CrayPat - Cray X1 Performance Analysis T ool

Steve Kaufmann and Bill Homer, Cray Inc.

ABSTRACT: The new Cray Performance Analysis Tool, CrayPat was designed to analyze
and evaluate the performance of applications running on the Cray X1 system. It isa single point
of entry tool that supports multiple performance experiments. With CrayPat, instrumenting an
application requires only a link step with no required recompilation. The instrumented appli-
cation is then executed on the Cray X1 like any normal application to produce a binary exper-
iment data file. CrayPat then evaluates the contents of the data file and generates reports, the
content and format of which can be customized. Experiment data can also be exported to alter-

nate file formats for further processing.

1 Introduction

The Cray X1 represents the convergence of the Cray T3E
(MPP) and the traditional Cray parallel vector processors
(PVP). It s a highly scalable, cache coherent, shared-memory
multiprocessor, using powerful vector processors asits building
blocks.

The core of the Cray X1 system is its multi-streaming pro-
cessor (MSP), an eight-chip multi-chip module containing four
processor chips and four custom cache chips. Each processor
chip consists of a superscalar processor with a two-pipe vector
unit, and the four cache chips implement a 2 megabyte cache
that is shared by the four processors.

Theresourcesthat an application consumes are often anim-
portant development consideration. The amount of CPU time,
memory, cache, network, or disk resources needs to be at least
understood so that applications can take advantage of the full
potential of the Cray X1.

The CrayPat performance analysis tool collects data at all
levels of parallelism: the SSP-level, thread-level, and process
level. CrayPat then hel ps devel operslocate opportunitiesfor im-
provements in both performance and system resource usage.

2 CrayPat Overview

The CrayPat tool isanew tool for the Cray X1 platform. It
was developed mindful of the performance analysis tools that
preceded it on the Cray PVP and Cray MPP computer systems,
and inherits some of their best features.

Copyright 00 2003. Cray Inc. All rights reserved.

CrayPat provides a single point of entry into performance
analysis of applications on the Cray X: it performs experiments
on running applications.

An experiment is an evaluation of an application asit exe-
cutes. The way that experiments work is determined both by
how an application is instrumented, and how it is executed.

CrayPat isapplied to applicationsfor single or multiple PEs
with shared memory (SM) or distributed memory (DM) design.
CrayPat also supports threaded applications, and both MSP and
SSP mode applications.

Preparing an application for performance analysis aways
takes the following steps:

 instrument the application
« execute the instrumented application

« obtain reports

Users interact with CrayPat through command-line utili-
ties. Future rel eases of CrayPat will feature an optional GUI and
text-based interactive PerfShell.

CrayPat provides anumber of experimentsthat collect data
in different ways. Thisway, if several experiments are applied
to the same application, the bias implicit in any given experi-
ment is rendered acceptable.

Instrumentation of an application is the first preparatory

step required for performance evaluation. Instrumentation sets
up the capture of software state, hardware state and time:

CUG 2003 Proceedings 1

» Software state can include thread and call stack information
or the actual parameter values passed into a function entry
point.

» Hardware state can include the Program Counter (PC) or
some Hardware Performance Counter (HWPC) event values.

» Time stamps are recorded in high resolution using the
Real-Time Clock (RTC) and HWPC cycle counter.

Instrumentation uses the application itself to collect state
and timing information. The instrumented application is execut-
ed in the same manner and in the same environment as the orig-
inal application. It can be executed multiple times with varying
data sets, each iteration producing a new experiment data file.
The CrayPat reporting features can accept multiple experiment
data files for a single application - the more material, the more
complete and thorough the performance evaluation.

CrayPat does not require that applications or parts of appli-
cations be recompiled. A single link, managed by CrayPat, isall
that isrequired. Link details are contained in a special ELF sec-
tion in an executable file. CrayPat usesthese detailsto create the
link operands and the instrumented application. The original
application is not changed.

An instrumented applications overhead varies depending on
the type of experiment. The default CrayPat experiments mini-
mize application user and/or system time requirements to typi-
cally less than 10 percent of the original application. However,
more sophisticated experiments can more than double their re-
quirements.

3 pat_hwpc

Thepat _hwpc utility isastand-alone utility that executes
agiven application, records specified HWPC events, and writes
asummary report to standard output. (Alternately, it can be used
to attach to a process that is already executing.) HWPC events
and other timing information can also be saved to afile for later
evaluation by the CrayPat report facility.

The pat _hwpc utility by default collects those HWPC
events that maximize the usefulness of the resulting report. De-
rived statistics, such as average vector length, megaflopts, rates,
and percentages are displayed. You can change the type of
HWPC groupsthe utility collects. The following groups are pre-
defined for the your convenience:

e papi (performance API)
e scal ar_detai l
e scalar_stall
» vector _detail
 vector_stall

These are not required - you can ask for any HWPC event,
and override a predefined event.

2 CUG 2003 Proceedings

4 Hardwar e Perfor mance Counters

The Cray X1 computer system has an abundance of HWPC
events. The processing chip (P chip) contains over 120 indi-
vidual events available for counting. Some of these events
include:

» cycles

» number of instructions dispatched

* number of instruction TLB misses

» number of A register instructions graduated
* number of vector TLB misses

» number of mispredicted branches

* number of elemental vector instructions graduated Instru-
ment

The cache chip (E chip) can count over 60 events. Some of
these events include:

» cacheline allocations
e processor requests processed
* updates received

The memory chip (M chip) can count over 50 events. Some
of theses eventsinclude:

* total requeststo local memory
* local ecache requeststo local memory
 invalidations sent to asingle MSP

5 Experiment Types

The CrayPat tool can instrument an application in one of two
ways:
 asynchronously
» synchronously

Asynchronous Experiments

If an application isinstrumented for an asynchronous exper-
iment, the nature of the experiment is selected at run-time. Asyn-
chronous experiments are statistical: they sample the state of the
application at given intervals. Theinterval can beatimeinterval
(for example, every 10 milliseconds), or it can be an HWPC
event that overflows a defined value.

For each interval, a sample of the state of the application is
collected. The nature of the data collected is determined by the
asynchronous experiment performed on the application. These
experiments include:

e profil,nprofil -OSdomain profiling experiments that
capture absolute PC values

e sanp_pc_tine, sanp_pc_ovfl - user domain sam-
pling experiments that capture relative PC values

e sanp_cs_tinme, sanp_cs_ovfl - user domain sam-
pling experiments that capture relative PC values and call
stack traces

e sanp_heap_tine, sanp_heap_ovfl - user domain
sampling experiments that capture relative PC values and
dynamic heap state

e sanp_ru_tinme, sanp_ru_ovfl - user domain sam-
pling experiments that capture relative PC values and system
resource usage

Profiling experiments produce the most compact experi-
ment datafiles, and incur the least amount of run-time overhead.

Synchronous Experiments

If an application is instrumented for a synchronous experi-
ment, function entry points are counted and recorded. At the
time of instrumentation, you choose which function entry points
to record. For each instrumented function entry that is executed
during runtime, a tracing record is recorded in the experiment
datafile.

Some function entry points have predefined trace wrappers,
all of which can betraced. However, if your desired function en-
try point does not have a predefined trace wrapper, than only
function entry pointswritten in C, C++, or Fortran can be traced.

6 Profiling

If no other experiment type has been specified with the
PAT_RT_EXPERI MENT run-time environment variable, the
profil and nprofil profiling experiments are the default
asynchronous experiments done at run-time. The profi |l ex-
periment is the default for a SSP mode application, and the
npr of i | experiment isthe default for aM SP mode application
(the PC for only SSP 0 is recorded by default).

Profiling experiments add the lowest overhead to the instru-
mented applications and generate the most compact experiment
data file. These experiments sample the PC every 10 millisec-
onds. Program counter sampling is done by the operating sys-
tem. It is not in the user domain. The profiling rate is currently
fixed, but future enhancementswill allow the rateto have ahigh-
er resolution and to be changed at run-time.

Having collected the state of the PC during run-time, the
CrayPat report can show the distribution of the PCs, and map the
addresses to the source code line corresponding to the address.
Reports can also aggregate the PCs per code block or per func-
tion.

Profiling is a common performance evaluating process
available on every UNIX system, including Cray PVP and Cray
M PP computer systems.

