Fortran 2000

Bill Long, Cray Inc

ABSTRACT: Fortran 2000 is the popular name for the upcoming revision of the Fortran
programming language. This revision contains several new features to address shortcomings
of the current standard, as well as major new additions to the language in the areas of
interoperability with C, object oriented programming, 1/0, and support for the IEEE
standard. The new features are reviewed along with the current implementation plan for a
standard conforming compiler on the main product line Cray systems.

1. Introduction

Fortran was designed almost 50 years ago to be the
language of choice for scientific programming. It continues
to evolve through a series of revisions that incorporate more
modern programming paradigms while retaining a focus on
scientific computing and computational efficiency. Major
milestones were the 1966 (f66), 1978 (f77) and 1991 (f90)
standards, with a minor revision in 1997 (f95). Currently
nearing completion is another major revision of the
standard. It is popularly referred to a Fortran 2000,
although the final version of the standard will not be
formally adopted until 2004. The contents of this paper are
based on the 29-April-2003 Working Draft of the standard
document. There are potentially two additional drafts of the
standard yet to come, so some of the details presented here
may differ dlightly from the official language. However, the
focus of the standard and the major features are unlikely to
change significantly from what is presented here.

Fortran 2000 retains backward compatibility with f95,
with very few exceptions, while including a significant
number of changes. These fall mainly into two groups. The
first group contains a large number of changes that address
deficiencies or shortcomings in f95 that are based in the
experience of users and implementers of the current
language. The change to allow allocatable components in
derived types is an example in this group. The second
group of changes are new features for capabilities thought to
be useful for a class of applications, but missing from the
current language. These are better interoperability with C,
features to support object oriented programming (OOP),
new types of /O, and a standard mechanism for accessing
the facilities specified in the IEEE floating point standard.

The remainder of this paper is organized into broad
categories of features that generally follow the sections of a
program. Firstisabrief description of additions to the basic
language syntax that apply to all the examples. Subsequent

sections detail changes in Declarations, Procedure
specification, Basic Operations, and I/0O. The final section
contains a map of the standard process from here to
completion, and some speculation on what might be
considered for standards farther into the future.

Each section includes comments on the implementation
plans for that feature using four categories. Some features
are actually just a standardization of existing extensions that
have been implemented for years. The remaining three
groups of features are: “aready implemented”, (included in
ftn version 5.0 to be released soon), “early implementation”
(ftn version 5.1 or 5.2, to be released through the first
quarter of 2004), and “later implementation”.

This paper focuses on the differences between Fortran
2000 and the current Fortran standard. There is an implicit
assumption that the reader is already familiar with f95.

2. Basic Syntax

Statement form in Fortran 2000 relaxes some of the
restrictions of the current Fortran. Names of objects
(variables, procedures, common blocks, types, etc.) may
contain up to 63 characters, up from 31. The number of
continuation lines for a single statement is 255, up from 39.
These changes were made based on user comments that the
old limits were too restrictive, especially for the case of
source code created by other programs. These are early
implementation changes.

The use of [] as the array constructor was proposed as
early asthe 1980’'s. Thiswas dropped from the f90 standard
because some keyboards lacked these characters at the time.
This is largely no longer the case, and the Fortran 2000
standard brings these back as an alternative to the current (/
/) array constructor. Theissueis still being debated, though
now for a different reason. There are proposals to reserve
the sguare brackets for other syntax in future versions of
Fortran. Examples below will include this syntax, but

CUG 2003 Proceedings 1

implementation of this feature in our compiler will be
postponed until after the final standard is approved.

Named constants as parts of a complex constant have
been allowed in Cray Fortran for several years. This is now
part of the standard. A simple exampleis:

real , paramet er
conplex :: eye
eye = (zero, one)

zero = 0.0, one = 1.0

Fortran has always specified a minimal required
character set. Traditionally this consisted of all the
characters that are required by the basic language syntax.
The list of required characters is increased to include\ [] {
} ~ ~"|# @, even though not al of these have a syntax use
in the language. These characters are part of the English
language version of the standard ASCII character set, and
hence are not new on Cray systems.

3. Declar ations

New types of data structures make up alarge part of the
enhancements in Fortran 2000. The associated changes in
syntax are in declaration statements. This section describes
the new syntax and the motivation for the changes.

PROTECTED attribute

Module data in f95 had a visibility outside the module
based on their declaration as either public or private. These
attributes apply to the names of the objects, not their values.
In many cases it is useful to have the name visible outside
the module (public), but prevent procedures outside the
module from changing the value of the object. If the object
never changes value, it can be declared as a parameter.
However, this option is not useful for variables such as
overall data sizes that might be initialized at run time. The
new PROTECTED attribute applies to the values of objects.
Module objects with the protected attribute may be defined
by procedures in the module, but cannot be defined by
statements outside the module. If they are public objects,
they may be referenced outside the module. The
standardization of the protected attribute was promoted by
Cray and has existed as an extension in our past compilers.
Example:

i nteger,protected :: ncpus

Mixed public and private attributes

Derived types defined in a module can be either public
or private. New rules alow individual components of the
type to be public or private. Also, an object of a private type
may be declared to be public. Private names of either the
type or some or all of the components are not available

outside the module. This can be an intentional programming
strategy of hiding the details of a structure from the module
user. Mixed public and private components are already
implemented. Public object of a private type is an early
implementation feature. Examples:

