(@)
-
—
-
o
=
@)
O
| -
)
)
7))
)
e
O
-
®
=

()
&)
c
Q
O
¢
()]
o
c
i
)
©
N
'S
>
i)
>
o)
S
)
>
o
&
o
O
| -
]
o
>
p]

Finite Element Analysis on the
Cray MTA

Jon Gibson and Mike Pettipher

Date 15! May 2003
Event: Cray User Group
Venue: OSC, Columbus, Ohio

THE UNIVERSITY
9/ MANCHESTER

Acknowledgements

* Acknowledgments to:

— Apologies to Jon Gibson — we were not prepared to pay him to come and
present this work.

— Cray Inc. for giving us access to an MTA system.

— Simon Kahan (in particular) for quickly identifying (and fixing) some
obscure problems.

&

’ FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

BI' MAMCHESTER

Contents from another presentation

Parallel Finite Element Analysis at the University of Manchester
— Program philosophy, application areas
— Parallelisation strategy
Performance
— Cache issues
— Communication
— Scalability
The Simple Approach — Cray MTA-2

Applications / projects

— DNS Navier Stokes

— DNS Magnetohydrodynamics

— Geotechnical Engineering, University of Manchester

— Advanced Virtual Prototyping Research Centre (AVPRC) - consortium of four UK

universities.
[Objective — to show that engineers with little or no experience of HPC can
fairly easily use parallel versions of codes with which they are familiar.] @
1

FEA on the MTA, CUG May 2003 DAL

Finite Element Analysis

— Serial Programs

Template serial programs

Written by Professor lan Smith.
- Author of a number of books on FEA and Fortran 90.
- NAG Finite Element Analysis Library based on these codes.

Written in Fortran 90.

Modular structure — ‘building blocks’ for general FEA modelling — users
adapt these codes for their own requirements.

Element by element method using iterative solvers, PCG, BiCGStab(l),
Lanczos.

Widely used by engineers worldwide.

@

FEA on the MTA, CUG May 2003 ~ ThE LINIVERSITY

5’ MAMCHESTER

Template Serial Codes

« All the usual FEA application areas covered
— Material behaviour, elasticity, plasticity
— Heat, fluid flow
— Dynamics, forced vibrations
— Coupled physical processes, such as magnetohydrodynamics

&

> FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

BI' MAMCHESTER

Finite Element Analysis

- Parallel Programs (MPI)

— Serial syntax/structure preserved as much as possible.

— Philosophy of serial code templates preserved — users adapt codes for
own requirements.

— Parallel coding hidden away in libraries:
- MPI routines for communication
- Other ‘utility’ routines to manage data distribution etc.
— Intended that users with minimal parallel computing knowledge can adapt
the parallel code templates for their own particular problems.

@

° FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

5’ MAMCHESTER

Element by Element (EBE)

— Inherent Parallelism

« Global (sparse) matrix never assembled.
* All codes dominated by loops over the elements (nels):

Set up Global arrays

- elements_1:doi=1, nels

Element stiffness integration, storage and preconditioner
- elements_2:doi=1, nels

Start load increments
Start plastic iterations

Perform conjugate gradient iterations
- elements_3:doi=1, nels

Go round Gauss points
- elements _4:doi=1, nels

End plastic iterations
End load increments.

« Can parallelise all loops over elements @
i

FEA on the MTA, CUG May 2003 DfLANMEET

PCG Solver

Time dominated by PCG solver, which is dominated by matrix-vector
computation section:

DOi=1, nels
pmul = p(g) | gather
utemp = matmul(km,pmul) I matrix-vector
u(g) = u(g) + utemp | Scatter

END DO

A

FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

HI' MAMCHESTER

Elasto-plastic analysis

km matrix can be made the same for all elements, so can use matrix-
matrix:

DO iel =1, nels
DO i= 1, ndof | ndof = 60
pmul(i, iel) = p(g(i,iel)) I gather
END DO
END DO

CALL DGEMM(...) I matrix-matrix

DO iel =1, nels
DO i= 1, ndof
u(g((i, iel)) = u(g(i,iel)) + utemp(i,iel)
END DO
END DO

A

FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

HI' MAMCHESTER

MPI Implementation

» Gather/scatter require significant communication.

