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Cray X1 MPI Implementation 

Jeff Nicholson and Tom Goozen, Cray Inc. 

ABSTRACT: For the MPI implementation on the Cray X1 architecture, a number of 
changes had to be made to the MPI algorithms ported from SGI in 2000.  These changes were 
required to take full advantage of the high bandwidth between the Cray X1 processors:  
several key routines were completely rewritten to take advantage of the Remote Translation 
Table (RTT) memory access feature; the mechanism used to do basic sends and receives was 
changed to a "hot path" to reduce latencies; and a new algorithm to reduce barrier timings 
was written that rivals the T3E hardware barrier.  These changes, among others discussed 
here, have resulted in the very fast, very efficient movement of large amounts of data between 
processors. 

1. Introduction 

It became clear after Cray ported MPI from SGI’s 
implementation in 2000 that the SGI MPI algorithms could 
not accommodate the high bandwidth between processors in 
the Cray X1 system. This is in part because the SGI MPI 
implementation was written to be cluster-aware more so than 
for performance.  Our task, therefore, was to streamline, 
simplify, and in some cases replace the SGI algorithms and 
routines with an eye toward optimized performance.  A 
number of subroutines were deleted, and smaller routines 
were replaced with inlined code and macros.  Cluster-aware 
code was removed and replaced with memory access 
schemes – these allowed us to take advantage of both the 
Cray X1 system’s high memory bandwidth and its vector 
gather/scatter hardware.  In addition to these changes, 
Fortran bindings were incorporated in the same source files 
as C routines, thereby eliminating additional calling 
overhead. 
 
 
 

2. Cray’s Commitment to MPI 

A large number of Cray customers run parallel 
processing applications developed under MPI, the Message 
Passing Interface programming model. MPI has been 
implemented across the Cray SV1, SV1ex, Cray T3E 
systems, and now the Cray X1 system, to take advantage of 
each platform’s unique processing characteristics.  The MPI 
implementation for the Cray X1 complies fully with the MPI 
1.2 Standard and selected portions of the MPI-2 Standard. 

 

MPI 1.2 and MPI-2 Support 
The full functionality of the MPI 1.2 standard has been 

ported to the Cray X1.  Several of its core routines, 
mentioned later in this paper, include new algorithms that 
replace previous versions.  These new algorithms take 
advantage of the hardware performance characteristics of the 
Cray X1.  As we implemented these algorithms, we also 
removed areas of code that did not support our single system 
image (SSI) strategy for the Cray X1. 

 
The MPI-2 features that were ported include Remote 

Memory Access (RMA – also called “one-sided”) and MPI-
I/O.  MPI-I/O was ported from ROMIO version 1.2.4.  
Several of the same macros and inlined routines that were 
implemented in the core group of MPI routines have been 
implemented in the MPI-I/O routines as well to provide 
more performance enhancements. 

 
The extended MPI-2 collective operations will be 

ported and available in a future release of Cray MPT. 
 
 

MPI-2 Porting Exceptions 
Due to a limitation in the operating system, the MPI-2 

Dynamic Process Management (DPM) feature was not 
ported and the Generalized Requests functionality has not 
been ported to the Cray X1. 
 

Mixing Programming Models 
In addition to MPI, we have implemented the following 

parallel programming models: SHMEM, Co-Array Fortran 
(CAF), Unified Parallel C (UPC), and the soon to be 
available OpenMP.  To date, we have successfully mixed 
MPI with CAF/UPC and with OpenMP.  Applications 
developers will be interested to know that one-way message 
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passing in Co-Array Fortran and Unified Parallel C takes 
advantage of our compilers and low calling sequence 
overhead by doing data puts or gets from other processes 
within their parallel application program.   These models do 
not require the data type conversion overhead needed in 
MPI. 

 

3. Hardware Advantages 

Single System Image 
Early in the development cycle of the Cray X1 MPI 

implementation, we determined that to get the best 
performance, and thereby use the full hardware resources of 
the Cray X1, we would restrict MPI to a Single System 
Image (SSI) model.  We decided this because, under normal 
operations, the scheduling scheme dedicates processor and 
memory resources to the application, but these resources are 
not relinquished until the application terminates.  This meant 
that, had we decided to support a clustered implementation, 
valuable processor and memory resources would sit idle, 
waiting for the relatively slow network communication to 
complete. 