type,private :: foo
i nteger,public :: barl
i nteger,private :: bar2

end type foo

type(foo), public :: X

Allocatable components

One of the least satisfactory aspects of f95 is the
requirement that dynamically sized components of a derived
type be declared as a pointer. Because a compiler cannot
determine all the possible aliases for pointer target data,
optimization of expressions involving such datais restricted.
The new standard allows allocatable components, which do
not have this performance problem. Status: already
implemented. Example:

type :: foo
real ,allocatable :: bar(:)
end type foo

Allocatable character scalars

Scalar objects of type character can be allocatable. This
feature is valuable in contexts where the size of a character
is determined by runtime data. The actual size of the
variable is specified in the allocate statement. New syntax
for the ALLOCATE statement is provided for this feature.
Status: early implementation. Example:

character(len = :),allocatable :: string

al | ocate (character(16) string)

Intrinsic modules

Intrinsic modules are supplied as part of the language
and are intended to provide information to the programmer
that may be implementation dependent. Fortran 2000
specifies five intrinsic modules. The iso_c_binding module
contains definitions of constants and procedure interfaces
for the C interoperability features. The iso_fortran_env
module contains definitions of constants that characterize
memory and 1/O sizes. The remaining three intrinsics
modules, ieee features, ieee_exceptions, and
ieee_arithmetic, contain definitions of constants and
procedure interfaces to support the IEEE floating point
arithmetic standard. The syntax for specifying an intrinsic

CUG 2003 Proceedings 2

module has been implemented in the Cray compilers.
Examples for using each of the new modules:

use,intrinsic ::
use,intrinsic ::
use,intrinsic ::
use,intrinsic ::
use,intrinsic ::

i so_c_binding

i so_fortran_environnent
i eee_features

i eee_exceptions
ieee_arithmetic

The features in the three ieee intrinsic modules are
more closely tied to execution control rather than
declarations, so appear later in the basic operations section.

iso_fortran_env module

The iso_fortran_env intrinsic module contains named
constants for characteristics of the hardware and 1/0
systems use by the program. The standard defines the
concept of a numeric storage unit (essentialy the memory
associated with a default integer), a character storage unit
(the memory associated with a length-one character), and a
file storage unit (the unit used for the RECL valuesin I/O
statements). The sizes of these units, measured in bits, are
specified in the iso_fortran_env module as
numeric_storage size, character_storage size, and
file_storage_size. On Cray systems, the
numeric_storage size is either 32 or 64 depending on
compiler options, and the character_storage size and
file_storage size are both 8. The module also specifies the
Fortran unit numbers corresponding to the * units in 1/0
statements. These are input_unit, output_unit. Also specified
is the default error output unit, error_unit. Finaly, the
module specifies the values returned for end of file and end
of record conditions in iostat variables. These are iostat_end
and iostat_eor. Note that on Cray systems there are multiple
end of file values, depending of the type of end of file. The
iostat_end represents the most common end of file return
value. In alater section intrinsic functions are described that
provide a better alternative to using iostat_end. The
iso_fortran_env module is scheduled for early
implementation.

iso_c_binding module

Theiso_c_binding intrinsic module contains definitions
for constants and types that provide a way to portably link
with programs written using the system’s C compiler. KIND
values are defined that link Fortran intrinsic data types to
corresponding C data types. For example, C_INT is defined
to be the kind value for which an integer(c_int) declaration
specifies a data object that has the same size as an int object
in C. Constants are defined for al the C data types that
have analogs in Fortran. If the Fortran processor does not
support a particular combination of type and kind, the
corresponding constant in the iso_c_binding module is 1.
The module a so defines certain standard character constants
widely used in C programs, such as C null_char, and
C _new_line. Finally, the module defines new types.

C PTR and C_FUNPRT. These are used to specify
variables that can be used as actual arguments or structure
components corresponding to C data and function pointers.
The C_FUNPTR typeis scheduled for later implementation.
The constants and C_PTR typein theiso_c_binding module
are aready implemented.

C global objects

Names of objects in the data part of a module can be
linked to C global data using the bind(c) attribute. This
allows Fortran and C routines to have access to shared data
using standard syntax. The name of the corresponding
global C object defaults to the Fortran name in lower case
letters. Optionally, the user can specify a different name
with a character constant. Data of any Fortran intrinsic type
may be shared. In addition, a derived type may be specified
to interoperate with C with certain restrictions.
Interoperable derived types must not have the SEQUENCE
attribute, allocatable or Fortran pointer components, or
derived type components that are not interoperable. Derived
types can be specified to replicate the form of a C structure.
Examples illustrating the new syntax:

! First exanple ----------

nmodul e gl obal _dat a
use,intrinsic :: iso_c_binding
type, bi nd(c) flag type
integer(c_long) :: ioerror_num
i nteger(c_Il ong) fperror_num
end type flag_type

type(flag_type),bind(c):: error_flags
end nodul e gl obal data

! The nane of error_flags is specified
' in C as

typedef struct{
| ong ioerror_num

| ong fperror_num
} flag_type

flag_type error_flags;
! Second exanple --------

nmodul e gl obal _dat a2
use,intrinsic :: iso_c_binding

integer(c_int),bind(c,name="Fc’)::fc
common /bl ock/ r,s

conmon /tblock/ t
real (c_float) :: r,s,t

CUG 2003 Proceedings 3

bi nd(c) / bl ock/, [tblock/

end nodul e gl obal _dat a2
I' The corresponding C decl arations are:

int Fc;
struct {float r,s;} block;
float tblock;

The first example illustrates specification of an
interoperable derived type and a data object of that type.
The value of ¢ _long is obtained from the iso_c_binding
module.

