutli-threaded and large uniformly accessible memory architecture of the Cray

MTA-2.

1. Introduction

The Naval Research Laboratory has recently installed
and is operating a 40-processor Cray Multi-Threaded
Architecture (MTA-2) computer. The MTA-2 with its
hardware support for multi-threading and large uniformly
accessible memory offers a promising new paradigm in
parallel computing, especially for large problems.

One of the first scientific problems transitioned to the
NRL MTA-2 was the study of the behavior of the charged
ordered phase of manganites. The analysis of the properties
of these materials involves the determination of the lowest
eigenvalues of hundreds of square sparse matrixes, some
with dimensions greater than ten million. Sufficient
resources have not been available in order to perform all of
the computations required to completely understand the
problem.

Algorithms for determining the eigenvalues of sparse
matrices are limited by the rate at which data may be
retrieved from memory and not by the number of floating
point operations that can be done per second. These
algorithms suffer from delays associated with retrieving data
from memory seriously degrading performance on a
conventional machine. Many authors have looked at
methods to reorder the calculations in order to reduce the
delays associated with retrieving data from memory.
Several authors [1-3] used register blocking and data pre-
fetching to speed up the calculations. Others have examined
the data structures of the sparse matrices to improve cache
re-use [4-6]. There is even a toolbox (Sparsity) [7,8] that
allow users to automatically generate kernels that are tuned
to their matrices

Many of these considerations are not needed on the
MTA-2 as the time to access data from any part of the
memory is the same. That this type of problem is well-suited
to the MTA has been noted [9-10].

2. Problem

The application considered here is associated with
manganites. The manganites are a class of material with a
general chemical formula of (R,A),,;Mn,0,,,,, the so-called
Ruddelsden-Popper series [11] . Here R is a trivalent rare-
earth ion and A is a divalent alkaline-earth ion. As 1 —> o
the compounds become (R,A)MnO; with a three-
dimensional perovskite structure. For n=1, the compound
(R,A),MnQ, is a single-layer perovskite and for n=2, the
compound (R,A),Mn,0; is a bi-layer perovskite.

The various manganites exhibit a huge variety of phases
including ferromagnetism, anti-ferromagnetism, and charge-
ordered phases. Various theoretical models have been used
to explain different aspects of their phase diagrams.

The current work focuses on the charge-ordered (CO)
phase. Electron doping is controlled with the ratio of
trivalent to divalent ions, R A,. It is simplest to think about
this phase at x=1/2, where there are equal amounts of Mn**
and Mn**. The different charge states order in real space in a
checkerboard pattern. The oxygens relax away from the
Mn** ions and towards the Mn** ions, thus providing a
repulsive potential between Mn’* ions (or equivalently
between Mn** ions). When this phase is favored, the
potential energy gain of forming this pattern exceeds the
kinetic energy loss due to the formation of the insulating
state.

The CO phase is generally the lowest temperature
phase, but the CO phase has been seen to melt with
decreasing temperature in some manganites, including the
three dimensional Pr,45(Cay;Sty 30)03sMn0O; [12] and bi-
layer LaSr,Mn,0O; [13]. In these cases, the lowest
temperature phase is metallic, and the CO insulator is only
observed at intermediate temperatures. Theoretically, a re-



entrant transition has been obtained using extended Hubbard
models both with electron-phonon interactions [14] and
without electron-phonon interactions [15].

Re-entrant behavior is never seen in single-layer
manganites. Here the charge-order transition in the extended
Hubbard model (without electron-phonon interactions) on a
finite periodic two-dimensional square lattice is studied in
order to investigate why single-layer manganites never show
re-entrant behavior. Previous work [15] solved this model in
infinite spatial dimensions, resulting in finite entropy (due to
the spins) at T=0 in the CO phase, so a re-entrant transition
was guaranteed to be found. This model has also been
studied on a 16-site periodic cluster that is effectively four-
dimensional due to interactions around the periodic
boundaries [16,17]. In this case, a re-entrant transition was
also found.