7 Sampling

The sampling experiments (those titled beginning with
“sanp”) aresimilar to the profiling experiments, except the PC
is recorded in the user domain with a timestamp. Because the
sampling is conducted in the user domain, sampling has alarger
run-time overhead than profiling. But because each PC istimes-
tamped, more is known of the control flow of the application.

Theinterrupt interval is by timer-based by default, set at 10
milliseconds. Thisisthe fastest rate at which sampling can occur
using timers. The value of therateisincreased at run-time using
the PAT_RT_RATE environment variable. Increasing the value
of the rate results in fewer samples recorded over a given time

span.

The interrupt interval can alternately be controlled by the
overflow of a HWPC event. This applies to the sampling exper-
iments that end with “ovf | ” . For example, to get an increased
rate, at the expense of higher runtime overhead, you can set the
PAT_RT_HWPC OVERFLOW environment variable to
P: 0: 0: 100000. The application at run-time samples the
state every 100,000 cycles.

Sampling in the user domain aso alows recording of
HWPC events. You can use the PAT_RT_HWPC environment
variable to record the state of user-specified HWPC events at
each interval.

Sampling also supports recording other states of the soft-
ware and hardware. The sanp_heap tine and
sanmp_heap_ovf | experiments sample the PC in addition to
the internal state of the dynamic heap. The sanp_ru_ti me
and sanp_r u_ovf | experiments sample the PC and the state
of the resources consumed by the application during runtime.
Some of the resource parameters collected include:

e page faults

e TLB misses

¢ number of system calls executed
e context switches

8 Tracing

The tracing experiments count the number of times an event
occurs, specifically, the number of times a function entry point
is entered and returned. Each time a traced function entry point
is executed various state information is recorded. Thisincludes:

¢ time function entered and returned

« valuereturned by function

» value of formal parameters to function
¢ cal stack trace and call stack size

« HWHPC event values when function entered and returned

CUG 2003 Proceedings 3

A number of trace function groups are predefined. They
represent function entry points that are related in function and
application. These groups include:

¢ MPI, SHMEM, UPC, CAF
» Pthreads

e OpenMP

. Heap

» System Calls

10

Having these predefined function groups allows recording
state unique to the group. This gives the CrayPat report facility
more information for further detailed analysis.

For example, if function entry points related to the dynamic
heap are traced, state information on the internals of the data
structures that manage the heap are also recorded. If MPI tracing
is selected, additional state such as rank and communicator in-
formation is recorded.

Theoverhead of tracing isthe highest of all experiments, es-
pecialy if the HWPC are activated. Depending on the applica-
tion and the programming model used, the experiment data file
created by an application instrumented for tracing is quite large
(on the order of hundreds of megabytes).

9 Application Programming I nterface

The CrayPat tool provides an Application Programming In-
terface (API) to provide you with finer control over the record-
ing of the state during run-time. The APl encompasses a number
of functions that you can insert into your application source
code. Thesefunctionsareonly activated in the instrumented pro-
gram. The API facilitates recording similar state to tracing.

The API functions available include:
« PAT profiling_state -activate or deactivate profiling
e PAT sanpl i ng_st at e - activate or deactivate sampling
e PAT tracing_st at e - activate or deactivate tracing

* PAT_record_ssp - activate or deactivate recording state
on SSPs

 PAT trace_user _| -recordan event trace with alist of
values

* PAT trace_user _v -record an event trace with an array
of values

» PAT trace_user -record an event trace

 PAT trace_functi on - activate or deactivate recording
state of instrumented function entry point

All of the API functions are available to C an C++. All but
PAT trace_user _| areavailableto Fortran.

4 CUG 2003 Proceedings

You can use the API to control the size of the experiment
data file by turning the state of data recording off and on at key
points. The API can aso be used to limit recording state, espe-
cially HWPC events, in certain programming models.

For example, since function entry points written in assem-
bly language can not be traced, placeaPAT_t r ace_user API
call before and after the reference to the function entry point to
trace, as shown here:

PAT_trace_user (“fo0”);
foo ();
PAT trace_user ("“);

Similarly, individual loops can be bracketed and are report-
ed by theinitial label. See the end of this paper for examples us-
ing the API.

10 Instrumenting an Application

The CrayPat tool pat _bui | d utility isused to instrument
an application without altering the original application. And, ex-
cept for any CrayPat API function calls added to the original ap-
plication source code, you are not required to recompile or
otherwiserebuild their application. Thepat _bui | d utility cre-
ates the instrumented application from the origina relocatable
files and original libraries. When pat _bui | d creates the in-
strumented application, it includes CrayPats run-time libraries
that facilitate the recording of run-time state.

By default (with no special options) pat _bui | d creates
an instrumented application that performs an asynchronous ex-
periment. If the PAT_RT_EXPERI MENT environment variable
is not set at run-time, the default experiment is profiling.

If the-t or- T optionsare specified, pat _bui | d creates
an instrumented application that performs a synchronous exper-
iment (tracing of function entry points).

See the end of this paper for examples of instrumenting ap-
plicationsusing pat _bui | d.

11 Executing the Instrumented Application

Once an application has been instrumented, it is executed in
the same way as the original. The instrumented application is
used in all the same ways the original application was used, ex-
cept now each time the instrumented application is executed, a
binary experiment datafileis created.

If the application is instrumented asynchronously, you can
execute the instrumented application multiple times, each time
as a different asynchronous (profiling or sampling) experiment.
There is no need to reinstrument the application to change the
type of asynchronous experiment.

If the application is instrumented as a tracing experiment,
you must reinstrument the application to trace additional func-
tion entry points. However, if you want a subset of the instru-
mented function entry points, setting the
PAT_RT_FUNCTION LIM TS environment variable at
run-time suppressesinstrumented function entry pointsfrom be-
ing recorded in the experiment datafile

There are anumber of environment variablesin the CrayPat
library that allow you to control variousrun-timefeatures. These
variables let you fine tune the run-time aspects of data collec-
tion, in addition to other details. Some of the more commonly
used run-time environment variables are:

e PAT_RT_EXPERI MENT - experiment type
e PAT_RT_RATE - profiling or sampling rate in microseconds

e PAT_RT_HWPC - HWPC events to record for each sample
or trace

e PAT_RT_HWPC_OVERFLOW - sampling rate in terms of
HWPC event overflow

e PAT_RT_FUNCTION_LIMTS - instrumented function
entry points to suppress

e PAT_RT_FUNCTI ON_MAX - maximum number of trace
records to record in data file

e PAT_RT_RECORD_SSP - SSPsto record for a MSP mode
program (default isto record SSP 0 only)

12 Generating a Report

The CrayPat pat _r eport utility analyzes state and event
data in the experiment datafile, created as a result of executing
the instrument application. It then produces a report from that
file which you can customize for content and format.

A report consists of information that is provided for any ex-
periment, such as the program name, its arguments, its environ-
ment, execution time, placement, etc., as well as performance
data that is specific to the type of experiment that was per-
formed.

The performance data is presented in one or more tables,
each having one or more columns of data values and a column
of labels, or key values. Like aspreadsheet pivot table, the report
table can have ahierarchical organization, with each higher level
showing totals of the values at the next lower level, and with the
flexibility to specify any order for the hierarchy.

For example, atable might show flops datalabeled by func-
tion name and SSP. In this case, there are two ways to organize
thetable. The can belineswith total flopsfor each function, each
followed by four lines showing the flops contributed by the indi-
vidual SSPs. Alternatively, there can be lineswith total flopsfor
each SSP, each followed by lines showing the flops contributed
by each function. For either aternative, agrand total of flopsfor
the whole program is also shown. The order of the labels speci-

fiedtothepat _report utility determineswhich alternativeis
used, and both alternatives can be shown in the same report.

Thepat _report utility can export the contents of the ex-
periment datafileto variousformats, including XML and tab- or
space-delimited flat data files, appropriate for spreadsheet pro-
gram such as Excel.

In particular, the pat _r eport utility can aggregate data
or keep it segregated by SSP, thread, and process. Reports dis-
play such detail as HWPC event values, call trees (caller-callee
relationships), and specia processing for the function groups
mentioned earlier.

13 Examples

In many cases, it is adequate to instrument an application for
profiling, which collects enough data to show time spent in each
function or subroutine (optionally broken out by line number,
process, SSP number, or any combination). The following
examples show some of the other possibilities.

pat _hwpc Example

The overall performance of an application is measured
without instrumenting it. For this SSP mode Fortran program,
the default report shows a variety of performance metrics based
on the HWPC events. Notethat for M SP mode applications, and
multi-process applications, the numbers can be shown by
process and by SSP, as well as for the whole application.