The second example shows how to connect common block
variables to C global variables. The global symbol is the
name of the common block. The names of the entries in the
common block are local, and may be different in different
Fortran modules. As is the case with most attributes, the
bind(c) attribute can be used either as a qualifier in a type
declaration or as a separate statement. The separate
statement form must be used for common blocks.

The bind(c) attribute and binding to C global variables have
already been implemented.

Parameterized derived types

A major goal of f90 was the ability to write codes with
parameterized precision and user specified generic
procedures. For codes that required derived types, this
sometimes required defining a set of nearly identical types
that differed only in the kind parameters of the components.
Fortran 2000 allows specification of parameterized types.
Type parameters may be either kind type parameters or
length type parameters. The value of akind type parameter
must be known at compile time. These are typically used to
specify kind values in declarations. Length type parameters
may be deferred until run time. Length type parameters are
typically used to specify sizes of arrays or character
variables. An example of atri-diagonal matrix type might
look like:

type(k, n) tridiag
integer,kind :: k
integer,length :: n
real (k) upper (n-1)
real (k) di ag(n)
real (k) [ower (n-1)

end type tridiag
i nteger, paraneter::rk=8

type(tridiag(8,20)) :: mat20
type(tridiag(rk,:)) :: mat(:)

al l ocate(type(tridiag(rk, 20) mat (4))

The definition of the type tridiag involves both kind and
length parameters, k and n. These must be declared as
integer in the type using the KIND and LENGTH attributes.
The variable mat20 is declared as a tridiagonal matrix with
64 bit elements and 20 elements on the diagonal. The
declaration of mat uses deferred length parameters. The
actual length parameter value is specified in the allocate
statement where the array of 4 tridiagonal matricies is
created. Paramterized types are scheduled for later
implementation.

Extended types

Derived types are often extended from a general parent
type to a larger type that contains additional variables for a
more specific case. In f90 this was typically done be
defining a new type for the specific case and including a
component of the parent type. This technique requires a
multiple part reference for the components of the base type.
If the specific type is extended again, the complexity of
references to the parent types increases. Fortran 2000
allows explicit extension of a type such that the parent
components are also components of the extended type. The
parent components are “inherited” by the extended type.
This eliminates the reference part explosion, and is also
more in keeping with the style of object oriented
programming. Example:

type :: dna
i nteger,allocatable :: ascii_text(:)
i nt eger | engt h
end type dna
type(extends(dna)) :: ocdna
integer :: ssdid
i nt eger ssdsi ze
integer :: state

end type ocdna

The derived extended type ocdna (out of core version of
dna) contains five components, the three specified along
with the two inherited from the parent type dna. There is
also an implied component named dna that allows multi-part
access to the parent types in the f90 style. This can be useful
in cases where dummy argument type matching requires an
object of the parent type.

Most derived types may be extended, though sequence
and bind(c) types are not extendable. A type can inherit
components from only one parent, commonly known as
single inheritance. However, several extended types may
have the same parent. Type extension is scheduled for later
implementation.

CUG 2003 Proceedings 4

VOLATILE attribute

A variable with the volatile attribute may have its value
changed by mechanisms not visible to the local program
unit. Typically these are variables that may be defined by
external means like an asynchronous operating system
action or by other threads of a paralel program. The
volatile attribute has existed with his same meaning as a
language extension for several years, including in Cray
compilers. Example:

i nteger,volatile :: flag

Enhanced initialization expressions

The values of initialisation expressions must be
computable at compile time and are commonly used to
provide kind values or values of parameters. The
restrictions on these expressions have been relaxed in
Fortran 2000. In particular, most of the language intrinsic
functions may be referenced in initialization expressions.
Thisfeature is especially useful in the portable definitions of
parameters. Status: later implementation. Example:

real , par anet er pi = acos(-1.0)

IMPORT statement

Interface blocks are their own scoping units and thus to
not have direct access to definitions in the surrounding host
scoping unit. This has been especialy cumbersome when
derived type definitions are required for the dummy
argument declarations in the interface. Past standards have
required that the definitions are either replicated in the
interface or accessed by a USE of the module containing the
definition. If the interface is in the same module as the type
definition, the USE option is not available. The new
standard provides a solution to this problem with the import
statement. The import statement provides access to names
visible in the surrounding host. If no names are specified in
the import statement all the surrounding host names are
visible. Status: already implemented. Example:

type :: foo
i nt eger foo_int
end type foo
interface
function bar(x) result(bar_res)
i mport foo
type(foo) :: x
i nteger :: bar_res

end function bar
end interface

International character set

Fortran 2000 provides a standardized method for
declaring character variables with values from the 1SO
10646 standard character set. The 1SO 10646 standard
defines 32 bit characters and includes characters for most of
the world’s languages. A new selected char_kind intrinsic
is provided to return the kind value appropriate for the
10646 character set, or to indicate that is it not supported by
the compiler. Selected char_kind accepts three argument
values; “ASCII”, “DEFAULT", and “1SO_10646". For Cray
systems, “ASCII” and “DEFAULT” will return the same
result value (1) since the default character setis ASCII. The
selected_char_kind intrinsic is scheduled for early
implementation, but full support for 10646 characters are
deferred to later implementation. Example:

i nteger, paraneter :: uscd = &
sel ected _char_kind(‘iso_10646")

character (|l en=5, ki nd=usc4) :: c

C = usc4’ “

4. Procedures

Improved flexibility in specifying procedures and
procedure interfaces, as well as type bound procedures as
part of the object oriented programming model, are
significant features of the Fortran 2000 standard.