In a system with dimensionality greater than two, the
spin ordering in the CO phase is frustrated. The anti-
ferromagnetic interactions are next-nearest neighbor on a
cubic lattice. In the infinite two-dimensional square lattice,
the next-nearest-neighbor anti-ferromagnetic interaction is
not frustrated and the spins will order into an unfrustrated
Néel state with zero entropy at T=0. Thus it may be possible
to avoid the re-entrant transition.

The extended Hubbard Hamiltonian is given by

H=t Z(Cit,cjg+h.c.)+U2nl¢ni¢+V2ninj (1)
<ij>0 i <ij>

where c;; (¢, ) creates (annihilates) an electron with spin

O onsite i, 7, is the number operator with spin O on site

10
I and n,=ns+n,. The hopping amplitude is t, <ij>
enumerates nearest neighbor sites on the two-dimensional
square lattice, U is on-site repulsion, and V' is the nearest-
neighbor repulsion. Good introductions to the Hubbard
model can be found in Ref. [18-19]. The non-interacting
bandwidth on the two-dimensional square lattice is given by
W=8|t|; U is set equal to W and V is varied at quarter filling
(one electron for every two sites). For small V, the ground
state is expected to be a homogeneous Fermi liquid. For
large V, the electrons will crystallize in a checkerboard
pattern to avoid occupying neighboring sites.

The Hamiltonian (1) is solved on a 20-site two-
dimensional periodic cluster using a recently developed
finite-temperature Lanczos technique [16,20,21]. This
cluster is the smallest possible two-dimensional cluster
allowing no multiple next-nearest-neighbor interactions
around the boundary. Periodic boundary conditions are
chosen resulting in a closed Fermionic shell in the non-
interacting limit [22]. From the eigenvalues ( £, ) of the

Hamiltonian, the expectation value of the energy as a
function of temperature can be calculated from

E=| X E, exp(-pE,) /ZeXp(—ﬁEm) )

where ﬁZI/kBT and kj is Boltzmann’s constant, As
T —0 temperature, E — E, the lowest energy
eigenvalue. At low temperatures, the sums in (2) can be

approximated by the sums over the smallest eigenvalues.
From E the susceptibility ) is given by

= 1 oE )
N oV

where N=20 is the number of sites calculated. In order to

calculate the susceptibility ) the Hamiltonian must be

calculated over a range of V’s. Changing the value of V
affects only the diagonal elements of the matrix and the
Hamiltonian matrix M can be written as

M =S+V-D; V=02,..6.0 )

where S is a sparse matrix, and D is a diagonal matrix. The
susceptibility } is equivalent to the nearest-neighbor pair
correlation function by the Kubo formula. In the
homogeneous phase J is large, but in the CO phase where
there is only a small probability of finding electrons on
neighboring sites ¥ is small.

3. Lanczos Algorithm

The Lanczos algorithm is most commonly used to
calculate the lowest (or highest) eigenvalue of a matrix [13].
The algorithm starts with a normalized random vector, and
generates a series of orthogonal vectors by multiplying the
current vector by the Hamiltonian M and orthogonalizing:

vn+1 = vn - anvn - bnvn—l (5)

where

a =2 n b2 — n n ©6)
v, vV, Y

It is easy to show that v, - v, =0 if n# m. Inthe
new basis, the Hamiltonian matrix has tri-diagonal form,

a, b, 0 0
b a b, 0--

M'=0 b, a, b (7
0 0 by ay-




M’ can then be diagonalized by conventional means.

Because most of the calculations of the Lanczos
coefficients occur in the matrix-vector multiplication, the
algorithm is particularly efficient with large sparse matrices,
such as Hubbard Hamiltonians. In theory, the Lanczos
algorithm transforms an entire matrix into tri-diagonal form,
but in practice there are some subtleties.

In principle, one could use the Lanczos algorithm to
find all eigenvalues of a matrix [14]. Once M' is the same
size as M, their eigenvalues are identical, assuming the
computations are done with infinite precision. In practice,
however, the algorithm is very susceptible to round-off
errors. After a given eigenvalue has converged, the
subsequent Lanczos vectors should be orthogonal to it, but
are not due to the finite precision of the computation. The
rounding errors are amplified by the Lanczos algorithm, and
generate spurious eigenvalues. These eventually converge to
become multiple copies of previously determined
eigenvalues. One might think that enforcing orthogonality is
the only way to solve this problem. This is however a very
expensive proposition if many eigenvalues are needed. The
most efficient way to determine the lowest (and highest)
eigenvalues is simply to identify and discard the spurious
eigenvalues at the end of the Lanczos procedure.