 

Distributed Memory Architecture 
The Cray X1 system is a NUMA architecture.  With 

NUMA, memory is globally accessible, but it can be 
accessed faster locally than it can be accessed remotely.  To 
help balance the access times to remote memory, a new 
facility, the Remote Translation Table (RTT), was 
introduced.  The RTT allows parallel programming models 
to quickly determine remote memory addresses by managing 
the node and memory address fields and issuing a fetch or 
store to that address.  The address is a 64-bit word, its 
upper-most bits reserved for the NODE-ID and other 
address information.  Using the RTT removed the need for 
the regular Translation table code. 

 

SSP and MSP modes (available in the PE 5.0 release) 
To accommodate the range of demands of parallel 

programming applications, the Cray X1 system uses two 
processing modes: Single Streamed Processor (SSP) mode 
and Multiple Streaming Processors (MSP) mode, and 
provides a set of MPI libraries for each.  MSP mode is for 
MPI applications that require large amounts of data to pass 
between processes.  Here, all four SSPs on a MSP are called 
upon to help transfer portions of the data to the other 
processes.  On the other hand, if an application is 
particularly compute-intensive, SSP mode enlists the other 
SSPs on the MCM to perform computations.  An 
optimisation guide is currently being built that will better 
explain the different ways an application may provide better 
performance. 

 

Scaling 
Parallel programming models lose efficient use of 

computer resources as processes are added.  This is because 
the more processes there are, the more overhead required in 
the parallel libraries to keep track of data movement 
between these processes.  To compensate for this, we 
implemented additional parallel algorithms to reduce the 
library overhead needed to handle the message passing 
required by a large number of processes.  These new 
algorithms allow for fewer serialized data handling schemes, 
plus they use the Cray X1 vector instructions.  These 
algorithms, described later, rely less on the root process to 
do the majority of the work.  They also use fewer global 
synchronization words, thereby reducing the likelihood of 
memory collisions. 

 

32 and 64 Bit Library Support 
Fortran programmers can take advantage of either the 

default 32-bit word size or use the 64 bit word size library 
versions.  C programmers, of course, must specify int for 
the default 32 bit value, and long for the 64 bit word size.  

 
 

4. Performance enhancements to MPI 

This section describes the performance enhancements 
made to the core set of MPI message passing routines.  
Many other MPI routines are based on these routines and 
they have been enhanced as a consequence of the work done 
in the core set. 

 
The MPI collective routines (reduce, gather, scatter, and 

so on) have been modified to enhance performance.  The 
general types of modifications are as follows: 

• Moving the Fortran entry points into the same file as the 
C entry points, and forcing inlining of the code into the 
Fortran version.  Some routines also contained calls to 
internal versions of the code once tracing and error 
checking had been completed.  Many of these have also 
been inlined. 

• Convert calls that were to short external routines to 
macros that contain the code for these routines.  These 
include routines such as MPI_CRAY_type_is_bad, 
MPI_CRAY_comm_is_bad, MPI_CRAY_comm_rank, 
and MPI_CRAY_comm_size, among others.  

• The collective routines relied almost exclusively on the 
basic Send/Recv/Wait mechanisms in MPI.  Since all of 
these routines effectively blocked at execution, and 
since they separated their communications from normal 
user Send/Recv traffic (they used a separate set of tags), 
it did not appear necessary to use the normal 
communication mechanisms.  Since their 
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communication followed simple, well-behaved patterns, 
it was clear that they could benefit from a different data 
transfer mechanism. 

 
The new basic data transfer mechanism used by the 

collective routines uses symmetrically allocated data 
structures that are referenced from the gps structure.  Given 
the rank of a process, the gps structure can be referenced to 
determine the location of data structures located within that 
process.  The data structures used by the new collective 
routines consist of: 
 

• An array of size num_ranks that contains the address of 
the data to be transferred. 

• An array of size num_ranks that contains the count of 
the data to be transferred. 

• An array of size num_ranks that contains the data type 
of the data to be transferred. 

• An array of size num_ranks that contains a start flag 
that triggers the transfers. 

• An array of size num_ranks that contains a done flag 
(used only by the barrier routine) that indicates that the 
barrier has been processed by rank 0. 

• A check-in counter that counts the number of processes 
that have processed a transfer request.  This counter 
indicates that previous collective operations by the 
current process have completed. 

 
The addresses of these structures are translated and 

placed into the gps structure so that any process can locate 
one of these data structures in another process. 

 
Arrays for buffer addresses, counts, data types, and start 

flags are used so that multiple transfers can be initiated at 
the same time.  If two collective operations should share 
some processes but have different communicators and be 
issued at the same time, using the arrays will keep the 
necessary information separate.  The root or sending process 
rank, when referenced in the non-root or receiving process, 
typically indexes the arrays. 
 