Allocatable dummy arguments

The size needed for an actual argument associated with
a dummy argument may be computed inside the called
procedure. With f95, such an argument had to be a pointer,
resulting in the disadvantages of pointers being forced on
the programmer. Fortran 2000 allows allocatable dummy
arguments, resolving this shortcoming of f95. The storage
for an allocatable dummy argument is not automatically
deallocated at the end of the procedure. Status: already
implemented. Example:

i nteger,allocatable :: db(:)
call sub(db, nwords)

subrouti ne sub(db, n)

i nteger,allocatable :: db
i nt eger oon
read *, n

al | ocate(db(n))

read *, db

end subroutine sub

CUG 2003 Proceedings 5

Allocatable function results

Function results can be considered equivalent to an
additional argument to a subroutine. A natural extension of
the allocatable dummy argument feature is the allocatable
function result. Thisisincluded in Fortran 2000 and already
implemented in the Cray compiler. Example:

function foo(x) result (foo_r)
real ,dinension(:),intent(in) :: x
real ,dinension(:),allocatable ::foo_r

end function foo

I ntent for pointer dummy arguments

Dummy arguments with the pointer attribute could not
have an intent attribute in f95. Fortran 2000 has removed
this restriction. The intent specification for a pointer
argument applies to the association status of the pointer, and
not to the definition status of the target of the pointer. A
pointer with the intent(in) attribute cannot be pointer
associated with a (potentially) new target within the
procedure. A pointer with the intent(out) attribute enters the
procedure with a disassociated status. Intent for pointer
arguments is already implemented in the Cray compiler.
Example:

subrouti ne sub(p, dat)
i nteger,pointer,intent(in) :: p(:)

i nteger,target dat (10)
p=1 I &K

al l ocate(p(20)) ! Illegal

p => dat I 111 egal

end subroutine sub

In the example above, both the allocate statement and
the pointer assignment of p to dat are illegal because they
change the target of the pointer p, which is declared with
intent(in).

I nteroperating with C functions.

Interoperation with C functions with standard syntax is
amajor new feature of Fortran 2000. To correctly link with
a C function, as caler or callee, the compiler needs to know
the correct interface information. This is specified by
extensions to the interface block syntax. The bind(c)
attribute identifies an external procedure as conforming to
the C calling conventions. If there is no name clause in the
bind(c) attribute, the C name of the procedure is the Fortran
name in lower case letters. The external routine could be
written in a language other than C, as long as the interface
conforms to the C rules. The constants from the
iso_c_binding module are used in dummy argument

declarations. A new attribute, VALUE, is optional for
dummy arguments. If dummy arguments with the value
attribute are defined within the subroutine, the
corresponding actual arguments are not changed. The value
attribute effectively causes the argument to be passed by
copy-in value. The dummy arguments in an interface for a
bind(c) procedure must be interoperable with C data types.
It is always possible to write a corresponding C prototype to
describe the function interface. Status: already implemented.
Example:

use,intrinsic ::
interface
function foo(ptr,val), &
bi nd(c, name=" Foo’) &
resul t (bar)
import :: c_int, c_long
integer(c_int) :: ptr, bar
i nteger(c_long),value :: va
end function foo
end interface

i so_c_binding

integer(c_int) :: x,n
integer(c_long) :: vy
n =f 00(X,Y)

Corresponding C interface:

int Foo(int *ptr, long val);

PROCEDURE statement

The PROCEDURE statement is an extension of the
module procedure statement from f90, used to define a
generic interface. The specific procedures named in a
procedure statement do not have to be contained in the
module, as is the case with the module procedure statement.
Interfaces for the procedures do need to be visible. Status:
early implementation. Example:

i nterface sgemm
procedure sgemm 44, sgenm 48
procedure sgemm 84, sgenm 88
procedure cgemm 44, cgenm 48
procedure cgemm 84, cgenm 88
end interface

i nterface dgemm
procedure sgemm 44, sgenm 48
procedure sgemm 84, sgenm 88
procedure cgemm 44, cgenm 48
procedure cgemm 84, cgenm 88
end interface

The example illustrates a mechanism for making the
BLAS matrix multiply routine completely generic. The
numbers at the ends of the specific routine names indicate
the kind values for integer and real (or complex) arguments.

CUG 2003 Proceedings 6

Interfaces for the generic names cgemm and zgemm would
be written in the same way. Interfacesfor all of the specific
routines need to be visible.