API Example

In the application used for the HWPC example, the regions of
interest are subroutines, each of which is caled as the entire
body of atiming loop. The simplest approach to performance
measurement in such casesisto instrument it to trace the subrou-
tines. Here, as an dternative, CrayPat API calls were inserted
into the source of the program to measure the performance of the
entire loops. The advantage of the APl method is that it works
even if the subroutine calls are inlined, and it has lower over-
head. The overhead is lower because a pair of API calls were
used to measurement each loop, instead of a pair of API callsto
measurement each iteration in each loop.

Cody Style Example

In this Fortran application, a sum-of-neighbors algorithm is
coded in five different styles, using loops, array syntax, intrin-
sics, etc. Each styleisin a separate subroutine, and the program
is compiled to prevent those subroutines from being inlined.
The program is instrumented to trace those subroutines, and at
run-time, enough HWPC event data is collected to calculate the
metrics of interest: megaflops rates and average vector lengths.
One of the arguments specifies the problem size, and each
subroutine is called with a sequence of problem sizes. Reports
are generated to show the overall performance for each subrou-
tine, as well asits performance as a function of problem size.

CUG 2003 Proceedings 5

IO Example

To investigate the 10O of this C program, it is instrumented to
trace the functions in the CrayPat Tr acel O, Tr aceFIl O, and
TraceAl Olist files. Several reports are generated to show the
overall 10 activity, the 10 by number of bytes transferred, and
where in the application call tree the 10 is performed

DM Example

This two-process Fortran MPI benchmark calls a series of
subroutines, each engagesin a particular pattern of communica-
tion. It is instrumented to sample the call stack by time, and
reports are generated to show the relative times consumed by
those subroutines, the time spent in the MPI and other subrou-
tines they call, and the load balance between the two processes.

14 Compatibility With Previous Cray Performance Tools

Previous Cray PVP and Cray MPP computer systems sup-
ported anumber of performance analysistools, all of which have
been replaced by CrayPat.

Performance tools on the Cray PV P systems and the equiv-
alent CrayPat experiments are as follows:
e ATExpert - tracing OpenMP, Pthreads, system calls
* Flowtrace- sanp_cs_ti nme and al tracing experiments
* hpm- pat _hwpc utility
» Jumptrace - tracing user functions

» Perftrace - sanp_pc_ti ne and al tracing experiments
capturing HWPC event values

e procstat - sanp_ru_time, tracing 1O, heap, system
cals

e prof - profil,nmprofil,sanmp_pc_time

Performance tools on the Cray M PP systems and the equiv-
alent CrayPat experiments are:

» MPP Apprentice - tracing MPI, SHMEM, UPC, CAF

e MPP pat - profil, nprofil, sanp_pc_ti ne, most
tracing experiments

15 Future Development

The CrayPat tool is currently early in its development. Op-
portunities for a number of enhancements have already been
identified, and work continues on a number of new features to
make CrayPat as fully-featured and more user-friendly.

One of our top prioritiesis to optimize, where possible, the
CrayPat run-time library to reduce the overhead of recording
software and hardware state. Thisis especially true when access-
ing HWPC, as a context switch is done every time the HWPC
events are acquired.

6 CUG 2003 Proceedings

Also, new software and/or hardware state are being consid-
ered for recording. For example, the No Forward Progress inter-
rupt is an event that signals a state of memory thrashing.

While collecting new state is important, the size of the ex-
periment data file needsto be more compact. Especially for trac-
ing experiments, the events recorded accumulate very quickly,
resulting in very large data files. A long running application, if
the sampling rate has not been reduced, also generatesvery large
experiment data files. Thisis another area for improvement.

Report evaluation, analysis, and display are being reimple-
mented. The report component needs to increase the rate that it
processes the experiment data file. It also requires enchance-
ments in the area of processing the special function groups.

This initial release of the CrayPat tool does not officially
support aGUI. An early GUI prototype, built on top of aninter-
active character-based interface called the PerfShell, was devel-
oped and has been evaluated by variousinternal users. Userswill
have access both to the PerfShell and the accompanying GUI
when it becomes available. No specific Programming Environ-
ment release has been identified for GUI and PerfShell availabil-

ity.

The Performance API (PAPI) provides a consistent inter-
face across hardware platforms in accessing hardware perfor-
mance counters. This project is managed by the Innovative
Computer Laboratory at the University of Tennessee. The Cray
X1 PAPI will be available for download from

http://icl.cs.utk.edu/projects/papi/

by June 2003.
16 Acknowledgements

The authors would like to thank colleagues of the Program-
ming Environments and Testing group, and users in the Bench-
marking and Applications group at Cray Inc. in Mendota
Heights, MN for their contributions during the development, im-
plementation, and testing of CrayPat.

17 Summary

CrayPat, a single point of entry into Cray X1 performance
analysis, supports multiple levels of paralelization. It records
various software and hardware state during run-time of instru-
mented applications. The instrumented application is executed
multiple times and in the same manner as the original applica-
tion. An APl is supported to provide you finer control over what
parts of an application the state is recorded, how much state is
recorded, and when the state is recorded.

The resulting data can be viewed in a variety of ways, de-
pending on the data collected and the programming model used
by the application.

About the Authors

Steve Kaufmann and Bill Homer are Software Engineersin
the Programming Environment group at Cray Inc. They can be
reached at Cray Inc., 1340 Mendota Heights Road, Mendota
Heights, MN 55122, or email at sbk@ray. comor hom
er @r ay. com respectively

CUG 2003 Proceedings 7

pat _hwpc Example

$ pat _hwpc naskern

Conmmand execut ed:

Exit status 0
Host nanme & type
Qperating system
Text page size 16 Moytes
O her page size 16 Moytes
Start time Thu May 8
End tinme Thu May 8
El apsed tine 3.147 seconds
User tine 1. 887 seconds
Systemtine 1. 109 seconds
Logi cal pe: 0 Node: PI D
P counter data
CPU Seconds
Cycl es 1381.
I nstructions graduated 222.
Branches & Junps 10.
Branches mi spredicted 0
Correctly predicted 9
Vector instructions 52.
Scal ar instructions 169.
Vect or ops 2412.
Vector FP adds 585.
Vector FP multiplies 557.
Vector FP divides etc 12.
Vector FP misc 19.
Vector FP ops 1175.
Scal ar FP ops 7
Total FP ops 1183.
FP ops per | oad
Scal ar i nteger ops 15.
Scal ar menory refs 20.
Vector TLB m sses 0
Scal ar TLB mi sses 0
Instr TLB nisses 0
Total TLB misses 0
Dcache references 11
Dcache bypass refs 8
Dcache mi sses 8
Dcache hits 3
Vector integer adds 3
Vector | ogical ops 152.
Vector shifts 57
Vector int ops 213.
Vect or | oads 685.
Vector stores 324.
Vector nenory refs 1010.
Scal ar menory refs 20.
Total nmenory refs 1030.
Aver age vector length
A-reg Instr 94.
Scal ar FP Instr 7
Syncs Instr 12.
Stall VLSU 2

. I naskern

sn801b crayxl 400 MHz
UNI COS/ np 0.0.1_unrel eased-irixdev-work_sv2-X1l 05080403

15: 46: 03 2003
15: 46: 06 2003

60%
35%

6831

532M sec
922M sec
019M sec

. 261M sec
. 758M sec

950M sec
972M sec
304M sec
222M sec
634M sec
950M sec
597M sec
403M sec

. 627M sec

029M sec

748M sec
200M sec

. 000M sec
. 001M sec
. 000M sec
. 001M sec
. 889M sec
.311M sec
. 880M sec
.010M sec
.561M sec

406M sec

. 743M sec

710M sec
935M sec
594M sec
528M sec
200M sec
728M sec

221M sec

. 627M sec

821M sec

. 334secs

1. 904457
2631068634
424545101
19080619
497848
18582771
100841062
323704039
4594129936
1114530314
1061989111
24663146
37321274
2238503845
14524395
2253028240
1.148
29991061
38470129
755

992

405

2152
22642232
15827897
16910661
5731571
6781904
290250040
109969332
407001276
1306333248
618174476
1924507724
38470129
1962977853
45. 558
179439097
14524395
24417008
933456649

sec
cycl es
i nstr
i nstr

m sses 2.
m sses 97.
instr 23.
instr 76.

ops
ops
ops
ops
ops

ops 99.
ops 0.

ops
fl ops/| oad
ops

refs 1.

m sses
m sses
m sses
m sses

refs 58.
refs 41.
nm sses 74.
hits 25.

ops
ops
ops
ops
refs
refs

refs 98.
refs 1.

refs

instr
i nstr
instr
cl ks

609%
391%
753%
247%

355%
645%

960%

857%
143%
686%
314%

040%
960%

CUG 2003 Proceedings 8

St al |

Vect or
Vect or
Vect or
Vect or
Vect or

VU

Load All oc
Load | ndex
Load Stride
Store Alloc
Store Stride

685.