 

SPECIFIC CHANGES FOR COLLECTIVE ROUTINES 
 

MPI_Allgather, MPI_Allgatherv and 
MPI_Allreduce Routines: 

 

These three routines are basically algorithmically 
unchanged from the originals. They simply call the 
appropriate Gather, Gatherv and Reduce functions and then 
broadcast the results to the other processes.  There are no 
significant performance advantages to rewriting these 
functions to combine the operation and the broadcast. 

 
 

MPI_Alltoall and Alltoallv Routines: 
 
In the old MPI implementation, the algorithm was to 

loop over all processes performing receive operations, then 
to loop performing send operations and finally to loop 
waiting for the sends and receives to complete. 

 
The new algorithm uses the collective structures to 

broadcast addresses, counts and datatypes.  If the send 
buffer is not contiguous, it is packed before any transfers are 
attempted.  This allows the other processors to use a simpler 
algorithm to perform the data transfers – in most cases it 
allows for a simple bcopy to move the data.  Initially, each 
processor places the address, count, and data type of the 
portion of the send buffer to be moved into each process, 
into the collective structures in the remote process.  The 
location in the remote process is indexed by the sending 
process global rank.  As mentioned above, this is why the 
address, count, data type and start flags are allocated as 
arrays.  The check-in counter is set to the number of 
processes and used to indicate that all processes have 
received their data.  Once the address, count and datatype 
information has been written to the receiving process, then 
the start flag is set and the remote process can read the data 
and can begin the transfer. 

 
Each process enters a loop that reads the start flags 

being set by the remote senders.  Any time a start flag is 
found, the address, count and datatype information 
associated with that start flag is read.  The type2type routine 
is then called to move the data from the remote process to 
the local process.  The type2type routine will handle any 
data conversion and reformatting issues in the transfer.  The 
receiver then decrements the check-in flag for the sender. 

 
The loop that scans for start flags is executed until all 

remote processes have been heard from and all data has 
been transferred.  The use of the scan loop allows for 
receives to be processed out of order.  Once all transfers are 
complete the code waits until the check-in counter goes to 
zero, indicating that all sends are complete. 
 
 

MPI_Barrier: 
 
The algorithm for barriers on the Cray X1 system is 

based on a four-way merge of incoming processes and a 
single broadcast to signal a resume.  Both the shmem barrier 
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and the MPI barrier use the same algorithm, with minor 
differences to account for the calling parameters. 
 

The basic structure used to signal arrival at the barrier is 
a four-way tree.  At each level in the tree, up to four 
processes synchronize using a single word.  The depth of the 
tree is the log(base 4) of the total number of processes 
participating in the barrier.  As each process enters the 
barrier it uses an atomic memory operation (fadd) to 
increment a word shared by up to three other processes.  
Until the last process arrives, the processes before it enter a 
wait loop that spins on a resume word in local memory. 
 

The last process to arrive continues to the next level in 
the tree and again increments a word shared by the next 
three groups of processes.  If at any time a process is not the 
last process at that level then it enters the spin wait loop that 
waits on its local resume word. 
 

The last process, at the bottom level, starts the waiting 
processes.  Rather than transiting up through the tree again, 
activating each level, the final process uses a vector scatter 
store to set all the resume words in all the waiting processes.  
When the store is complete then the process is free to exit 
the barrier.  All waiting processes exit when they see their 
resume word set.  All processes clear their resume word 
before exit. 
 

There are several important features of this algorithm: 
 

• The number of processes that will access a single word 
at a single level is limited to four.  This prevents large 
“convoy” times where large numbers of processes are 
attempting to access the same word on the same node.  
This also aids in the scalability of the algorithm. 

• Because the algorithm uses a four-way tree instead of a 
typical binary tree, there are fewer levels needed for 
large numbers of processes.  This also means that for a 
full barrier, the first level of synchronization takes place 
entirely on a node. 

• At each level a new synchronization word is used which 
is in a separate memory bank.  This prevents lower- and 
higher-level updates from colliding with each other. 

• There is no "master" process, and the last arriving 
process triggers the resume. 

• Since all updates to the level synchronization words are 
through atomic memory operations, and all updates of 
the resume words are through normal memory 
operations, no gsync instructions are needed by the 
algorithm.  Only a single gsync is placed at the start of 
the routine to ensure that user memory operations are 
complete. 