Procedure declarations and abstract interfaces

The procedure statement can declare names to be of
external procedures and identify an interface. An abstract
interface specifies the interface information for a
hypothetical procedure, and hence the procedure name itself
is not made external. Abstract interfaces are used as
templates for the interfaces of actual procedures. A
procedure statement may reference either an abstract
interface or a normal interface. Status: later implementation.
Examples:

abstract interface
function fun_r(x)
real,intent(in) :: X
real i fun_r
end function fun_r
end interface

procedure(fun_r) ganma, Bessel

interface
subroutine sub_r(x)
real :: x

end subroutine sub_r
end interface

procedure(sub_r) :: sub
procedure(real) :: psi

The declarations for gamma and Bessel use the abstract
interface fun_r. The declaration for sub uses the explicit
interface for sub_r. The declaration for psi uses an implicit
interface, and is equivalent to real ,external :: psi.

Procedure pointers

The procedure statement may be used to declare
procedure pointers. The pointer name may be used in place
of the target name in CALL statements, function references,
or as an actual argument. Procedure pointers may be
components of derived types. Status: later implementation.
Examples, assuming the abstract interface for fun_r above:

procedure(fun_r),pointer :: &
special _fun => null ()
speci al _fun => gamma

The name special_fun is effectively an alias for gamma.
Prior to the pointer assignment statement, special_fun was
default initialized to disassociated.

type proc_ptr
procedure(fun_r), pointer
end type proc_ptr

speci al

type(proc_ptr) speci al (10)

éhs = special (i)% un(arg)

The second example defines a list of 10 procedure
pointers, and the syntax for referencing a procedure pointer.

Type-bound procedures

Procedures can be bound to a type, automatically
carrying along interface information with each variable of
that type. Type-bound procedures are part of the overall
OOP features of Fortran 2000. Procedures are declared with
PROCEDURE, GENERIC, or FINAL statements. The type
contains only the declaration for the procedure. The actual
procedure is defined elsewhere. Only the interface for the
procedure must be visible to the type definition. A type-
bound procedure may have an implied argument of the
containing type, specified with the PASS attribute. Status:
later implementation. Example:

type strange_int

integer :: n
cont ai ns
generic :: operator(+)=> strange_add

end type

The interface for strange add must be either supplied
by an interface block, or by defining the function in an
accessible module.

Polymorphic objects

The CLASS type specifier is used to declare
polymorphic objects. These declarations must be for dummy
arguments, or have the allocatable or pointer attribute. The
primary use of polymorphic objects is as dummy arguments.
Actual arguments of the type specified, or any extension of
that type, are type compatible with the corresponding
dummy argument. Assuming the subprogram uses only
components from the base type, all extensions of that type
will also have those components and hence be a reasonable
type for actual arguments. The specification of a
polymorphic dummy argument allows the routine to be
called with arguments of the base type or any of the
extended types. It is possible to declare something
CLASS(*), or unlimited polymorphic. Such an object is
type compatible with any type object. Use of an unlimited
polymorphic object is limited to allocate statements or
statements within a select type construct, where more
information about the actual type can be determined. Status:
later implementation. Example:

CUG 2003 Proceedings 7

function strange_add (a,b) result (c)

class(strange_int),intent(in) :: a,b
type(strange_int) e
cm = iand(a%m+b%, 1)

end function strange_add

This function is assumed to be in the same module that
defines the type strange_int above.

Select Type construct

The select type construct allows alternate execution
paths based on the actual type of a polymorphic object. The
selection clauses are TYPE IS, CLASS IS, or CLASS
DEFAULT. If the type of the argument specified in the
select type statement matches one of the types specified in a
TYPE IS clause statement, then the code block following
that statement is executed. If none of the TYPE IS types
match the type of the selector, then the CLASS IS clauses
aretried. The most extended type that matchesis selected. If
none of the CLASS IS statements has a compatible type, the
CLASS DEFAULT block is executed. CLASS IS (*) is not
allowed because it is redundant with CLASS DEFUALT.
Status: later implementation. Example, assuming the
definition of strange_int from above:

type, ext ends(strange_i nt
integer :: m
end type strange_m nt

st range_mi nt

class(strange_int) :: a,b,c

sel ect type(a)
type is (strange_int)
c% = iand(a%+b%, 1)
class is (strange_int)
i = mn(a%n b%n
c% = iand(a% + b%, 2**i-1)
c%m =
end sel ect

Finalizers

Finalizers are a special type of type-bound procedure
that is executed when an object of the containing derived
type becomes undefined. A variable may become undefined
by various means, including the initial state of an intent(out)
dummy argument, or the state of a unsaved local variable at
procedure exit. Finalizers are specified with the FINAL
declaration. Status: later implementation. Example:

type foo
real ,pointer :: bar(:)
cont ai ns
final :: foo_cleanup
end type

subroutine foo_cl eanup(x)
class(foo) :: x
deal | ocat e(x%bar)

end subroutine foo_cl eanup

Some new and changed intrinsic procedures

Several of the intrinsic functions have additional
features and there are some new intrinsics. The intrinsics
that are part of the C interoperability feature are described in
the next section. The following section describes the new
environmental intrinsics. The remaining changes for
intrinsics are described in this section.

The MIN and MAX functions are extended to accept
character arguments. Status: already implemented.

Several of the intrinsics that return integer results now
include an optional KIND argument to specify the precision
of the result. This overcomes an existing problem of the
result being too big to fit in a default integer. The SIZE
intrinsic is atypical example of afunction with a new KIND
argument. Status. early implementation.

