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ABSTRACT: New computing technologies have recently become available to search and
rapidly analyse large numbers of DNA sequences for critical information.  Two technologies
are of particular interest, general high-throughput sequencing libraries available on Cray
systems such as the Cray SV1 and field-programmable gate arrays (FPGA) available as add-
ons to such systems as the Sun Fire 6800.  We have applied these technologies for the study of
mRNA polyadenylation signals in the model plant Arabidopsis.  In doing so, we have not only
revealed many highly consensus signals in a predicted location, but also found an additional
polyadenylation signal that were not previously identified by experimental approaches.  Our
results show the power of the technologies in bioinformatic studies.

1. Introduction

Fifty years ago in 1953, two biochemists namely, Watson and
Crick, discovered a double-helix DNA structure believed to
contain genetic information coded in residue bases called
‘nucleotides’.  This genetic information is transcribed into
messenger molecules called, messenger RNA (mRNA), which
are "decoded" (translated) into proteins—this being the
“central dogma” of genetics.  Polyadenylation of mRNA is a
crucial step during the maturation of the linear eukaryotic
mRNA; thus it is essential in gene expression (Li and Hunt
1997; Zhao et al., 1999).  Polyadenylation is a process by
which a poly(A) tract is added onto the 3’ end of a precursor-
mRNA (Fig. 1) after capping and splicing, to ensure its
functionality, such as translatability, stability and translocation
to cytoplasm.

Recent studies have shown that the regulation of mRNA
polyadenylation is related to many cellular conditions, e.g.
cancer progression, cellular immunity to pathogen attack, and
differential tissue development (Chen et al., 1999; Kleiman
and Manley, 2001; Kashiwabara et al., 2002).  We are
currently studying the regulatory sequence elements (cis-
elements) residing in the mRNA which are recognized by a
protein complex in the cells, and which direct the
polyadenylation processing [where to cleavage and add a
poly(A) tract].  In general, regarding polyadenylation signals,
there are now more contradictions to the previously defined
signals, in which less consensus signals become common
(MacDonald and Redondo 2002).  In plants, there is very
limited information about these cis-elements; as such it
becomes an obstacle for accurate gene annotation in many
genome projects.

The availability of the vast genomic and cDNA
(complementary DNA to mRNA) sequences through large-
scale genome sequencing projects has provided us with many
valuable databases that can be used in the search of
polyadenylation signals.  However, the overwhelming volume
of the genome sequence data becomes a challenge for
traditional biologists, who generally do not utilize advanced
computational tools.  The newly emerging field of
bioinformatics is a representation of the marriage of the best
technologies from biological and computational sciences.  The
bioinformatics approach complements and enhances
traditional biochemical methods by examining a much larger
number of genes (Graber et al., 1999).  Further analysis can
then be confirmed and accuracy of results verified by using a
molecular approach.  At present, the major principles of gene
annotations are based on the identification of functional RNA
and coding sequences (Arabidopsis Genome Initiative, 2000).

Fig. 1 Representation of eukaryotic pre-mRNA
processing (emphasis on 3’-end formation).
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With a better understanding of the cis-elements, it can enhance
and improve gene predictions that ultimately improve
accuracy of gene annotation (Graber et al., 2002).  The
bioinformatics study of polyadenylation signals will open up a
new frontier in gene annotation technology by predicting the
ends of the genes, which will be another criterion to categorize
genes.

In this paper, we report on efforts to characterize nucleotide
regions of significance to polyadenylation.  To this end, the
Cray SV1 bioinformatics library has been exploited to look for
the nucleotide patterns that are significantly over-represented
in the region with predicated polyadenylation signals based on
the results of traditional approaches (mutagenesis).  The
results of the analysis of these patterns will be tested
experimentally for the significance of the patterns in
polyadenylation, and also will aid gene annotation by
predicting potential polyadenylation sites that indicate the
ends of regular mRNA.