• Waiting processes spin on a resume word in their local 
memory.  After the first pass through the wait loop, this 
word is loaded into the data cache, and no memory 
traffic leaves the processor chip from a waiting process. 

• When the last process triggers the resume we do not 
have to wake up processes going back up the tree.  With 
the vector hardware the algorithm can make effective 
use of the memory bandwidth of the machine.  The last 
process can also exit when the last resume word is 
written.  No gsync is necessary, and the resume write 
can still be in the memory network while the process is 
exiting the barrier routine. 

• The resume words are skewed across the processes so 
that each resume word is in a separate memory bank on 
the node.  This ensures each process will get its resume 
signal from a unique memory bank, and it prevents 
collisions in writing the resume word. 

• This algorithm remains unchanged whether running 
with MSPs or SSPs.  The only difference is that the first 
two levels of the tree take place on a node.  The 
skewing for the synchronization and resume words 
already allows for the possibility of SSP mode 
operation.  No attempt is made to use msync 
instructions since not all P chips within an MCM may 
be participating in the barrier and, unlike MSP mode, 
SSPs may not be assigned in sequence into a job. 

 

NPES IBM Power 4 Cray SX-6 Cray X1 
2 6.7 5 3.25 
4 12.1 7.1 6.45 
8 19.8 22 7.80 

Figure 1. Times are in microseconds 
 
 

MPI_Bcast: 
 
The old algorithm used a power-of-2 type explosion 

from the root.  This involved log(base2) levels of 
broadcasting.  The even processors at each level would 
perform a heavy weight send operation to the odd processors 
for the same level.  This "even/odd"ness was determined by 
checking the 2**level bit in the rank.  Since the checking 
started at the high bit of the rank, this involved initially 
sending to distant processors, and ended with send/recv 
pairs to nearest neighbours.  The algorithm had one 
drawback: if the root was not zero, the processes were 
effectively wrapped with the non-zero root being used as a 
base.  This could lead to even more communication between 
distant processors. 
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In the new algorithm, the non-root processes pull the 
data from the root process.  The root process moves the data 
to a preallocated buffer – if it is small enough (< 32 bytes).  
This allows the root process to exit quickly, even before the 
non-root processors have transferred the data.  If the amount 
of data is large and non-contiguous, it is packed into a 
contiguous buffer.  The root process then broadcasts the 
address of the appropriate buffer along with the count and 
the datatype for the transfer.  The root process then sets the 
start flag to trigger the non-root processes. 

 
The non-root processes loops to wait for the start 

trigger, then read the address, count and datatype.  (They use 
the type2type routine to transfer data and perform any data 
conversion and reformatting.)  Once the non-root processes 
have transferred the data, they decrement the check-in flag 
on the root process.  As each non-root process completes its 
transfer, it exits the broadcast routine. 

 
 

MPI_Gather and MPI_Gatherv: 
 
In the old algorithm, the root process issued Irecv 

requests for all the non-root processes to place the data into 
the sections of the receive buffer.  It used type2type to 
transfer its own data from its send buffer to the receive 
buffer.  It then waited for all Irecv requests to complete.  
The non-root processes performed a Send operation to send 
their data to the root process.  This resulted in the root 
process performing all of the actual work to copy all of the 
data segments to the receive buffer. 

 
In the new algorithm the root process determines the 

locations for each process to place its data, and then uses the 
collective structures to transmit the address, count and 
datatype to the non-root processes.  It sets the check-in flag 
to the number of processes minus 1, then transfers its own 
data from the send buffer to the receive-buffer using 
type2type.  The root process then loops on the check-in 
count to wait for all non-root processes to transfer their data.  
This effectively involves a "push" from all non-root 
processes. 

 
The non-root processes loop to wait for the start flag, 

and then read the destination address count and datatype.  
These processes use the type2type routine to transfer the 
data from their local storage to the root receive buffer.  On 
completion of the transfer they use atomic memory ops to 
decrement the check-in count in the root process. 

 
By using a "push" type algorithm, the new gather 

routines can perform the actual data transfer in parallel.  
Again, all looping on wait flags is performed on data words 
in the local memory space, thereby eliminating system 
memory traffic.  Broadcasts of values and trigger flags could 

be done in vector mode in an application being run in RTT 
mode.   
 