Two new functions support OOP features. The
EXTENDS TYPE_OF is true if the type of the first
argument is an extension of the type of the second
argument. The SAME_TYPE_AS function returns true if
the two arguments have the same type. Status: later
implementation.

The NEW_LINE function returns the character used as
a record separator in stream files and in C text files. On
almost every system, including Crays, this is achar(10).
Status: early implementation.

The MOVE_ALLOC function changes the address of
an alocatable object descriptor. This is used to implement
array reallocation, which is described in a later section.
Status: early implementation.

C interoperability intrinsics

Five new intrinsic functions are provided as part of the
iso_c_binding module. These are used to create and test C
style pointers that are sometimes needed as actual
arguments to C functions or as values of components of
derived type objects interoperating with C structs. The three
functions dealing with data pointers are already
implemented. The two functions dealing with procedure
pointers are scheduled for later implementation.

C_LOC(fortran_data arg) returns a type(C_PTR)
pointer to the data argument.

CUG 2003 Proceedings 8

C _ASSOCIATED(cpl [,cp2]) returns true if the C
pointer cpl is associated, or if the two arguments are
associated with the same target. This is analogous to the
associated intrinsic function for Fortran pointers.

C _F POINTER is a subroutine that associates the
target of a C data pointer with a Fortran pointer.

C_FUNLOC(fortran_proc_arg) returns a
type(C_FUNPTR) pointer to the Fortran procedure
argument.

C_F PROCPOINTER is a subroutine that associates
the target of a C function pointer with a Fortran procedure
pointer.

New environmental intrinsics

Six new intrinsic procedures are provided to obtain
information about the execution environment. All of these
are scheduled for early implementation.

GET_COMMAND returns as a character value the
entire command that was issued to execute the program.

COMMAND_ARGUMENT_COUNT returns an
integer with the number of arguments in the command
issued to execute the program.

GET_COMMAND_ARGUMENT returns the specified
command line argument as a character value.

GET_ENVIRONMENT_VARIABLE returns the
definition of an input environment variable as a character
value.

IS IOSTAT_END returnstrue if the argument is one of
the iostat values corresponding to an end of file condition.
Cray systems do provide for more than one end of file
value. One of the values is IOSTAT_END from the
iso_fortran_env module. However, the IS IOSTAT_END
function is a more general and robost method for checking
end of file values.

IS IOSTAT_EOR returns true if the argument is one of
the iostat values corresponding to an end of record
condition. On Cray systems there is only one end of record
value, which is the value of IOSTAT_EOR from the
iso_fortran_env module.

5. Basic Operations

Derived type constructor keywords

Derived type constructors are extended to allow the use
of the component nhames as keywords, similar to the syntax
for procedure references. Status: early implementation.
Example:

type foo

integer :: ii

i nteger,allocatable :: bar(:)
end type foo

type(foo) :: fobj

fobj = foo(ii =1, bar = null())

Type specsin array constructors

Array constructors may be used to define an array of
constant values. The type and type parameters of the array
constant are based on the type and type parameters of the
elements. Allowing explicit type specifications in the
constructors applies a type cast to each of the constants in
the array. This specifies the type and type parameters of the
array independent of the forms of the constants. Status:
early implementation. Example:
character(7) nanes(3)
nanes=[character(7):: &

‘Brian’, Melanie',’ Jeff’]

Without the type specification in the array constructor,
the compiler will complain that the lengths of the character
constants do not match, and hence the length parameter for
the array constant is not defined.

Assignment for allocatable objects

The addition of allocatable components to Fortran 2000
required the specification of the meaning of default
assignment for structures with allocatable components.
Array assignment requires that the left hand side variable be
allocated and have the same size as the right hand side
expression. To avoid having the user explicitly allocate an
allocatable component before an assignment statement, the
default assignment rule specifies the automatic allocation of
the left hand side if necessary. If the current left had side
allocatable component is allocated with the correct size,
then an array copy is done. If the left hand side array is not
alocated, it is allocated with the correct size and then the
array copy is done. If the current left hand side is alocate
with the wrong side, it is deallocated and then reallocated
with the correct size and the array copy is done.

The above assignment algorithm for allocatable
variables is extended to all objects, not just components. It
is now allowed to assign a value to an unallocated array. If
that is done, the array is automatically allocated with the
correct size before the datais moved. Similarly, if the left
hand side variable is allocated with the wrong size (not
conforming to the f95 standard) then it is reallocated with
the correct size rather than causing an error. This new rule
may result in different behavior for programs that were

CUG 2003 Proceedings 9

illegal in f95, but seemed to work anyway. Status: early
implementation. Examples:

type foo
i nteger,allocatable :: bar(:)
end type foo

type(foo) :: f1,f2
al | ocat e(f 1%bar (100))
fldpar(:) =1

f2a =11

In this example, f2%bar is automatically allocated with
a size of 100, and the values of fl%bar are copied to
f2%bar.

real,all ocatable ::

a(:),b(:),c(:)

al |l ocate(a(10), b(20))

a =110

b =1.20

c =a I Line 1

c=5b I Line 2

c(:) =a(:) ! Line 3 - illegal

In the statement with comment Line 1, the array c is
alocated with asize of 10. In Line 2, c is reallocated with a
size of 20. The statement in Line 3 is illegal. The
expression c(:) is an array section and not an allocatable
array. The reallocation rules apply only to allocatable
objects.