In addition to the Cray SV1, we had hoped to use the
TimeLogic DeCypher system, but it has yet to play a role in
the search for polyadenylation signals. The necessary
precursor to create alignments for the 16,000 sequences either
en mass or in selected groups has not produced results. The
computational demand for the en masse alignment was very
high, with the quality of the resulting consensus questionable.
Subdividing the sequences into smaller sets through filtering
and categorization proved so far ineffective at appreciably
reducing the number of sequences to be aligned, or in
providing an effective categorization that did not compromise
the search for the unknown polyadenylation signals.
Consequently, a reliable Hidden Markov Model for
polyadenylation signal has not yet been created to utilize the
high throughput TimeLogic DeCypher system in the large-
scale search effort.

2.  Motivation for Studying Model Plant
Arabidopsis

Arabidopsis thaliana, commonly known as Thale Cress, is
very suitable model for genomic studies for the reasons of its
short life cycle (about 6 weeks), ease of genetic
transformation, small genome size (only 125 million
nucleotide base pairs, compare to human with 3 billion base
pairs), and the availability of its complete genomic sequences.
It has been recognized as one of the best genetic models in
biological studies for the past 15 years.  Due to the
commonality of the genetic code and homology of the
majority of the genes in eukaryotic organisms, the results from
the studies of such model systems can be used in other
systems.  Under the similar token, our results with Arabidopsis
can be applied to studies focusing on other important
agricultural crops, such as soybeans, tomatoes, rice, corn, etc.

3. The Working Model Used for the Study

A working model (Figure 2) illustrates the arrangement of
plant polyadenylation cis-elements, based on the genetic
studies done in plant systems (Rothnie 1996; Li and Hunt

1997).  It shows possible positions in which to search for the
polyadenylation signals.
Figure 2. The working model for signals of plant mRNA

polyadenylation. 3’UTR, 3’ untranslated region; Coding, the
part of the sequence coding for protein information; FUE, far
upstream element; NUE, near upstream element; CS, the
cleavage site [or the poly(A) site].  YA, Y represent either
nucleotide C or U (or T in DNA), cleavage occurs between the
nucleotide Y and A. The numbers (in nucleotides) are the
relative position or size of the elements.

4. Arabidopsis Data File

The DNA sequences collected from the 3’ UTRs of the full-
length cDNA was kindly provided by Dr. Brian Haas from
The Institute for Genome Research, Rockville, Maryland.  The
database, in FASTA format with header and sequences in text
form, contains 16,255 such sequences. The sequences range in
length from 1 character to 3118 characters long, with an
average sequence length of 231.

5. Cray SV1ex and Bioinformatics Library

Several years ago, programmers within Cray realized that the
special hardware features that have been part of the product
for years would be useful in solving gene sequencing types of
problems. This inspired developers within Cray to build a
bioinformatics specific library to make these hardware
features more available to programmers. The name of this new
library is the Cray Bioinformatics Library (CBL) and is
originally targeted for the Cray SV1ex platform. The hardware
features accessible from the CBL include: popcnt (count of
number of one bits in a word), leadz (count the number of
leading zero before the first one bit), vector shift (treat the
entire vector register, 64 words or 4096 bits as one register
and shift it left or right), bit matrix multiply (multiply two 64
by 64 bit matrices in a bit-wise sense, AND the rows and
columns, and XOR the result).

The CBL includes routines for: reading sequences from FASTA
files into a continuous memory array, routines for compressing
and uncompressing this data with 2, 4, 5, or 6 bit compression,
routines for searching and sorting this data, routines for
storing and retrieving data from the secondary storage device
(SSD), and routines for copying data, with bit start and stop
location, along with other memory management routines.
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6. Programming techniques for NUE search

The first step in any program is to read in the data. For this
project the data comes in the form of a FASTA file. A FASTA
file can contain one or multiple sequences and is a readable
ASCII file. Each sequence in the file has two parts, the
sequence title and the sequence itself.  The title line starts with
the character ">" at the beginning, and end with a carriage
return (\n). The next part of the FASTA file contains multiple
lines that are the sequence itself. The end of the sequence is
identified by the end-of-file character or ">" which marks the
beginning of the next sequence. The data for this program is
simply read by using the cb_read_fasta routine. This routine
moves the data from the file to memory and arranges the data
such that all the header records are place in one array and all
the sequence data is place in another array with the sequence
data spaced out on multiples of 4 word boundaries. The
routine returns arrays containing information about the
number of sequences read and the length of these sequences,
in characters. The routine also returns the starting address for
each sequence.