 

MPI_Reduce: 
 
The old algorithm used a power of 2 folding on the 

processes involving log(base2) levels of operations.  The 
odd processes used Send to transmit their data to the even 
processes.  Where "even/odd"ness was determined at each 
level by the process number ANDed with 2level.  The even 
processes performed receive operations, which include 
performing the actual data transfer, and invoked the 
reduction function.  Since the MPI standard requires that the 
reduction functions have only two input buffer arguments, 
with the second serving as the output buffer as well, the 
algorithm established two sets of buffers and carefully 
arranged the buffer so that the final operation placed the 
result in the receive buffer for the reduce.  If the root for the 
reduction was not rank zero, a final copy was often needed 
to transfer the data to the root.  (This only happened if the 
operation is non-commutative.) 

 
The new algorithm still uses a power of 2 folding on the 

processes.  The odd processes place the address of a buffer 
they wish to send into the collective structure and trigger the 
start flag.  The even processes start the first level by 
transferring data from the send buffer to the receive buffer 
(Note: This is due to the problem with the MPI definition of 
the reduction function.  A method is being investigated to 
eliminate this initial copy for the "built-in" MPI reduction 
types.).  The even processes then wait for a buffer address to 
arrive from the odd processes.  Once the address arrives, the 
reduction function is invoked and the data from the remote 
processor is read directly by the reduction function, 
combined with the local data, and output into the local 
buffer.  The remote processor is signalled that the transfer is 
complete by decrementing the check-in flag in the remote 
process via an atomic memory operation. 

 
Based on the commutatively of the operation being 

performed (all built-in MPI reduction functions are 
commutative), the new algorithm pulls in data from 
processors to the right (that is, higher rank processes).  This 
results in good performance for reductions to the rank zero 
process, and requires no further transfers once the reduction 
is complete.  For reductions to a non-zero rank process, the 
process numbers are wrapped by adding the root rank 
modulo the number of processes.  This can lead to the need 
for transfers from some more distant processes, but it is 
better than having to add another copy after the final 
reduction. 

 
For non-commutative operations, the algorithm remaps 

the process numbers such that the pull of the data takes 
place from the left (that is, lower rank processes).  This 
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results in the final reduction being placed in the highest 
numbered process and almost certainly means that the result 
will have to be copied to some other process (probably rank 
zero).  This is not desirable but seems to be necessary due to 
the non-commutative nature of the operation and the MPI 
standard definition of the reduction functions. 

 
 

MPI_Reduce_scatter: 
 
This routine is effectively unchanged from the original.  

It simply calls the Reduce and then the Scatterv functions.  
No significant performance advantage appears to result from 
attempting to combine these operations since the reduction 
must be completed before the scatter can begin. 

 
 

MPI_Scan: 
 
The old algorithm involved a Receive from the next 

lower ranked process, a copy of the send data to the receive 
buffer, and the invocation of the MPI reduction function.  
The process then sent the result to the next higher ranked 
process.  Each process was free to continue as soon as it sent 
its data on to the next process in rank.  

 
The new algorithm has each process use the collective 

structures to wait for the address, count, and data type from 
the lower ranked process.  Because variations in data layout 
and type are permitted between processes, the process must 
use type2type to transfer the data into its local memory.  The 
MPI reduction function is then invoked with the result being 
placed in the receive buffer.  For non-commutative (and 
therefore non-built-in) functions, the algorithm performs a 
copy of the initial data from the send buffer to the receive 
buffer before calling the MPI reduction function.  The 
process then passes on the address, count and data type for 
its receive buffer to the next higher process, and waits until 
the higher ranked process has picked up the data. 

 
 

MPI_Scatter, MPI_Scatterv: 
 

The old algorithm had the root loop over an Isend to 
each of the remote processors with the appropriate portion 
of the send buffer being transmitted.  It then received a 
"send_to_self" in order to handle datatype conversion 
problems.  It then performed a loop over request_wait to 
wait for the sends to complete.  The non-root processes 
simply performed a receive from the root and transferred the 
data into their receive buffers. 

 
The new algorithm has the root process loop over all of 

the other processes, and transmit the proper address offset 
within the send buffer along with the count and data type.  It 

sets its check-in value to the number of processes (minus 1) 
and it then sets the start flag to trigger the other processes.  
The root process then calls type2type directly to perform the 
data transfer from its send buffer into the receive buffer with 
the proper data type conversion.  The root waits until the 
check-in count goes to zero before returning. 

 
The non-root processes wait until they are triggered by 

the start flag, and then pick up the address, count, and data 
type.  They perform the data transfer in parallel using the 
type2type routine.  When they complete the transfer, they 
decrement the check-in flag on the root process and exit. 