4. Computational problem

At half filling, there will be 10 electrons on the 20 sites
of the cluster. The ground state will have 5 electrons with up
spin and 5 electrons with down spin, but we have to allow
for spin flips in the excited states. The total number of ways
to place 10 electrons with arbitrary spin on 20-sites is

20\ 20
N,=>|" |=847,660,528 (8)

i 10—

i

ways and the resultant Hamiltonian matrix has
dimensions N, x N,,. Using both translational and point-

group symmetries, the matrix M can be written as a block
diagonal matrix

0 0

M, - 0
S

0 0 0 My

Ml
0

M = €))

The eigenvalues of M can be found by calculating the
eigenvalues of the M, matrices. The largest irreducible M,
block is complex Hermitian and has dimension 12,018,700.
The M, matrixes are very sparse with only about 33 non-
zero elements per column and row on average. Some of the
M, are identical and thus the problem can be reduced to

calculating the eigenvalues of the 66 distinct M,'s and
then accounting for the eigenvalue multiplicity induced by
the multiple copies. The matrix may be re-ordered so that
the first 66 are the distinct sub-matrices and the rest are
copies of one of these. Performing the calculations over the
range of values of V requires that the smallest eigenvalues
of 1980 matrices be determined.

For each M,, we perform N;=4000 Lanczos steps.

Spurious eigenvalues are removed [23], leaving more than
2000 real eigenvalues in each sector (although some of these
will not yet have converged). The extreme eigenvalues
(lowest and highest) converge first [21].

The computationally demanding part of the Lanczos
algorithm is the matrix-vector multiplication, that is
performed N; times for each of the 1980 matrices. The
remaining parts of the algorithm are vector-vector
operations and vector-scalar multiplication.

To calculate the Lanczos coefficients from (5) and (6),
v = O;VO = r/]r| where 7 is a vector of random numbers
dawn from a uniform distribution. Then
Y=My,
a,=vY

Z=Y-ayv,+v_,

b,=NZ-Z (10)
Vil = A
v, ==by,

is recursively calculated for i=0,1,...,N;-1.

The number of hardware operations (where an operation is a
multiply, add, or multiply/add pair) and memory accesses
required for the calculation of each (al.,bi +1) pair can be
obtained by summing the number of operations/references
required by each step of the recursion and are given in the
table below

Type Operations Memory Accesses
Real INy +0y, 14Ny, +30,
Complex 16NMk +4QMk 24NMk +5QMk

where NMk is the size of the M, matrix and QMkis the

number of non-zero off-diagonal elements of M, plus the
2N M, elements need to define the diagonal of M 0 @.



The same number of operations and memory references
are required for every value of V. For a specific M, the

total number of operations to calculate the smallest
eigenvalues for one value of V is

N, *9 XN, + 2.0, +16 2N, +4 D0,

M real M real M imag M imag

an

and the number of memory references is

N, *[14 XN, +3 D0, +24 XN, +5 20,

M real M, real M imag M imag

(12)
For this application we have

DN, =54,401,940

M real

>0, =1,792,156,768

M real
DN, =122,403,588

M imag

2.0, =4,032,937,872

M imag

13)

using equations (10) and (11) and recalling N, =4000
and N, =30, then determining all of the Lanczos

coefficients will require 2.4e+15 hardware operations and
3.5e+15 memory accesses. .On a single processor that could
access 64-bit data at 100 MHZ sustained this part of the
problem would require more than 400 days.