» Wrote our own routines to identify all communications, packing and
sending data once for all gathers and once for all scatters - small
number of large messages.

« Took substantial time to develop (debug!) code.

@

10 FEA on the MTA, CUG May 2003 DAL

Elasto-plastic analysis — MPI results

- Stiffness matrix can be the same for each element — giving rise to
matrix-matrix rather than matrix-vector computations.

* Results from Cray T3E, 64000 elements:

Processors 8 912
PCG elapsed 104.9 3.1
time
PCG speedup 1.0 33.8 (out of 64)
PCG % peak 22% 12%
@
[1

H FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

BI' MAMCHESTER

Magnetohydrodynamics example

Q Discretisation using the finite element (EBE) method
B 20 node quadrilateral bricks
B Navier Stokes solver
B Iterative solution algorithm BiCGStab(l)
B BiCGStab(l) necessary to deal with unsymmetric stiffness matrix
« Different stiffness matrix for each element => large stiffness matrix

storage and results, by default, in poor cache re-use, and
consequently in poor performance.

« Can find common structure in stiffness matrices, and with recoding,
improve cache and overall performance ...

@

L FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

BI' MAMCHESTER

MPI| implementation - Percentage Peak

Performance

50
(D)
CC) 40 | ,;3;
g oo SO o
£ 30 é Matrix vector
=
aQ
2 10 - Matrix vector + communication
NS
0
0 50 100 150 200 250 300
Number of Processors
~20% peak sustained on 256 processors on Origin 3800 :
P for whole code ‘1

13 FEA on the MTA, CUG May 2003 DAL

Factors limiting performance

* There are two major factors affecting the performance in the MPI
implementation

— Time for gather and scatter of data is significant, although it does not
affect scaling.

— Cache re-use in matrix-vector operations required special coding to avoid
performance problems.

« Thus ‘good’ performance has been achieved, but had to spend
significant time writing routines for gather/scatter and cache re-use.

« Can the Cray MTA-2 do better?

A

o FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

BI' MAMCHESTER

The Cray MTA-2

* Multi-Threaded Multiple active threads (up to 128) on each processor.
— Used to hide latency.
— 16 to 256 processors.

« Scalable uniform access to global shared memory.
— 2.4GB/s bandwidth.
— 4GB of memory per processor.

o FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

& MAMICTHESTER

16

MTA Ease of Programming

No data cache

No stride sensitivity

No message passing

Loop-based parallelism

Uniform access to global memory.
Dynamic scheduling of tasks
Memory-based synchronization
Low application development costs

FEA on the MTA, CUG May 2003

A

THE UMIVERSITY
HI' MAMUCHESTER

Programming the MTA-2
What is Irrelevant?

« Cache misses

* Poor data locality

« Static assignment of tasks to processors

* Poor communication to computation ratio

« Parallelism that is too fine or too coarse to exploit effectively

@

L FEA on the MTA, CUG May 2003 ~ THE UNIVERSITY

HI' MAMCHESTER

FEA on the MTA

« Memory structure of Cray MTA-2 should avoid or reduce the problems
encountered in the MPI implementations of the FEA codes...

Flat memory should remove cost of distributed memory gather and reduce
that of the scatter.

Memory latency hidden by using multiple threads so cache use, etc, not
an issue.

With the ‘EBE’ method, the programs require very few changes to the
serial codes — just some Open MP style directives.

|deal for this suite of general finite element analysis codes.