Allocatable character assignment

The new rules for assignment of allocatable arrays
described in the previous section also apply to allocatable
character scalars. If the length of an allocatable character
scalar variable does not match the length of the expression
to which it is being assigned, the variable is reallocated with
the correct length before data is copied. Note that this is
very different from the assignment for non-allocatable
characters where different lengths were also allowed, but
caused truncation or padding of the right hand side
expression. The new assignment rule for allocatable
characters effectively provides a varying length string
facility in Fortran. Status: early implementation. Example:
character(len=:),allocatable :: string
al |l ocate(character(16) :: string)
string="0123456789%abcdef’
string(:) = ‘pad I Line 1
string = ‘short’ I Line 2

The statement with the Line 1 comment resultsin a 16-
character result padded with 13 spaces on the right because

the left hand size is a substring and not an allocatable
character variable. The statement with the Line 2 comment
uses the new assignment rule for allocatable characters, and
reallocates string to have length 5.

ASSOCIATE construct

The ASSOCIATE construct provides a shorthand
notation for expressions and derived type objects that appear
in statements. Using an associate name can greatly simplify
the appearance of otherwise cluttered statements. An
associate name is specified by an associate statement, and
can also be specified in a select type statement. The nameis
identified with the associate expression at the entry to
associate construct or select type construct, and is not
affected by later redefinitions of a part of the expression.
The associate name assumes the type and type parameters of
the associate expression and has the scope of the construct.
It is unrelated to any object outside the construct that has the
same name. Status: early implementation. Example:

I Add code

do i =1, genone(ng) %hr (nc) %bl en
genone(ng) %ehr(nc) %b(i) = &
i and(genone(ng) ¥%chr (nc) ¥db(i), 255)
end do

I New code

associ ate (x=>genone(ng) %chr(nc))
do i =1, x%lbl en
x%db(i) = iand(x%b(i), 255)
end do
end associ ate

Pointer assignment lower bounds

Pointer assignment of a pointer array to a target array
section in f95 always resulted in the lower bounds of the
pointer array set to one. Fortran 2000 allows the
specification of the lower bounds in the pointer as part of
the pointer assignment syntax. This feature simplifies
programming by allowing the pointer and its target to have
corresponding subscript values. Status: early
implementation. Example:

real,pointer :: p(:)
real,target ;1 1(100)
p =>1(2:5) ! old syntax

p(2:) =>t(2:5) ! new syntax

Executing the old syntax form of the pointer assignment
associates p(1) with t(2). The new syntax form associates
p(2) with t(2).

CUG 2003 Proceedings 10

Pointer rank remapping

Pointers of any rank can have rank-1 targets through
pointer remapping. The rank-1 target may be more useful in
some circumstances, such as an argument to an f77 function,
while the higher rank version may be clearer in computation
expressions. Status. later implementation. Example:

real ,pointer :: p(:,:)
real ,target : t(100)

p(1:10,1:10) => t

The data in the array t can be referenced either through
t as alength 100 vector, or through p asa 10 by 10 array.

Array reallocation

The goal of array reallocation is to end up with a new
array that is larger or smaller than the old array of the same
name, and containing (possible not al of) the values from
the old array. This is now possible with fewer statements
and memory operations by using the new move _alloc
intrinsic subroutine. Status:. early implementation.
Example:

i nteger,allocatable :: x(:),tnp(:)
al | ocate(x(20))
I Want to expand x to 40 el enents

I dd method

al ocate(tnp(20))
tnp = x

deal | ocat e(x)

al | ocat e(x(40))
x(1:20) =tnp
deal | ocat e(t np)

I New net hod

al ocate(tnp(40))
tnmp(1:20) = x

call nove_al |l oc(tnp, X)

Because the x argument to move_alloc is intent(out) the
old storage for x is deallocated in move_alloc.

This feature was added to the standard draft recently. It
is possible that a simpler syntax may emerge to replace the
move_alloc routine.

| EEE features

Support for IEEE floating point arithmetic is a major
new feature in Fortran 2000. Thisis optional in the sense
that the features are not required on systems that do not have

hardware support for particular modes or functions. The
IEEE modules and constants are scheduled for early
implementation. The IEEE_FEATURES intrinsic module
contains constants that are defined if the processor supports
the indicated feature. Thefull list of constantsis

eee_dat at ype
eee_nan

eee_inf
eee_denor nal
eee_roundi ng
eee_sqrt
eee_halting
eee_inexact _flag
eee_invalid_flag
eee_underfl ow fl ag

Constants omitted from the module correspond to
unsupportable features. A USE of the module with an
ONLY clause can detect the absence of a feature at compile
time.

| EEE arithmetic control

The IEEE_ARITHMETIC intrinsic module defines a
type, ieee class type, and constants of that type
corresponding to the possible values of ieee floating point
numbers:;

eee_si gnal i ng_nan
eee_qui et _nan
eee_negative_inf
eee_negati ve_nor nal
eee_negati ve_denor nal
eee_negative_zero
eee_positive_zero
eee_positive_denronal
eee_positive_nornal
eee_positive_inf
eee_ot her val ue

The module also defines a type, ieee round_type, and
constants of that type corresponding to the ieee rounding
modes:

i eee_nearest
i eee_up

i eee_down

i eee_to_zero
i eee_ot her

| EEE arithmetic functions

The IEEE_ARITHMETIC intrinsic module also defines
a set of functions to inquire about support for various
features, get and set rounding modes, and perform ieee
conforming operations. If anieee_support_* routine returns