5. Previous Implementation

The application was originally implemented to run on
multiple processors as a C++ program using the Message
Passing Interface (MPI) standard under the auspices of the
High Performance Computer Modernization Program
Office’s (HPCMPO) Common High Performance
Computing Software Support Initiative (CHSSI). The
program has been set-up to generate the elements of one of
the irreducible matrices with each processor responsible for
generating the coefficients for a set of rows of the matrix,
The program then calculates the Lanczos coefficients a,

and b, by having each processor perform the part of the

sparse matrix dense vector calculation for the rows of the
matrix stored in that processor. This requires that each

processor have the entire dense vector and that all processes
are updated at each step with the new values of the Vv,

vectors. When all of the g, and bi coefficients have been

calculated for the matrix, they are saved to a disk file and
then transferred to a PC where the smallest eigenvalues of
the Heisenberg matrix are determined. The code has been
ported to the IBM SP2 and SP3, the SGI Origin 2000 and
3000, and the COMPAQ ES45 and GS320.

This implementation has two aspects that limit
scalability. First, each processor holds the entire vector, so
no matter how many processors are used the total amount of
memory required on each processor increases as the
dimension of the matrix. Second, at each Lanczos step, the
portion of the vector updated by a processor must be
communicated to every other processor. The amount of data
that must be sent to other processors is proportional to the
number of processors used in the calculation. Even with
these restrictions, this implementation has been used to
solve for the lowest eigenvalues of complex matrices with
dimension as large as 70,000,000 [14].

6. MTA Implementation

Two factors drove the decisions on how to use the
MTA to solve the problem. The first was the desire to use
the uniform memory access feature and multiple threading
paradigm of the MTA to reduce the time required to find the
eigenvalues of the Hamiltonian Matrix. The second was to
minimize the amount of recoding. Originally the thought
was to simply convert the existing code to the MTA
replacing the existing structure with a shared memory
version. This would entail removing the MPI calls and
placing explicit parallelization pragmas through out the
program (as the default on the MTA for C/C++ is not to
parallelize loops.)

Analysis of the problem indicated that almost all of the
time (>95%) would be spent in the calculation of the
Lanczos coefficients, an operation that was just a small part
of the overall C++ code. As a result, the decision was made
to use the current code to generate the matrices and add
code to store the matrices on disk. A program would then
be written for the MTA to read this file, calculate the
Lanczos coefficients for a series of matrices based on
different values of V and save the Lanczos coefficients in a
disk file. Post processing then could be performed on a PC
to determine the eigenvalues of interest. The code was
written in Fortran.

The matrices are stored in a modified compressed row
storage (CRS) format using three vectors R, I, and J. R
contains the diagonal elements of the S and D matrixes and
the nonzero off diagonal elements of the M’ matrix as
encountered in a row order fashion. Each element in the J
vector contains the column number of the corresponding
element in the R vector and each element in the I vector
contains the location in the R vector of the start of the data



for that row with the last element of the I vector containing
the size of he R vector. For example if

20 1.1 3.1 1.8 0.0 0.0
M=11 00 00| D=|0.0 25 0.0 14
3.1 0.0 0.0 0.0 0.0. 0.0

then

[R [20[18]11]31]00]25]1.1]00]0.0]3.1

v Jr 2 [3 J2 J2 Ji [3 [3 |1

[t o [4 [7 [i0 |

The disk file begins with a header containing the
number of Lanczos iterations, the dimension of the matrix,
the weight to be given to the matrix, matrix type - real or
complex, number of symmetries and an entry for each
symmetry (describing its type). The header is followed by
the I, J, and R vectors.

After a file has been produced, the data is copied to the
scratch disks on the MTA. The Fortran program lanczos is
then run to determine for the range of V’s the Lanczos
coefficients for the Hamiltonian Matrices. The coefficients
for each V are stored in a separate file. If the program does
not complete normally, the program is restartable, checking
for the V’s already completed and not recalculating the
lanczos coefficients if they have already been stored to disk.

