
M
an

ch
es

te
r

C
o

m
p

u
ti

n
g

S
up

er
co

m
pu

tin
g,

 V
is

ua
liz

at
io

n
&

 e
-S

ci
en

ce

Jon Gibson and Mike Pettipher

Date 15th May 2003
Event: Cray User Group
Venue: OSC, Columbus, Ohio

Finite Element Analysis on theFinite Element Analysis on the
Cray MTACray MTA

FEA on the MTA, CUG May 20032

Acknowledgements

• Acknowledgments to:
– Apologies to Jon Gibson – we were not prepared to pay him to come and

present this work.

– Cray Inc. for giving us access to an MTA system.

– Simon Kahan (in particular) for quickly identifying (and fixing) some
obscure problems.

FEA on the MTA, CUG May 20033

Contents from another presentation

• Parallel Finite Element Analysis at the University of Manchester
– Program philosophy, application areas
– Parallelisation strategy

• Performance
– Cache issues
– Communication
– Scalability

• The Simple Approach – Cray MTA-2
• Applications / projects

– DNS Navier Stokes
– DNS Magnetohydrodynamics
– Geotechnical Engineering, University of Manchester
– Advanced Virtual Prototyping Research Centre (AVPRC) - consortium of four UK

universities.

• [Objective – to show that engineers with little or no experience of HPC can
fairly easily use parallel versions of codes with which they are familiar.]

FEA on the MTA, CUG May 20034

Finite Element Analysis
– Serial Programs

• Template serial programs
– Written by Professor Ian Smith.

- Author of a number of books on FEA and Fortran 90.

- NAG Finite Element Analysis Library based on these codes.

– Written in Fortran 90.

– Modular structure – ‘building blocks’ for general FEA modelling – users
adapt these codes for their own requirements.

– Element by element method using iterative solvers, PCG, BiCGStab(l),
Lanczos.

– Widely used by engineers worldwide.

FEA on the MTA, CUG May 20035

Template Serial Codes

• All the usual FEA application areas covered
– Material behaviour, elasticity, plasticity

– Heat, fluid flow

– Dynamics, forced vibrations

– Coupled physical processes, such as magnetohydrodynamics

FEA on the MTA, CUG May 20036

Finite Element Analysis
- Parallel Programs (MPI)

– Serial syntax/structure preserved as much as possible.

– Philosophy of serial code templates preserved – users adapt codes for
own requirements.

– Parallel coding hidden away in libraries:
- MPI routines for communication

- Other ‘utility’ routines to manage data distribution etc.

– Intended that users with minimal parallel computing knowledge can adapt
the parallel code templates for their own particular problems.

FEA on the MTA, CUG May 20037

Element by Element (EBE)
– Inherent Parallelism

• Global (sparse) matrix never assembled.
• All codes dominated by loops over the elements (nels):

– Set up Global arrays
- elements_1: do i = 1, nels

– Element stiffness integration, storage and preconditioner
- elements_2: do i = 1, nels

– Start load increments
– Start plastic iterations
– Perform conjugate gradient iterations

- elements_3: do i = 1, nels

– Go round Gauss points
- elements_4: do i = 1, nels

– End plastic iterations
– End load increments.

• Can parallelise all loops over elements

FEA on the MTA, CUG May 20038

PCG Solver

• Time dominated by PCG solver, which is dominated by matrix-vector
computation section:

• DO i = 1, nels
 …
 pmul = p(g) ! gather
 utemp = matmul(km,pmul) ! matrix-vector
 u(g) = u(g) + utemp ! Scatter
 …
END DO

FEA on the MTA, CUG May 20039

Elasto-plastic analysis

• km matrix can be made the same for all elements, so can use matrix-
matrix:

• DO iel = 1, nels
 DO i= 1, ndof ! ndof = 60
 pmul(i, iel) = p(g(i,iel)) ! gather
 END DO
END DO

CALL DGEMM(…) ! matrix-matrix

DO iel = 1, nels
 DO i= 1, ndof
 u(g((i, iel)) = u(g(i,iel)) + utemp(i,iel)
 END DO
END DO

FEA on the MTA, CUG May 200310

MPI Implementation

• Gather/scatter require significant communication.

• Wrote our own routines to identify all communications, packing and
sending data once for all gathers and once for all scatters - small
number of large messages.

• Took substantial time to develop (debug!) code.

FEA on the MTA, CUG May 200311

Elasto-plastic analysis – MPI results

• Stiffness matrix can be the same for each element – giving rise to
matrix-matrix rather than matrix-vector computations.

• Results from Cray T3E, 64000 elements:

12%22%PCG % peak

33.8 (out of 64)1.0PCG speedup

3.1104.9PCG elapsed
time

5128Processors

FEA on the MTA, CUG May 200312

� Discretisation using the finite element (EBE) method
� 20 node quadrilateral bricks

� Navier Stokes solver
� Iterative solution algorithm BiCGStab(l)

� BiCGStab(l) necessary to deal with unsymmetric stiffness matrix

• Different stiffness matrix for each element => large stiffness matrix
storage and results, by default, in poor cache re-use, and
consequently in poor performance.