@

18

FEA on the MTA, CUG May 2003 DfLANMEET

« Using Elasto-plastic code, 64000 elements
« SGI Origin 3800, 400MHz, MPI:

MTA v MPI on an Origin

Processors 1 2 4
Conj Grad loop 7871 393.5 204.7
Matrix mult 378.6 192.2 98.0
Gather/scatter 254.2 132.2 72.0
« MTA-2, 200MHz:

Processor 1 2 4
Conj Grad loop 841.3 429.8 234 1
Matrix mult 664.5 334.7 167.7
Gather/scatter 76.7 43.7 33.8

19

FEA on the MTA, CUG May 2003

A

THE UMIVERSITY
._:!,I' MAMUCHESTER

MPI versus MTA

« Time in gather/scatter much smaller, so even with much slower
processor, MTA gives only slightly slower times than Origin/MPI.

« Coding of MTA version took a few hours from serial version (probably
less than one hour for a programmer familiar with the MTA).

MPI version took months!

* What about scaling?
* What about OpenMP — should also be simple to code?

&

20 FEA on the MTA, CUG May 2003 DAL

21

Speedup

Scaling on the MTA

Speedup for the important parts of the code

3.4

24

15

Total

CG loop

rnat mul
Gather/Scatter

1
25
Mo of Procs

3.5 4

FEA on the MTA, CUG May 2003

i

~+

THE UMIVERSITY
5’ MAMUCHESTER

« Using Elasto-plastic code, 64000 elements.

MTA versus OpenMP on an Origin

« SGI Origin 3800, 400MHz, OpenMP:

Processors 1 2 4
Conj Grad loop 678.4 473.2 359.0
Matrix mult 381.6 200.2 103.4
Gather/scatter 142.2 110.5 100.4
« MTA-2, 200MHz:

Processor 1 2 4
Conj Grad loop 841.3 429.8 234 1
Matrix mult 664.5 334.7 167.7
Gather/scatter 76.7 43.7 33.8

22

FEA on the MTA, CUG May 2003

A

THE UMIVERSITY
._:!,I' MAMUCHESTER

Gather/scatter

 MTA wins because gather/scatter worse with OpenMP.

» Scaling of gather/scatter on MTA not perfect — why?

« Time in gather insignificant — about 0.02s. Scatter does involve
multiple updates to specific locations (potentially 8 elements share a
single node), so there is contention.

« Scatter does not scale well — why?

- Alittle work by Simon Kahan identified a feature of the original serial
code that was removed from the MPI version. A simple fix improved
the scaling. (This fix introduces an overhead, but it should be possible
to remove it):

&

23 FEA on the MTA, CUG May 2003 DAL

Scaled scatter

« Using Elasto-plastic code, 64000 elements.
« MTA-2, original

Processors 1 4

Conj Grad loop 841.3 234 1

Matrix mult 664.5 167.7

Gather/scatter 76.7 33.8

« MTA-2, updated scatter:

Processor 1 4

Conj Grad loop 952.1 289.6

Matrix mult 670.5 167.9

Gather/scatter 101.6 25.7 @
1

24 FEA on the MTA, CUG May 2003 DfLANMEET

Summary

« The MTA gives comparable performance to an MPI| implementation
and better performance than an OpenMP implementation, on a system
with twice the clock rate.

« The coding time on the MTA is insignificant compared with MPI.

 The code used is the basis of a suite of FEA codes, serial versions of
which are widely used.

* If engineers (without HPC expertise) were not impressed by our MPI
templates, they may (should) be by the simpler approach on the MTA.

&

o5 FEA on the MTA, CUG May 2003 DAL

SVE @ Manchester Computing

World Leading Supercomputing Service,
Support and Research

Bringing Science and
Supercomputers Together

www.man.ac.uk/sve
sve@man.ac.uk

()
&)
c
Q
O
¢
()]
o
c
i
)
©
N
'S
>
i)
>
o)
S
)
>
o
&
o
O
| -
]
o
>
p]

(@)
-
—
-
o
=
@)
O
| -
)
)
7))
)
e
O
-
®
=

THE UNIVERSITY
9/ MANCHESTER