343.
323.
185.

. 842secs

275M sec

. 008M sec

149M sec
717M sec
204M sec

1936861589
1305076790
15900
653513416
616505004
352713815

cl ks
refs
refs
refs
refs
refs

CUG 2003 Proceedings 9

APl Example

$ pat_build -w -T main -f naskern naskern+trace

$ PAT_RT_RECORD_SSP=0-3 PAT_RT_HWPC='P: *:0, P:25: 1" aprun ./naskern+trace > naskern. stdout
$ pat _report -d nflops,P:0:0,vl -b function, ssp naskern+trace+118777tt . xf

Experinent: trace

Experinent data file:
/ pesi ni pt np/ honer/ cpat _bui | d/ 20/ sr ¢/ denos/ nsp/ nasker n+t race+118777tt . xf

Current path to data file:
/ pt np/ honer / cpat _bui | d/ 20/ sr c/ denos/ nsp/ nasker n+trace+118777tt . xf

Original program
/ pt np/ homer / cpat _bui | d/ 20/ src/ denos/ nsp/ naskern

I nstrunented program
/ pesi i pt np/ honer/ cpat _bui | d/ 20/ src/ denos/ nmsp/ . / nasker n+trace

Program arguments: <none>

Traced functions:

__pat_api _profiling_state .../src/lib/backend/api.c
__pat_api _record_ssp ...Isrc/lib/backend/ api.c
__pat_api _sanpling_state .../src/lib/backend/api.c
__pat_api _trace_function .../src/lib/backend/api.c
__pat_api _trace_user ...Isrc/libl/backend/ api.c
__pat_api _trace_user_v ...Isrc/lib/backend/ api.c
__pat_api _tracing_state ...Isrc/libl/backend/ api.c
_exit .../libc/src/proc/exit.c
execve .../libc/src/proc/execve.c
exit .../libc/src/gen/cuexit.c
fork .../libc/src/proc/fork.c
| ongj np ==NA==
mai n .../l denos/ nsp/ ../ naskern. f
pthread_create .../lib/libpthread/src/pt.c
Not es:

Har dwar e performance counter val ues collected for:

P:0:0

P:1:0

P:2:0

P:3:0

P:4:0

P:5:0

P:6:0

P:7:0

P:8:0

P:9:0

P:10: 0

P:11:0

P:12: 0

P:13:0

P:14: 0

P:15: 0

P:16: 0

P:17:0

P:18: 0

P:19:0

CUG 2003 Proceedings 10

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

P90V UUDTUUOUTOUDD
O0OO0OO0OO0OORrROOOOO

Table 1: -d nflops, P:0:0, vl
-b pe,thread, function, ssp

MFLOPS P:0:0 Avg VL PE
Thr ead
Function
SSP

1202.39 749365025 45.55 Tota
1202. 39 749365025 45.55 pe.O

thread. 0
7140. 87 23496076 64.00 MXM

1792. 22 23404284 64.00 ssp.0
1801. 11 23288721 64.00 ssp.1
1787.55 23465360 64.00 ssp.2
1785. 22 23496076 64.00 ssp.3
3726. 23 31869814 59.95 EMT
945. 09 31592816 59.93 ssp.0
931. 04 31826946 59.96 ssp.l
929. 85 31869814 59.96 ssp.2
937. 85 31593568 59.96 ssp.3

3022. 06 32603389 37.76 VPENTA
769. 09 32027748 37.76 ssp.0
767. 22 32105889 37.76 ssp.l
764. 02 32240547 37.76 ssp.2
755.51 32603389 37.76 ssp.3

1620. 50 78313597 29.04 BTRI X
829. 83 77497992 28.55 ssp.0
266. 44 78313597 29.49 ssp.l
266. 81 78203738 29.49 ssp.2
268. 21 77796118 29.49 ssp.3

1110. 96 78313210 61.33 CHOLSKY
288. 59 77609037 61.03 ssp.0
279. 17 77280659 61.53 ssp.l
277.16 77839894 61.53 ssp.2
274.00 78313210 61.27 ssp.3

788.12 252811289 42.03 CFFT2D
197.91 251749972 42.04 ssp.0
197.42 252290199 42.03 ssp.1

CUG 2003 Proceedings 11

197.34 252392686 42.03 ssp. 2
197.01 252811289 42.03 ssp. 3
761.52 127927386 56.37 GMIRY
580.09 127927386 57.84 ssp.0
96.69 80004853 49.43 ssp.1
94.69 81694289 49.43 ssp.2
99.04 78131379 49.43 ssp.3
43.46 123964455 31.88 mmin
43.35 123964455 27.35 ssp.0
0.07 63104348 35.01 ssp.1
0.07 61799749 35.59 ssp. 2
0.07 60095489 35.01 ssp.3
0.00 65809 0.25 (N A)
0.00 25755 0.25 ssp.0
0.00 65809 0.00 ssp.1
0.00 42006 0.00 ssp.2
0.00 65767 0.00 ssp.3

El apsed tinme in seconds for processes
Process 118777: date: begin: Wed Apr 30 15:55:12 2003
end: Wed Apr 30 15:55:14 2003
2.206793

utime: 1.836220
stinme: 0.256458

El apsed tine in real-tinme clocks for threads

pe/ t hread 0/ 0: 215104660 rtc (2.1510466 sec)

CUG 2003 Proceedings 12

Coding Style Example

$ pat_build -w -T ‘/~count/ ising ising+trace

$ PAT_RT_RECORD SSP=0-3 PAT_RT_HWPC="P:*:0,P:25:1" ising 8

$ pat _report -d nflops,flops,vl -b function ising+trace+5376tt. xf
Experinent: trace

Experinent data file:
/ pesi i pt np/ honer/ cpat _bui | d/ 20/ src/ denos/ msp/ i si ng+trace+5376tt . xf

Current path to data file:
/ pt mp/ honer / cpat _bui | d/ 20/ src/ denos/ msp/ i si ng+t race+5376tt . xf

Oiginal program
/ pt np/ honer / cpat _bui | d/ 20/ sr ¢/ denps/ nsp/i si ng

I nstrunented program
/ pesi i pt np/ honer/ cpat _bui | d/ 20/ src/ denos/ nmsp/ . /i sing+trace

Program argunents: <none>

Traced functions:

_exit ...llibc/src/proc/exit.c
count1_ ...l denos/ msp/../ising.f90
count 2_ .../ denmos/ nsp/../ising.f90
count 3_ .../ demos/ nsp/../ising.f90
count4_ .../ denmos/ nsp/../ising.f90
count5_ .../ denmos/ nsp/../ising.f90
execve ...1/1ibc/src/proc/execve.c
fork ...llibclsrc/proc/fork.c
| ongj mp ==NA==
mai n .../ denmos/nsp/../ising.f90
pthread_create .../lib/libpthread/src/pt.c
try_ .../ denos/nsp/../ising.f90
Not es:

Har dwar e performance counter val ues collected for:

pP:0:0

P:1:0

P:2:0

P:3:0

P:4:0

P:5:0

P:6:0

P:7:0

P:8:0

P:9:0

P:10: 0

P:11: 0

P:12: 0

P:13:0

P:14: 0

P:15: 0

P:16: 0

P:17:0

P:18: 0

P:19:0

P: 20: 0

P:21: 0

P:22: 0

CUG 2003 Proceedings 13

23:
24:
25:
26:
27:
28:
29:
30:
31:

P9V VUUTOUTDD
Oocoocoocoocor oo

Table 1: -d nflops,flops, vl
-b function

MFLOPS | FLOPs | Avg. VL | Function

68. 76 | 319243515 | 54.09 | Total

| 503.54 | 47070782 | 55.90 |count3_
| 491.14 | 47017686 | 55.90 |count2_
| 480.29 | 46495370 | 39.08 |count5_
| 395.82 | 46495250 | 61.38 |count4
| 342.03 | 56931216 | 56.55 |countl_
| 26.64 | 9415385 | 55.78 |main

| 17.70 | 65817826 | 55.84 |try_

| 0.00 | 0| 0.50 |(NA)

| 0.00 | 0| 6.37 | exit

|

El apsed tinme in seconds for processes

Process 5376: date: begin: Fri May 2 14:56:15 2003
end: Fri May 2 14:56:18 2003
2. 829560

utinme: 1.479112
stinme: 0.631095

El apsed tine in real-time clocks for threads
pe/ t hread 0/ 0: 268189105 rtc (2.68189105 sec)
$ pat _report -d flops,nflops,vl -b ssp,function, argunent?2 ising+trace+5376tt. xf

Table 1: -d flops, nflops, vl
-b ssp, function, argunent 2

FLOPs | MFLOPS | Avg.VL | SSP
| Functi on
| Ar g#2

319243515 | 198.37 | 54.09 | Tot al

137055978 | 85.16 | 54.46 |ssp.0

65817826 | 48.93 | 55.84 |try_

I
I I I [(0)
| 14435740 | 350.23 | 56.50 |countl_

CUG 2003 Proceedings 14

| 3178496 | | I (

| 2798436 | | | (

| 2368256 | | | (

| 2020097 | | | (

| 1644036 | 397.37 | 52.02 |(102)
| 1184960 | | | (

| 840051 | | | (

| 401408 | | | (

I

11922555 | 518.56 | 39.05 |count5_

| 2670086 | 485.20 | 45.06 | (128)
| 2277014 | 631.05 | 42.95 |(122)
| 1991030 | 570.99 | 40.83 | (116)
| 1639257 | 620.14 | 38.36 | (109)
| 1331514 | 457.63 | 35.88 | (102)
| 998390 | 472.96 | 32.35 |(92)
| 675546 | 344.56 | 28.47 |(81)
| 339718 | 441.81 | 34.71 |(64)
I

11900617 | 522.18 | 55.83 |count3_

| 2623744 | 563.46 | 63.97 |(128)
| 2309260 | 575.23 | 60.97 |(122)
| 1953232 | 563.86 | 57.97 |(116)
| 1665388 | 510.29 | 54.47 |(109)
| 1354440 | 498.71 | 50.97 |(102)
| 975088 | 432.93 | 45.97 |(92)
| 690505 | 413.19 | 40.47 |(81)
| 328960 | 437.22 | 63.79 |(64)
I

11887457 | 506.21 | 55.83 |count?2_

| 2621699 | 531.82 | 63.97 |(128)
| 2307279 | 573.44 | 60.97 |(122)
| 1951379 | 554.93 | 57.97 |(116)
| 1663599 | 510.06 | 54.47 |(109)
| 1352779 | 460.07 | 50.97 |(102)
| 973619 | 428.42 | 45.97 |(92)
| 689164 | 352.33 | 40.46 |(81)
| 327939 | 562.52 | 63.79 |(64)
|

11676398 | 403.69 | 61.36 |count4_

| 2506864 | 283.23 | 63.73 |(128)
| 2262246 | 491.40 | 62.90 |(122)
| 1930936 | 436.86 | 62.01 |(116)
| 1618705 | 452.79 | 60.89 |(109)
| 1321206 | 458.48 | 59.69 |(102)
| 960664 | 455.39 | 57.69 |(92)
| 664241 | 431.39 | 55.36 |(81)
| 321536 | 513.99 | 63.31 |(64)
| —==—==—=—=====
9415385 | 75.47 | 55.78 |main
| | | (0x400040f f f da0)
0] 0.00]| 0.50 |(NA
| | | (0)
0| 0.00]| 6.37 | exit
| | | (0)

CUG 2003 Proceedings 15

| —==========
60394975 | 58.62 | 53.92 |ssp.1

| 14085574 | 336.77 | 56.57 |countl_
I I I [(0)

| 11681199 | 494.33 | 55.93 |count3_
I I I [(0)

| 11667759 | 479.40 | 55.92 |count2_
I | I [(0)

| 11589576 | 394.71 | 61.38 |count4_
I I I [(0)

| 11370867 | 455.75 | 39.08 |count5_
I I I [(0)

| 0] 0.00] 0.00 |try_

I I I [(0)

| 0] 0.00] 0.00|(NA

I I I [(0)

| 0| 0.00| 0.00 |main

I I I [(0)

| 0] 0.00| 0.00 | _exit

I I I [(0)

I

61402911 | 60.79 | 53.81 |ssp.2

| 14238198 | 341.43 | 56.57 |countl_
I | I | (0)

| 11922531 | 487.53 | 39.07 |count5_
I I I [(0)

| 11807767 | 498.18 | 55.93 |count3_
I I I [(0)

| 11794711 | 490.83 | 55.93 |count2_
I I I [(0)

| 11639704 | 394.12 | 61.39 |count4_
I I I [(0)

| 0| 0.00| 0.00 |try_

I I I [(0)

| 0| 0.00| 0.00|(NA

I I I [(0)

| 0| 0.00| 0.00 [main

| | I | (0)

| 0| 0.00| 0.00 | exit

I I I [(0)

|

I
I
|
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
|
I
I
|
I
I
|
I
I
I
I
I
I
I
|
I
I
|
I
I
|
| 60389651 | 60.80 | 53.95 |ssp.3
I

|

I

I

|

I

I

I

I

I

I

I

|

I

I

|

| 14171704 | 339.79 | 56.57 |countl_
I I I [(0)

| 11681199 | 500.13 | 55.93 |count3_
I | I | (0)

| 11667759 | 488.61 | 55.92 |count2_
I I I [(0)

| 11589572 | 390.91 | 61.38 |count4
I I I [(0)

| 11279417 | 462.09 | 39.12 |count5_
I I I [(0)

| 0] 0.00] 0.00 |try_

I | I [(0)

| 0] 0.00| 0.00|(NA)

I I I [(0)

| 0| 0.00| 0.00 |main

CUG 2003 Proceedings 16

I [(0)
0.00 | 0.00 | _exit

I
| 0
| I | (0)

El apsed tine in seconds for processes

Process 5376: date: begin: Fri May 2 14:56:15 2003
end: Fri May 2 14:56:18 2003
2. 829560

utinme: 1.479112
stinme: 0.631095

El apsed time in real-time clocks for threads

pe/thread 0/ 0: 268189105 rtc (2.68189105 sec)

CUG 2003 Proceedings 17

IO Example

$ pat_build -t $PAT_SV2/1ib/Tracel O -t $PAT_SV2/1ib/ TraceAl O -t $PAT_SV2/1i b/ TraceFi o equake
equake+tio

$ aprun equake+tio < equake.5

$ pat _report -d tine%tine,traces,io -b function equake+ti 0+58269t. xf

Experinent: trace

Experinent data file:
/ host s/ da/ pt mp/ sbk/ 127124847- ssp/trace-sn702- 31010/ equake+t i 0+58269t . xf

Current path to data file:
[pt np/ sbk/ 127124847- ssp/ trace-sn702-31010/ equake+t i 0+58269t . xf

Origi nal program
[user s/ sbk/ SV2/ PAT- extral t est s/ Sour ce/ ssp/ equake

I nstrument ed program
/ host s/ da/ pt np/ sbk/ 127124847- ssp/ equake+ti o

Program argunents: <none>

Traced functions:

_exit .../libc/src/proc/exit.c
acquire_lock .../src/np/sv2/libnutexs.c
cl ose .../libc/src/sys/close.c
execve ...1/libclsrc/proc/execve.c
init_|lock ...Ilibc/src/mp/librutexc.c
| seek .../libclsrc/sys/lseek.c
mai n ...l Sourcel/ssp/../equake.c
open ...1/libclsrc/sys/open.c
read ...1/libcl/src/sys/read.c
release_lock .../libc/src/np/libnmutexc.c
spi n_| ock ...Isrc/np/sv2/libnutexs.c
stat _| ock ...Ilibc/src/mp/libmutexc.c
wite .../libc/src/sys/wite.c
Not es:

Har dwar e performance counter val ues collected for:

P:0:0

P:1:0

P:2:0

P:16: 0

P:17:0

Table 1: -d time%time,traces,io

-b function

Ti me% | Time | Traces | |Input | CQutput |Function
100. 0% | 310.319100 | 555 | 1648240 | 3106 | Tot al
| == m ot el
| 99.1%| 307.470239 | 1] -- -- | main
| 0.6% | 2.013595 | 403 | 1648240 | -- |read
| 0.3%] 0.813111 | 150 | -- 3106 |wite
| 0.0%]| 0. 019983 | 0 | - -- [(NA)
| 0.0% | 0. 002172 | 1] - -- | _exit
|

CUG 2003 Proceedings 18

El apsed time in seconds for processes
Process 58269: date: begin: Wed May 7 17:14:50 2003
end: Wed May 7 17:20:01 2003
311. 266656
utine: 299.462732
stime: 3.596126

El apsed tine in real-time clocks for threads

pe/ t hread 0/ 0: 31032347568 rtc (310.32347568 sec)

$ pat_report -d tine,traces -b function,arl:return equake+ti 0+58269t. xf

Table 1: -d tine,traces
-b function,ar1:return

Time | Traces | Function
| Ar g#1: Return

310. 319100 | 555 | Tota
| ___
| 307.470239 | 1 |main
| | | (1):0
| 2. 013595 | 403 | read
T TETTrTTERRT TR
|| 2.009012 | 402 | (0): 4096
|| 0.004583 | 1](0): 1648
| | —==—==—=—=======
| 0.813111 | 150 |write
T P TTRRTRSS
[0.214141 | 27 1(2): 10
[| 0116898 | 28 [(2): 4
[0. 089263 | 17 1(2):8
| 0.049679 | 10 [(1): 69
| 0.047720 | 8 1(1):68
[0. 042913 | 7 1(1): 67
| 0.040001 | 8 1(2):1
| 0.032051 | 6 1(2):43
[0.026901 | 5((2):5
| 0.025619 | 6 1(2):3
| 0.022529 | 5 (2): 24
[0.017038 | 41(2):9
| 0.015015 | 2 1(1):70
| 0.012926 | 31(2):16
[0.012023 | 31(2):2
| 0.008869 | 2 1(2):13
[0. 005761 | 11(2):19
[0.004934 | 1](2):18
| 0.004400 | 11(2):35
[0.004241 | 1](2):17
| 0.004160 | 11(2): 22
| 0.004092 | 11(2):6
[0.004019 | 1](2):27
| 0.004000 | 11(2):20
| 0.003919 | 11(2):36

CUG 2003 Proceedings 19

| | —==—==========
| 0.019983 | 0| (N A

| | | (0):0

| 0.002172 | 1] exit

| | | (0):0

|

El apsed tinme in seconds for processes
Process 58269: date: begin: Wed May 7 17:14:50 2003
end: Wed May 7 17:20:01 2003

311. 266656

utinme: 299.462732
stinme: 3.596126

El apsed tine in real-time clocks for threads

pe/ t hread 0/ 0: 31032347568 rtc (310.32347568 sec)

$ pat _report -d traces -b calltree equake+ti 0+58269t. xf

Table 1: -d traces
-b calltree

Traces |Calltree

555 | Tota

405 |arch_init
| readpackfile

399 | fscanf
| _doscan

| 296 | nunber

| | _filbuf
| | read

| 103 | _fil buf
| | read

I

117 |fprintf
| _doprnt

|

|] 65 |wite

| 17 | _xfl sbuf
|] | wite

CUG 2003 Proceedings 20

N

|] 35 | _xfl sbuf
|] | wite
[

27 |fflush
| _xfl sbuf
| wite
4 | arch_readnodevect or
| fscanf
| _doscan
| _fil buf
| read

1 |<no caller>
| main
1 |exit
| _exit
0 | (NN A) (excl usive)

El apsed tine in seconds for processes

Process 58269: date: begin: Wed May 7 17:14:50 2003
end: Wed May 7 17:20:01 2003
311. 266656

utinme: 299.462732
stinme: 3.596126

El apsed time in real-time clocks for threads
pe/ t hread 0/ 0: 31032347568 rtc (310.32347568 sec)
$ pat _report -d traces -b function,callers equake+ti 0+58269t. xf

Table 1: -d traces
-b function,callers

Traces | Function
| Cal | er

555 | Tota

403 |read
| _filbuf

296 | nunber
| _doscan
f scanf
readpackfile
arch_init
mai n
_doscan
f scanf

| 103 | readpackfile

| | arch_init

| | main

| 4 | arch_readnodevect or

CUG 2003 Proceedings 21

[T | main
| | | —==========
| 150 |wite

| 1] 35 | _doprnt

| 1] | fprintf

[| main

|1 27 |fflush

[| main

|1 17 |fwite

| 1] | _dowite
| _doprnt

| 1] | fprintf
| nai n

|] 71 |fwite
[| _dowite
[| _doprnt
[| fprintf
T T
[T 65 | main
[T 6 | readpackfile
[T | arch_init
[T | main
[S==========
| 1 | main
| <no caller>

1 |_exit
0 [(NA

I
I
| | exit
I
I

El apsed tine in seconds for processes
Process 58269: date: begin: Wed May 7 17:14:50 2003
end: Wed May 7 17:20:01 2003
311. 266656
utine: 299.462732
stime: 3.596126

El apsed tine in real-tinme clocks for threads

pe/ t hread 0/ 0: 31032347568 rtc (310.32347568 sec)

CUG 2003 Proceedings 22

DM Example

$ pat_build PMB-MPI 1 PMB- MPl 1+async

$ PAT_RT_EXPERI MENT=sanp_cs_time npirun -np 2 ./PMB-MPI l+async

$ pat_report -b ctl,ct2 -s percent=rel ative PMB-M| 1+async+26200sd. xf
Experinment: sanp_cs_tine

Experinent data file:
/ pesi i pt np/ honer/ Pal | as/ pnb/ src/ PMB- MPI 1+async+26200sd. xf

Current path to data file:
/ pt mp/ honer/ Pal | as/ pnb/ src/ PMB- MPl 1+async+26200sd. xf

Oiginal program
/ pt np/ hormer / Pal | as/ pnb/ src/ PVB- MPI 1

I nstrunented program
/ pesi i pt np/ honer/ Pal | as/ pnb/ src/./ PVB- MPl 1+async

Program argunents: <none>

Traced functions:

_exit .../libc/src/proc/exit.c
execve .../libc/src/proc/execve.c
mai n .../ Pallas/pnmb/src/pnb.c
Table 1: -d sanpl es% cum sanpl es% sanpl es, counters
-b ctl,ct2

Sanmp% | Cum Samp% | Sanp | Cal | tree#l

| | | __dmexit_barrier

| Cal I tree#2
100. 0% | 100.0% | 593 | Total
| == m ot eieiiillooo.
| 99.7% | 99.7% | 591 |main
[oo
|] 17.6% | 17.6%| 104 |Init_Buffers
|| 12.2% | 29.8% | 72 | Exchange
|| 8.8%| 38.6% | 52 | Al l gat herv
|| 8.3%| 46. 9% | 49 | Pi ngPong
|1 7.1%| 54. 0% | 42 | Pi ngPi ng
|| 6.9%| 60. 9% | 41 | Sendrecv
|| 6.9%| 67.9% | 41 | Al | gat her
|| 6.4%| 74.3% | 38 | Reduce_scatter
|| 6.4%| 80. 7% | 38 | All reduce
|] 5.6%]| 86. 3% | 33 |Alltoall
|1 3.7%| 90. 0% | 22 | Qut put
|1 3.2%| 93. 2% | 19 | Bcast
|1 2.9%| 96. 1% | 17 | Reduce
[l 2.7%]| 98. 8% | 16 | Warm_Up
|| 0.7%]| 99. 5% | 4 | (NA
|| 0.3%| 99. 8% | 2 | Basi c_I nput
|| 0.2%| 100. 0% | 1 | Init_Conmuni cator
| | —============
| 0.3%| 100. 0% | 2 |exit
|
|

El apsed tine in seconds for processes

CUG 2003 Proceedings 23

Process 26197: date: begin: Mon May 5 18:21:21 2003
end: Mon May 5 18:21:27 2003

6. 034060

utime: 5.063177
stinme: 0.797301

Process 26200: date: begin: Mon May 5 18:21:21 2003
end: Mon May 5 18:21:27 2003

6. 052026
utime: 4.673398
stime: 1.157005
El apsed tine in real-tinme clocks for threads

pe/ t hread 0/ 0:
pe/ t hread 1/ 0:

571676677 rtc (5.71676677 sec)
575910908 rtc (5.75910908 sec)

$ pat_report -d sanp%sanp -b ct -s percent=rel ati ve PMB-MPI 1+async+26200sd. xf

Table 1: -d sanp% sanp
-b ct

Sanp% | Samp |Calltree

100.0% | 593 | Total

17.6% | 104 |[Init_Buffers
| | set_buf
| | ass_buf
12.5% | 74 | Exchange

I

I

|| 51.2% | 21 | MPI _CRAY_recv_wait (excl usive)
|| 36.6% | 15 | bcopy

|] | | __bcopy_wordstrm

|| 12.2% | 5 | __bcopy_prv

N

| 2.4% | 1 | MPl _Recv(excl usive)

I

| 79.2% | 19 | MPI _CRAY_r equest _send
| 8.3%| 2 | MPI _CRAY_progress_i ncom ng
| 8.3%| 2 | MPI _I send(excl usi ve)
| 4.2% | 1 | MPl _CRAY_progress_ack
I
8.1% | 6 | MPI _Waitall
| = e el
| 33.3% | 2 | MPl _Waitall (exclusive)
| 33.3%| 2 | MPI _CRAY_progress_ack
| 16.7% | 1 | MPI _CRAY type_free

CUG 2003 Proceedings 24

93. 8% | 30 | MPI _CRAY_bcast (excl usi ve)

3.1% | 1 | bcopy
3.1% | 1 |__bcopy_prv

|
|
| I | __bcopy_wordstrm
|
|

I
I
I
I
I
I
I
| 37.3%| 19 | MPI _CRAY_gat herv
I
I
I
I
I
I
I

| 57.9% | 11 | MPI _CRAY_gat herv(excl usi ve)
| 42.1% | 8 | bcopy
H R LR EEEEEEEEES
|| 87.5% | 7 | __bcopy_wordstrm
|1 12.5% | 1 | bcopy(excl usive)
1. 9% | 1 |MPl_Barrier

| | __bcopy_wordstrm

57.1% | 28 | MPI _Recv
| | MPI_CRAY recv_wait
71. 4% | 20 | MPI _CRAY_recv_wai t (excl usi ve)
28.6% | 8 | bcopy

0.8% | 20 | MPI _Send
2.0% | 1 |MPI_Barrier

| | __bcopy_wordstrm

81. 0% | 34 | MPl _Recv
| | MPI_CRAY_recv_wait
| == m ot i
73.5% | 25 | MPI _CRAY_recv_wai t (excl usi ve)
26.5% | 9 | bcopy

1.9% | 5 | MPl _Wai t
| 80.0% | 4 | MPl _CRAY_progr ess_ack
| 20.0% | 1 | MPI_Wait (exclusive)
I

7.1% | 3 | Ml _I send
g
| 66.7% | 2 | MPI _CRAY_r equest _send
| 33.3%| 1 | MPI _I send(excl usi ve)

CUG 2003 Proceedings 25

| 1]] 48.7% | 19 | MPI _CRAY_send_wai t

[T == o o o e oo o e o e
|11 84.2% | 16 | MPI _CRAY_pr ogress_i ncomi ng

L R R
[1111] 50.0% | 8 | MPI _CRAY_progress_i ncom ng(excl usi ve)

[T111] 50.0% | 8 | bcopy

[1111 | __bcopy_wordstrm

[T

[111] 15.8% | 3 | MPI _CRAY_send_wai t (excl usi ve)

[T

[11| 17.9% | 7 | MPl _Sendr ecv(excl usi ve)

[11] 17.9% | 7 | MPI _CRAY_r equest _recv

[11] 12.8% | 5 | MPI _CRAY_progress_i ncom ng

Il mmmmm e e e e
|111] 80.0% | 4 | MPl _CRAY_pr ogress_i ncom ng(excl usi ve)

[111] 20.0% | 1 | bcopy

[IT]

[11] 2.6%]| 1 | VPl _CRAY type_ free

[T

|11 4.9% | 2 | MPI _Barrier

[11

|| 6.9%| 41 | Al | gat her

[mmmm e
|| 97.6% | 40 | MPI _Al | gat her

[l mmmmmm e e e
|1]] 60.0% | 24 | MPI _CRAY_gat her
R e
[111] 66.7% | 16 | MPI _CRAY_gat her (excl usi ve)

[111] 25.0% | 6 | bcopy

|11 | | __bcopy_wordstrm

[T 8.3%] 2 | __bcopy_prv

[T

|1]1] 40.0% | 16 | MPl _CRAY_bcast

Il mmmmm e e e e e e
[111] 75.0% | 12 | MPI _CRAY_bcast (excl usi ve)

[111] 25.0% | 4 | bcopy

[1111 | | __bcopy_wordstrm

[11]

|1l 2.4%| 1 | WPl _Barrier

[11

|| 6.4%| 38 | Reduce_scatter

[= e e o
| 1] 97.4% | 37 | MPl _Reduce_scatter

[T == = o e e e o e
| 11| 51.4% | 19 | MPI _CRAY_reduce

I = e e e o oo e
[1]]] 52.6% | 10 | MPI _CRAY_r educe(excl usi ve)

|11 42.1% | 8 | MPI _CRAY_op_strm func_sunB

|11l 5.3%| 1 | MPI _CRAY_op_func_sunB8

[T

|11 43.2% | 16 | MPI _CRAY_scatterv
R
[111] 56.2% | 9 | MPl _CRAY_scatterv(excl usive)

[111] 31.2% | 5 | bcopy

[1111 | | __bcopy_wordstrm

[111] 12.5% | 2 | __bcopy_prv

[T

[11] 5.4%| 2 | MPl _Reduce_scatter (excl usive)

[T

[1] 2.6%| 1 |MPI_Barrier

CUG 2003 Proceedings 26

6. 4% | 38 | All reduce
| | MPI_Allreduce

I

[

[l

|| 72.4% | 21 | MPI _CRAY_r educe(excl usi ve)
|| 27.6% | 8 | MPI _CRAY_op_strm func_sunB
[1]

|| 23.7% | 9 | MPI _CRAY_bcast

[m oo e
|| 88.9% | 8 | MPI _CRAY_bcast (excl usi ve)

[1] 11.1%| 1 |__bcopy_prv

[

I

I

|| 50.0% | 16 | MPI _Al Il toal | (excl usive)
|| 43.8% | 14 | bcopy

[= e s
[1] 71.4% | 10 | __bcopy_wordstrm

| 1] 28.6% | 4 | bcopy(excl usive)

[l

|| 6.2%| 2 | __bcopy_prv

I

| 2.9% | 1 |Alltoall (exclusive)

| 2.9% | 1 |MPlI_Barrier

|

3.7%| 22 | Qutput

95. 5% | 21 | Di spl ay_Ti nes
| fflush

| _xflsbuf
| wite

| __wite
I

I

4.5% | 1 | MPI _Gat her

MPI _CRAY_gat her

3.2% | 19 | Bcast
| ___
| 94.7% | 18 | MPl _Bcast
| | | MPI _CRAY_bcast
[mmmmmmmm e e
||| 66.7% | 12 | MPI _CRAY_bcast (excl usi ve)
| 1] 33.3%| 6 | bcopy
[l mmmmmmm e e
|11] 83.3%| 5 | __bcopy_wordstrm
[1]] 16.7% | 1 | bcopy(excl usive)
[11
| 5.3%] 1 |MPI_Barrier
I

2.9% | 17 | Reduce

| | MPI _Reduce
| | MPI_CRAY_reduce

[l -mmmmmmm e e
| 1] 64.7% | 11 | MPI _CRAY_r educe(excl usi ve)
|]| 35.3%]| 6 | MPl _CRAY_op_strm func_sunB
[

|
I
I
2.7% | 16 | Wwarm Up

CUG 2003 Proceedings 27

[l

| 1] 31.2% | 5 | Pi ngPong

TR e P e e e e L LR T PR PR PP PP PP PEPEPEPE
||| 60.0% | 3 | MPl _Send

[||| 20.0% | 1 | Pl _Recv

[11] | | MPI_CRAY recv_wait

|11] 20.0% | 1 |MPl_Barrier

[T

|]] 25.0% | 4 | Al l gat her

[1] | | MPI_All gat her

HE TR e e e R e TR T TP TR L P e PEPPEP PR TRPLRPEP T
[111] 50.0% | 2 | MPI _CRAY_gat her