• Can find common structure in stiffness matrices, and with recoding,
improve cache and overall performance …

 Magnetohydrodynamics example

FEA on the MTA, CUG May 200313

0

10

20

30

40

50

0 50 100 150 200 250 300

Number of Processors

%
 P

ea
k

P
er

fo
rm

an
ce

MPI implementation - Percentage Peak
Performance

Matrix vector

Matrix vector + communication

~20% peak sustained on 256 processors on Origin 3800
for whole code

FEA on the MTA, CUG May 200314

Factors limiting performance

• There are two major factors affecting the performance in the MPI
implementation
– Time for gather and scatter of data is significant, although it does not

affect scaling.

– Cache re-use in matrix-vector operations required special coding to avoid
performance problems.

• Thus ‘good’ performance has been achieved, but had to spend
significant time writing routines for gather/scatter and cache re-use.

• Can the Cray MTA-2 do better?

FEA on the MTA, CUG May 200315

The Cray MTA-2
• Multi-Threaded Multiple active threads (up to 128) on each processor.

– Used to hide latency.
– 16 to 256 processors.

• Scalable uniform access to global shared memory.
– 2.4GB/s bandwidth.
– 4GB of memory per processor.

FEA on the MTA, CUG May 200316

MTA Ease of Programming

• No data cache

• No stride sensitivity

• No message passing

• Loop-based parallelism

• Uniform access to global memory.

• Dynamic scheduling of tasks

• Memory-based synchronization

• Low application development costs

FEA on the MTA, CUG May 200317

Programming the MTA-2
What is Irrelevant?

• Cache misses

• Poor data locality

• Static assignment of tasks to processors

• Poor communication to computation ratio

• Parallelism that is too fine or too coarse to exploit effectively

FEA on the MTA, CUG May 200318

FEA on the MTA

• Memory structure of Cray MTA-2 should avoid or reduce the problems
encountered in the MPI implementations of the FEA codes…
– Flat memory should remove cost of distributed memory gather and reduce

that of the scatter.

– Memory latency hidden by using multiple threads so cache use, etc, not
an issue.

– With the ‘EBE’ method, the programs require very few changes to the
serial codes – just some Open MP style directives.

– Ideal for this suite of general finite element analysis codes.

FEA on the MTA, CUG May 200319

MTA v MPI on an Origin

• Using Elasto-plastic code, 64000 elements

• SGI Origin 3800, 400MHz, MPI:

• MTA-2, 200MHz:

132.2

192.2

393.5

2

204.7787.1Conj Grad loop

72.0254.2Gather/scatter

98.0378.6Matrix mult

41Processors

43.7

334.7

429.8

2

234.1841.3Conj Grad loop

33.876.7Gather/scatter

167.7664.5Matrix mult

41Processor

FEA on the MTA, CUG May 200320

MPI versus MTA

• Time in gather/scatter much smaller, so even with much slower
processor, MTA gives only slightly slower times than Origin/MPI.

• Coding of MTA version took a few hours from serial version (probably
less than one hour for a programmer familiar with the MTA).

• MPI version took months!

• What about scaling?

• What about OpenMP – should also be simple to code?

FEA on the MTA, CUG May 200321

Scaling on the MTA

FEA on the MTA, CUG May 200322

MTA versus OpenMP on an Origin

• Using Elasto-plastic code, 64000 elements.

• SGI Origin 3800, 400MHz, OpenMP:

• MTA-2, 200MHz:

110.5

200.2

473.2

2

359.0678.4Conj Grad loop

100.4142.2Gather/scatter

103.4381.6Matrix mult

41Processors

43.7

334.7

429.8

2

234.1841.3Conj Grad loop

33.876.7Gather/scatter

167.7664.5Matrix mult

41Processor

FEA on the MTA, CUG May 200323

Gather/scatter

• MTA wins because gather/scatter worse with OpenMP.

• Scaling of gather/scatter on MTA not perfect – why?

• Time in gather insignificant – about 0.02s. Scatter does involve
multiple updates to specific locations (potentially 8 elements share a
single node), so there is contention.

• Scatter does not scale well – why?

• A little work by Simon Kahan identified a feature of the original serial
code that was removed from the MPI version. A simple fix improved
the scaling. (This fix introduces an overhead, but it should be possible
to remove it):

FEA on the MTA, CUG May 200324

Scaled scatter

• Using Elasto-plastic code, 64000 elements.

• MTA-2, original

• MTA-2, updated scatter:

234.1841.3Conj Grad loop

33.876.7Gather/scatter

167.7664.5Matrix mult

41Processors

289.6952.1Conj Grad loop

25.7101.6Gather/scatter

167.9670.5Matrix mult

41Processor

FEA on the MTA, CUG May 200325

Summary

• The MTA gives comparable performance to an MPI implementation
and better performance than an OpenMP implementation, on a system
with twice the clock rate.

• The coding time on the MTA is insignificant compared with MPI.

• The code used is the basis of a suite of FEA codes, serial versions of
which are widely used.

• If engineers (without HPC expertise) were not impressed by our MPI
templates, they may (should) be by the simpler approach on the MTA.

M
an

ch
es

te
r

C
o

m
p

u
ti

n
g

S
up

er
co

m
pu

tin
g,

 V
is

ua
liz

at
io

n
&

 e
-S

ci
en

ce

World Leading Supercomputing Service,
Support and Research

Bringing Science and
Supercomputers Together

www.man.ac.uk/sve
sve@man.ac.uk

SVE @ Manchester ComputingSVE @ Manchester Computing