The code for the calculation of the lanczos coefficients
is quite simple taking only 14 lines of code with the first 6
devoted to the sparse matrix vector multiple

Do index = 1, Imax

Y(index) =0

Do index2 = I(index)+1, I(index+1)

Y(index) = Y(index)+R(index2)*Vvec(J(index2))
end do
end do
aval(iteration) = DOT_PRODUCT(Y,Vvec)
Uvec=Y +aval(iteration)*Vvec+Uvec
bval(iteration)=sqrt(DOT_PRODUCT(Uvec,Uvec)
Do index = 1, Imax

Tmp = Vvec(index)
Vvec(index)=Uvec(index)/bval(iteration)
Uvec(index)=-Tmp*bval(iteration)
end do

6. Timing results

Given the large number of operations/memory
references required for this problem it was not possible to
time the entire problem Instead the times to generate 1000
pairs of Lanczos coefficients for one V for the largest M,

(12,018,700 x 12,018,700 complex Hermitian matrix) were
examined. Timings were run on the IBM P3 and COMPAQ
ES45 at the MSHPC at the Aeronautical Systems Center
(ASC), the SGI Origin 3800 at ERDC (US Army Engineer
Research and Development Center) and MTA at NRL
(Naval Research Laboratory). Running times for 1000
iterations of the Lanczos code kernel ( i.e. no I/O times are
included) are given in the table below.

Platform Speed | 16P 32p Speed
MHz | mines | mines Up
IBM P3 375 | 1429 111.6 1.28
COMPAQ ES45 1000 90.1 63.5 1.42
SGI Origin 400 | 1584 160.6 0.99
MTA 200 28.2 16.6 1.73

The most obvious result is the comparison of the total
time required to calculate 1000 pairs of lanczos coefficients
from M. On 32 processors the MTA was four times faster
than the COMPAQ ES45, seven times faster than the IBM
P3, and almost ten times faster than the Origin 3800, even
though the MTA has the slowest clock. The speedup from
16 processors to 32 processors was also best on the MTA
with an improvement of 75%.

Since this application is constrained by the speed of
retrieving data from memory, the layout of the data is
critical. On a conventional machine, the goal is to have data
as close to the processor as possible. Thus the MPI program
divided the matrix into groups of rows and assigned one
group to each processor. Each processor then calculates the
output vector for its group of rows. On the other hand, on
the MTA, data is physically hashed so that even if a user is
running on one processor, his data is distributed across all of
the processors. This technique eliminates worst-case
memory access patterns, so that contention is minimized. It
also allows simple method for a program getting access to
all of the memory in the system, even if it is running on a
single processor. The table below shows for 100 Lanczos
iterations for the large complex matrix how the MTA scales
with the number of processors.

Processors Time (secs) Speedup Linear

4 633.5

8 3224 1.96 2.00
12 214.9 2.95 3.00
16 164.6 3.85 4.00
20 135.7 4.68 5.00
24 117.1 541 6.00
28 108.0 5.86 7.00
32 99.4 6.37 8.00
36 94.9 6.67 9.00
40 91.6 6.92 10.00




Scaling proceeds fairly well until we get up to about 24
processors. Then the scaling rate of increase begins to falls
off. The reason for this is that in its current configuration
the machine cannot achieve the aggregate 8GHZ bandwidth
of the 40 200MHZ processors issuing a 64bit read request
every cycle. The best rates that have been seen at NRL are
about 2.7 GHZ. Currently, Cray is currently designing and
building a top plane for the NRL machine that should allow
the machine to actually achieve over 95% of the maximum
bandwidth.

If one wanted to find the Lanczos coefficients for two
different V’s (matrices F, and F,), the user has two options
on an Origin with 32 processors. The first option would be
to use all 32 processors to calculate the coefficients for F,
and when this was completed use the 32 processors to
calculate the coefficients for F,. Total wall-clock time
would be 320 minutes. The other option would be to divide
the 32-processor system into two 16-processor sub-
hypercubes and to run F, on one sub-hypercube and F, on
the other Since there would be no memory contention, wall
clock time would be only 158 minutes. A similar scheme
could be used on the IBM and COMPAQ’s. However,
splitting the MTA into two sets of processors and running
F, and F, at the same time would not result in comparable
speed-ups as the two programs would compete for the
memory bandwidth.

6. Conclusions

The MTA proved to be a very good resource for this
application. By analyses of the computational requirements
of the problem, the amount of recoding required was kept to
a minimum. The actual code written was small, required no
MTA specific constructs, and is general enough to be easily
used to solve other problems. In the current MTA
configuration, the program ran 4 times faster on 32
processors, than on 32 processors of any of the other HPC
machines that had been previously used. Further
improvements are expected when the MTA top plane is
installed this summer.
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