Typically the next step would be to compress all the sequence
data. Since the sequence data contain only 4 unique characters
{A, C, G, T} only 2 bits are needed to store this information.
Reviewing the ASCII character set for {A, C, G, T} in binary
format we see the following.
 A = hex: 41 = binary: 0100 0001
 C = hex: 43 = binary: 0100 0011
 G = hex: 47 = binary: 0100 0111
 T = hex: 54 = binary: 0101 0100

 a = hex: 61 = binary: 0110 0001
 c = hex: 63 = binary: 0110 0011
 g = hex: 67 = binary: 0110 0111
 t = hex: 74 = binary: 0111 0100

Note that the second and third columns (from the right)
contain a unique 2 digit code for the characters. Namely:
A=00, C=01, G=11, T=10. Also note that this 2 digit code also
works for the lower case characters a=00, c=01, g=11, t=10,
thus the 2 bit compress works irregardless of whether the input
data is in upper or lower case.

For our initial search for the most common pattern in the NUE
region we chose not to compress the entire file, since we were
only looking at a small, 6 to 10 character field out of an
average sequence length of 231 characters. Instead, the
program extracts small parts of the sequence from the NUE
region and compresses them.

To find the most common pattern in the NUE region we first
have to look at the maximum number of possible patterns that
could be generated with the 4 characters {A, C, G, T} in the
maximum 10 character field. This number is 410 or a little
more then a million possible combinations. This number is a
reasonable size, so the program allocates an array called a
pattern_frequency, 4 10 elements long. To start the search, the
program loops over the 5 different pattern lengths, 6 through

10, performing a new search for each length. The NUE region
was initially defined as starting from 10 to 40 characters
upstream from the cleavage site, but since the program runs in
just a few seconds on a single SV1ex processor the search was
expanded to locations 1 through 50. The program starts with
the pattern length of 6 and location 1. It then copies the data
from the sequence data structure from the first sequence into a
variable called nue_pattern.  This copy is done with the CBL
routine cb_copy_bits, because of its easy mechanism for
copying random characters from one array to another, even if
they cross word boundaries. The variable nue_pattern is then
sent to the CBL routine cb_compress, which performs the 2 bit
compression on it and writes it to the variable
nue_pattern_compressed. By shifting this compressed bit
pattern to the right by word length (64 bits) minus the length
of the NUE pattern (12 bits), the result is an integer between 0
and 4095. (The number 4095 or 46-1 is the maximum number
of 4 character combinations for a pattern of 6 characters.) This
integer is then used as an index into the pattern_frequency
array and the pattern associated with that index is incremented
by one. The program then repeats the inner loop and the next
pattern is copied from the sequence data structure for the same
sequence, starting at location 2, using the same length of 6
characters. The pattern is again compressed and shifted to
form a new index that is used to increment the
pattern_frequency array associated with that pattern. This
continues until all 50 starting locations have been completed
for the first sequence. The program then moves to the second
sequence in the list and does the same operations for the 50
starting locations of that sequence, incrementing the
pattern_frequency array.

When all the sequences have been searched at all 50 starting
locations for the 6 character NUE, the program then loops
through the pattern_frequency array to find the pattern with
the largest count, or the most common pattern for the patterns
with 6 characters within the NUE region from locations 1
through 50. The program also continues the sorting and prints
out all the patterns that have a pattern_frequency count greater
then zero, along with the count, and the minimum and
maximum locations where it was found within all the
sequences.

The program then zeros out the pattern_frequency array,
increments the pattern length from 6 to 7, and starts the whole
process over. Again, at the end of each trip through the outer
loop, the program prints out all the non-zero patterns and their
counts for that pattern length, sorted from largest to smallest.