I]]]]==memmomemamee e aeeeaeiiaeiceaccccccececaeccaaacaaaananan
[T111] 50.0% | 1 | bcopy

RERRR | | __bcopy_wordstrm

[111[] 50.0% | 1 | MPl _CRAY_gat her (excl usi ve)

[T1TT

[I1]] 50.0% | 2 | MPl _CRAY bcast

I][] ==menmmmmmcamcmceeeaeemaaaicaeicccccccacececnceccacaacanaananan
11111 50.0%| 1 |bcopy

[T | | __bcopy_wordstrm

[1111] 50.0% | 1 | MPl _CRAY_bcast (excl usi ve)

[IT1]

[1] 12.5% | 2 |Alltoall

HL e e e e P T R PP LR L P e PEPPEPTERTRPERPEP T
|11l 50.0% | 1 |MPI_Alltoall

| 11| 50.0% | 1 |MPl_Barrier

[T

||| 12.5% | 2 | Al'l reduce

[1] | | MPI_Allreduce

[1] | | MPlI_CRAY bcast

I T T T e
[T111] 50.0% | 1 | bcopy

[T I | __bcopy_wordstrm

[1111] 50.0% | 1 | MPI _CRAY_bcast (excl usi ve)

[TTTT

[1] 6.2%] 1 | Bcast

[1] | | MPI _Bcast

| 1] | | MPlI_CRAY bcast

[11 | | bcopy

[11 I | __bcopy_wordstrm

|| 6.2%]| 1 | Reduce_scatter

[1] | | MPI_Reduce_scatter

[11 | | MPI_CRAY reduce

[Il 6.2%| 1 | All gat herv

[1] | | MPI_Allgatherv

[1] | | MPI_CRAY gat herv

[11 | | bcopy

[1] | | __bcopy_wordstrm

[1]

|| 0.3%| 2 | Basi c_| nput

LR e e LR R R PR L PR L PR PR PER R TER DR PERPEPERRRPERE
| 1] 50.0% | 1 | MPI _Bcast

[1] | | MPI_CRAY_ bcast

||| 50.0% | 1 | Construct_BLi st

[1] | | Set Bmark

[1] | | Get_Def | ndex

[1] I | LVR

[1]

|| 0.2%| 1 | I nit_Conmuni cat or

CUG 2003 Proceedings 28

0.2% |

| Set_Commruni cat or

| MPI_Commsplit

| MPI _CRAY_comm split
| MPI _CRAY_al | gat her
| MPl _CRAY_bcast

|

1 | Ml _Barrier

50. 0% | 1

2 |exit
| __dmexit_barrier
| 1 |__dmbarrier
nanosl| eep
__nanosl eep
sched_yield
__sched_yield

I
I
|
I
I
|
I
| 0.3%]|
|
I
I
I
I
I
I
I

El apsed ti

Process

me in seconds for processes

26197: date: begin: Mn My
end: Mon May
6. 034060

uti ne:
stinme:
dat e:

Process 26200:

uti ne:
stinme:

5.063177
0. 797301

begi n: Mon May
end: Mon May
6. 052026

4.673398
1.157005

5 18:21:21 2003
5 18:21:27 2003

5 18:21:21 2003
5 18:21:27 2003

El apsed tine in real-tinme clocks for threads

0/ 0:
1/0:

pe/ t hread
pe/t hread

$ pat _report

Table 1:

571676677 rtc (5.71676677 sec)
575910908 rtc (5.75910908 sec)

-d samp% sanp

-b fu, pe
Sanp% | Sanp | Function

| PE

100. 0% | 593 |Tota
| ___
| 17.5% | 104 | ass_buf
[o oo
|| 47.1% | 49 | pe. O
|| 52.9% | 55 | pe. 1
[
| 14.0% | 83 | __bcopy_wordstrm
[oo o
|| 44.6% | 37 | pe. O
|| 55.4% | 46 | pe. 1
[
| 11.3% | 67 | MPI _CRAY_recv_wait

-d sanp%sanp -b fu,pe -s percent=rel ative PMB-MPI 1+async+26200sd. xf

CUG 2003 Proceedings 29

| 48.5%| 32 |pe.O
| 51.5%| 34 |pe.1
I

| 18.6% | 8 |pe.0

| 81.4%| 35 |pe.1

| —==—======

3.9%| 23 |MPl_Send

| __
| 30.4% | 7 | pe.O

| 69.6%| 16 |pe.1

|

| 90.9%| 20
| 9.1%]| 2
I

| 47.6%| 10 |pe.0

| 52.4% | 11 |pe. 1

| —===—=—====
3.5% | 21 | _wite
3.0% | 18 | MPI _CRAY_gat her

| 66.7% | 12 | pe. O
| 33.3%| 6 |pe. 1
I

| 52.9% | 9 |pe.O

| 47.1% | 8 |pe. 1

| —========

2.5% | 15 | MPI _CRAY_pr ogr ess_i nconi ng

| = o m il
| 60.0% | 9 |pe.O

| 40.0% | 6 |pe. 1

I

| 30.8% | 4 | pe.0
| 69.2% | 9 |pe. 1
| —==—=—=====
1. 9% | 11 | MPI _CRAY_gat herv
e
| 63.6% | 7 | pe. O
| 36.4% | 4 | pe. 1
| ———=—=—=—=—==
1.9% | 11 | MPI _Barrier
| | pe.1
1.5% | 9 | MPI _CRAY_scatterv

I
I
|
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
|
I
I
|
I
I
|
I
I I | pe.0
I
I
I
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
I
I
I
I
I
|
I
I
|

CUG 2003 Proceedings 30

|| 55.6% | 5 |pe. O

|| 44.4% | 4 |pe. 1

Il

| 1.2%| 7 | MPI _CRAY_progress_ack

[oo
|| 42.9% | 3 |pe. 0

|| 57.1% | pe. 1

N

| 1.2%]| 7 | bcopy

[= o
|| 57.1% | 4 | pe.O

|] 42.9% | 3 |pe. 1

N

| 1.2% | 7 | MPl _Sendr ecv

[=
|| 85.7% | 6 | pe.O

|| 14.3% | 1 |pe. 1l

N

| 1.2%| 7 | MPI _CRAY_r equest _recv
R R EEEEEEREES
|] 42.9% | 3 |pe. O

|] 57.1% | 4 |pe. 1l

Il

| 0.5%| 3 | Ml _Isend

I I | pe.1

| 0.5%] 3 | MPI _CRAY_send_wai t

I I | pe.1

| 0.3%| 2 | Exchange

| | | pe.1

| 0.3%| 2 | MPl _Reduce_scatter

[o oo
|| 50.0% | 1 |pe.O

|| 50.0% | 1 |pe. 1l

l

| 0.3%| 2 | MPI _CRAY_type_free

I I | pe.1

| 0.3%] 2 | MPl _Vaitall

[==
|| 50.0% | 1 |pe.O

|| 50.0% | 1 |pe.l

l

| 0.2% | 1 | MPI _CRAY_op_func_sunB

| | | pe.0

| 0.2% | 1|_ sched _yield

I I | pe

| 0.2% | 1 |MI V\al t

I I | pe.1

| 0.2% | 1 | __nanosl eep

| | | pe.1

| 0.2%| 1 |Altoall

I I | pe.1

| 0.2% | 1 |LWR

I I I pe 0

| 0.2% | 1 | MPl _Recv

I I I pe-O

I

El apsed tine

Process

in seconds for processes

26197: date: begin: Mon May 5 18:21:21 2003

CUG 2003 Proceedings 31

end: Mon May 5 18:21:27 2003
6. 034060

utinme: 5.063177
stinme: 0.797301

Process 26200: date: begin: Mon May 5 18:21:21 2003
end: Mon May 5 18:21:27 2003

6. 052026

utine: 4.673398

stine: 1.157005

El apsed tine in real-tinme clocks for threads

pe/thread 0/ 0: 571676677 rtc (5.71676677 sec)
pe/ t hread 1/ 0: 575910908 rtc (5.75910908 sec)

CUG 2003 Proceedings 32