 

SPECIFIC CHANGES TO SEND - RECEIVE 

MPI_Send, MPI_Receive: 
 
The MPI_Send process begins by acquiring a packet in 

the destination process memory.  This packet is used to store 
information about the sending process context, tag, and 
source rank number.  It also contains information about the 
type and length for the data to be transferred.  The packet 
optionally contains either a pointer to the data in the sending 
processes memory and an acknowledgement flag word, or it 
can contain the data itself if it is less than a fixed payload 
size (currently 64 words). 

 
If the amount of data to be sent is less than 64 words, 

then the data is copied directly into the packet on the remote 
destination process.  The packet address is added to the 
incoming list queue on the remote process; and the send 
operation is considered to be complete and returns to the 
caller. 

 
If the amount of data to be sent is greater than the 

payload size, a pointer to the data is placed in the packet 
along with the address of a word to be set when the transfer 
is complete.  The packet is added to the incoming list queue 
of the destination process; and the sending process waits to 
be signalled that the destination process has transferred the 
data. 

 
If buffering is turned on in MPI, the data to be sent is 

packed into buffer space; and then the address of the buffer 
space is passed in the packet along with a pointer to an 
acknowledge list entry.  The packet is then added to the 
incoming list queue of the destination process; and the 
sender can return to the caller. 

 
When MPI_Recv is called by the destination process, 

the receive request list is checked to see if there are other 
outstanding receive requests that have been generated by 
calls to MPI_Irecv.  If there are none, then the receiving 
process simply loops to wait for a packet to show up in the 
incoming queue.  Once a packet appears in the incoming list, 
a match is attempted against the context, source, and tag of 
the current receive request.  The incoming list is continually 



CUG SUMMIT 2003 Proceedings  7

scanned until a matching entry appears in the list.  Once the 
match is found, the data is transferred, and if necessary, a 
completion flag is set or an acknowledgement is flagged in 
the sending process. 

 
If, when MPI_Recv is called, there are other receive 

requests already in the list as a result of prior calls to 
MPI_Irecv, then the current request must be added to the list 
in the proper order.  This requires that a request entry be 
acquired from the free list and filled with the information 
specified by the request.  Once the current request has been 
added to the list, the entire list is matched, in order, against 
the incoming list. 
 

Paired receive requests and incoming list packets are 
processed by moving the data from the packet, for short 
sends, or from the sending process memory, for long or 
buffered sends.  Completion flags and acknowledgement 
flags are set in the sending process as required by the 
incoming packet. 

 
This process of matching the receive requests with the 

incoming list continues until the request associated with the 
MPI_Recv is matched and the data transferred.  Once the 
request has been satisfied, then the MPI_Recv routine is 
allowed to return to the caller. 

 

5. Coding and Algorithmic Considerations 

Much performance testing has been done, and the 
results indicate that we have made great progress in most 
areas relative to these same tests run on the T3E. 

 
Graphing the data show that larger data sizes (128KB – 

2MB) that get transferred between Cray X1 processors have 
better throughput than the same data sizes on either the IBM 
Power-4 or SX-6, as shown here: 

 

NPES=2 128KB 512KB 2MB 

IBM Power4 1760 MB/s 1863 MB/s 131 MB/s7 

Cray SX-6 6211 MB/s 8266 MB/s 958 MB/s0 

Cray X1 10288 MB/s 14148 MB/s 1981 MB/s2 
Figure 2. 1 
Note that we are still working to improve our performance. 

 

                                                 
1 Figure 1 Data taken from Table 4 in the paper 
“Performance Evaluation of the SX6 Vector Architecture for 
Scientific Computations” by Leonid Oliker, Andrew  
Canning, Jonathan Carter, John Shalf, David Skinner 
CRD/NERSC, LBNL; Stephane Ethier Princeton Plasma 
Physics Lab; Rupak Biswas, Jahed Djomehri, Rob Van der 
Wijngaart NAS Div. NASA; 
Tom Goozen, Cray Inc collected the Cray X1 data. 
 

Review Application Design Assumptions 
If code designs have not been looked at for four to five 

years, a review of the design assumptions should be made in 
light of current architectural designs in both hardware and 
software technologies. 

 

Replace simple Send/Receive with CAF/UPC 
In some instances replacing simple sends and receives 

with Co-Array Fortran (CAF) or Unified Parallel C (UPC) 
will boost performance.  This is true in cases where the basic 
datatype is known and arrays of similar data are to be moved 
from one process to another.  The overhead is eliminated 
that would normally be needed for MPI to handle requests, 
as is the overhead for the checking that normally happens 
for data conversion. 
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