While running the program, it was discovered that additional
code needed to be added to check for very short sequences.
While analysing the sequences with a different program, it
was discovered that some of the sequences were a single
character long, along with many sequences being less than 50
characters long. Therefore, code was added to ensure that the
pattern starting location plus the pattern length was less than
or equal to the sequence length. Otherwise it would skip that
sequence.
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Another problem arose while examining the results. Several of
the sequences contained a long stretch of a single character or
double character pattern repeated. For example, the pattern
TTTTTT was found to be the most common pattern. This
pattern was located 3394 times out of the 16255 sequences.
The trouble with the results is that long stretches of T's get
counted multiple times. Consider a stretch of 10 T's. The
pattern TTTTTT (6 T's) is found at the first location (far
right). Then the code moves one character to the left and finds
the same pattern again and increments the counter again. The
program moves to the left one more character and finds the
pattern again. So a pattern of 6 T's will get counted 5 times in
a sequence of 10 T's. This biases the results toward these long
single and double character repeats.

To fix the problem, additional code was added to check
whether this pattern has already been found in this sequence.
In this way, every pattern is counted only once per sequence.
With the modified code the most common pattern is
AATAAA, with 2021 occurrence in the 16255 sequences.

Since the original problem involves knowing neither the most
common pattern nor it's location within the NUE region, the
program needed to give more information about the location
of the most common pattern. This was accomplished by
expanding the pattern_frequency variable from a one-
dimension array into a two-dimensional matrix. The length is
still 410 elements long, but now has a second dimension of 50
elements wide. Thus, in addition to accumulating the simple
pattern frequency count, we can also count patterns based on
their location within the sequences.

7. NUE Search Results and Performance

As explained in section 6, the code took on several different
variations, based on whether we wanted to count the pattern
once or multiple times per sequence and whether we wanted
the results on a per pattern or pattern/location basis. Listed
below are the top 10 most common patterns found in the
sequences. The number to the right of the pattern is the
number of times it was found. Presented are the results for
both multiple matches per sequence and single matches per
sequence.
                           6 Character Pattern Length

        Multi-count                            Single-count

 TTTTTT  3394        AATAAA  2021
 AATAAA  2242        TTTGTT  2021
 TTTGTT  2224        TTTTGT  1993
 TTTTGT  2122        TTGTTT  1859
 TTGTTT  2025        TGTTTT  1806
 AAAAAA  2006        ATTTTT  1795
 ATATAT  1945        TTTCTT  1720
 TGTTTT  1937        TTTTAT  1695
 ATTTTT  1897        TATTTT  1662
 TTTCTT  1858        TTTTTT  1629

                    7 Character Pattern Length

        Multi-count                            Single-count

 TTTTTTT  1717       TTTGTTT  972
 TTTGTTT  1043       AATAAAA  945
 AATAAAA   988       TTTTGTT  940
 AAAAAAA   982       TTTTTTT  819
 TTTTGTT   980       TTGTTTT  796
 TATATAT   951       TTTTCTT  767
 ATATATA   895       TTTCTTT  758
 AAATAAA   835       AAATAAA  757
 TTGTTTT   832       TTTTTGT  724
 TTTCTTT   803       TTTATTT  716

                    8 Character Pattern Length

        Multi-count                            Single-count

 TTTTTTTT  898       TTTTGTTT  436
 ATATATAT  492       TTTGTTTT  429
 TATATATA  479       TTTTTTTT  406
 AAAAAAAA  475       TTTTTCTT  357
 TTTTGTTT  459       AAATAAAA  347
 TTTGTTTT  447       TTTTCTTT  341
 AAATAAAA  363       TTTTTGTT  337
 TTTTTCTT  361       ATTTTTTT  326
 TTTTCTTT  349       TTTCTTTT  322
 TTTTTGTT  338       TAATAAAA  319

                    9 Character Pattern Length

        Multi-count                            Single-count

 TTTTTTTTT  499      TTTTTTTTT  234
 TATATATAT  290      TTTTGTTTT  194
 ATATATATA  274      TATATATAT  177
 AAAAAAAAA  229      TTTGTTTTT  168
 TTTTGTTTT  206      TTTTTCTTT  162
 TTTGTTTTT  169      ATATATATA  161
 TTTTTCTTT  164      TTTTCTTTT  155
 ATAAATAAA  158      ATTTTTTTT  154
 TTTTCTTTT  158      TTTTTGTTT  154
 TTTTTGTTT  155      ATAAATAAA  146

                   10 Character Pattern Length

        Multi-count                            Single-count

 TTTTTTTTTT 273      TTTTTTTTTT 123
 ATATATATAT 178      ATATATATAT  93
 TATATATATA 171      TATATATATA  90
 AAAAAAAAAA  90      ATTTTTTTTT  82
 AATAAATAAA  83      TTTTTTTTTG  81
 ATTTTTTTTT  82      TTTTGTTTTT  79
 TTTTTTTTTG  81      TTTTTTTCTT  78
 TTTTGTTTTT  79      AATAAATAAA  76
 TTTTTTTCTT  78      GTTTTTTTTT  74
 TTTTTCTTTT  74      TTTTTCTTTT  73
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The code is very efficient to run. The time the program spends
in the different sections of the code is as follows: reading the
FASTA file takes about a tenth of a second, scanning all
sequences for all 50 locations and filling the
pattern_frequency array takes about six seconds; and scanning
the pattern_frequency array for the maximum value also take
about a tenth of a second. Writing the output can take the most
amount of time, depending on what output is being written.

The results for the two-dimensional matrix of results, pattern
frequency verses location is shown on the following graphs,
Figures 3 and 4.   Figure 3 shows what the model expected.
Several patterns which are more common, (having a much
higher frequency count) in the NUE region. What was not
expected was the occurrence of an additional set of patterns
that show up nearer to the cleavage site, Figure 4.

Figure 3.  Top 20 NUE patterns in the position of 11-21.  This
is the area we expected to locate the NUE patterns in the
3’UTR.  The patterns are listed on the right.

Figure 4. Top 20 NUE patterns sorted according to counts
position 20-1.  A set of new patterns was found that was
unexpected according to our model (Fig.2) in the position 1-
10.

8. Possible Programming Techniques for FUE

The next part of this research project is to search the FUE
region for the most common pattern. The first difficulty with

the FUE search is the length of pattern. As stated in section 6,
the maximum possible combination for 4 characters in a 10
character wide field is 410 or 1,048,576. With the FUE region
being 60 to 100 characters wide the maximum number of
combinations shoots up to 4100 or 1.6E60. Since the SV1ex has
an addressable memory space of two billion words (due to the
32 address word size), the largest width for all possible
combinations are 15 characters, with 415 having 1,073,741,824
possible combinations. This limit could be stretched a bit
further packing multiple counts per word, but it would only
yield a maximum character width of 416 or 4 billion
combinations.

The solution will be to move from a pure exhaustive search to
a semi-exhaustive search. The plan is to perform the FUE
search using a 15 character FUE length. Once the most
common 15 character FUE is found, the counters can be
zeroed out and the search performed again, only this time
looking for 30 character wide combinations with only the first
15 characters changing. Having finished this second search the
counter will be zeroed again and another search performed
looking for 45 character patterns with the first 15 character
changing and the last 30 characters fixed. Using this
bootstrapping approach, we hope to find the most common 60
to 100 character pattern in the FUE region.

From our experiences with the NUE search where each search
or filling of the pattern_frequency array only took seconds to
fill, this approach for the FUE search should still take on the
order of minutes to complete on a single processor.

A final step for this project is to combine the results from the
NUE and FUE searches. This phase of the research has not yet
been outlined, and will be the topic of another discussion.

9. Conclusion

We are able to use the CBL to compile the polyadenylation
signals using Cray SV1ex platform.  The success of the search
reveals the NUE patterns that are in the expected range of the
location, judging by traditional molecular models.  Moreover,
the computational approach enables us to discover the
previously unknown consensus of polyadenylation signals
located in the cleavage site between positions 1-11.  The
authenticity of the signals remains to be tested by
experimental approaches.
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