CUG 2003 Proceedings 11

false, referencing other routines that depend on support for
that feature may not be meaningful. The functions defined
in the module are:

eee_support _dat at ype
eee_support _denronal
eee_support _divide
eee_support _inf
eee_support_io
eee_support_nan

eee_support _roundi ng
eee_support_sqrt
eee_support_standard
eee_support _underfl ow control

eee_cl ass
eee_copy_sign
eee_is finite
eee_i s_nhan
eee_i s_nornma
eee_i s_negative
eee_| ogb
eee_rem
eee_rint
eee_scal b
eee_unor dered
eee_val ue

eee_sel ected_real Kkind

eee_get _roundi ng_node
eee_set _roundi ng_node
eee_get _underfl ow_node
eee_set _underfl ow _node

| EEE exception control

The IEEE_EXCEPTIONS intrinsic module defines two
new data types: ieee status type, and ieee flag_type. The
ieee_status type should be used to declare a variable that
holds the current value of the floating point status. The
constants of typeieee flag_type defined in the module are:

i eee_overfl ow

i eee_divide_by zero
ieee_invalid

i eee_underfl ow

i eee_i nexact

The module also includes several routines to get and set
values of exception flags:

i eee_support _flag

i eee_support_hal ting

i eee_get flag

i eee_set _flag

i eee_get _hal ti ng_node

i eee_set hal ti ng_node
i eee_get status
i eee_set _status

If theieee support_flag or ieee_support_halting
routines return false for a particular flag, referencing the
corresponding get and set routines is not meaningful.

6.1/0

Asynchronous /0

Fortran 2000 contains syntax support for asynchronous
input and output operations. An asynchronous read or write
statement initiates the operation but allows the program to
continue before the operation is finished. A separate wait
statement forces the program to wait until the operation is
completed. The functionality is essentially the same as that
provided by the old buffer in and buffer out statements.
Status: early implementation. Example:

open(10, .., asynchronous="yes’, .)
read(10, .., asynchronous='yes’,id=idw, ..)
wait (10, id = idw

Without the id clause in the wait statement all currently
outstanding operations on the unit must complete. Executing
a close or inquire operation on the unit has an implied wait
if the file was opened as asynchronous.

Stream |/O

Part of the improved interoperability with C includes
support for stream 1/0O. Files opened for stream /O do not
have internal record structure information. Formatted files
may have embedded newline characters, matching the
convention used by C programs to delimit records.
Unformatted files do not contain internal record size
information. The current location within the file can be
obtained or specified with a POS= keyword in the 1/O
statement. Status: early implementation. Example:

open (unit=10, ...access = ‘stream, .)

FLUSH statement

File 1/O is typically buffered in memory before actual
transfers to or from disks take place. The Cray library has a
flush subroutine to force a read or write of the memory
buffers before they are full. Fortran 2000 provides a
portable syntax for this operation as a Fortran statement.
Status: early implementation. Example:

CUG 2003 Proceedings 12

flush 10

flush(unit=10, iostat = n)

Thefirst form of the flush statement parallels the backspace
and endfile statements. The second form also accepts iomsg
and err keywords. The value returned for the iostat variable
iszeroif no error occurs, apositive value if there was an
error, and a negative value if the flush operation is not
supported for the specified unit. If the iostat value indicates
an error, and the iomsg optional keyword is supplied, then
theiomsg variableis set to a printable error message. The
optiona err keyword is similar to err on other 1/0
statements, specifying a statement number as a branch target
if thereisan error.

DECIMAL mode

Support for the use of a comma, rather than a period, as
the character that separates the fractional part and whole
number part of a formatted real number is included as part
of the internationalization features of Fortran 2000. A new
DECIMAL keyword for the open statement is used to
specify the mode. A DECIMAL keyword may be specified
in aread or write statement, overriding the value specified
in the open statement. Status. early implementation.
Example:

open(unit=10, .., deci mal ="conma”, ...)
open(unit=11, .., deciml ="point”, ..)

The internal value of 4.3 would be written to unit 10 as
“4,3", and to unit 11 as“4.3". The default mode is “point”.
If the comma mode is used then list directed 1/O operations
use a semi-colon for the value separator.

Rounding mode

When real values are written to a file the conversion
between the internal binary form and the external character
string is usually inexact. The method used to determine the
value of the final character(s) is determined by a convention
on rounding. Fortran 2000 gives the user control over what
rounding mode is used. The mode is specified with the
ROUND keyword in the open statement. The keyword may
also be supplied in aread or write statement which overrides
the value specified in the open statement. The supported
values for the rounding value are ‘up’, ‘down’, ‘zero’,
nearest’, ‘compatible’, and ‘processor_defined'. The ‘zero’
mode means round toward zero. For systems that support
|IEEE arithmetic, the ‘nearest’ mode must conform to the
|EEE nearest rounding rules. The ‘compatible’ mode differs
from ‘nearest’ for the case where the actual value is exactly
half way between possible output values. The ‘compatible’
mode rounds such values away from zero. This is designed
for compatibility with some systems. The ‘nearest’ mode on

IEEE machines rounds tie cases to even which is the
standard science rounding convention. The meaning of
‘processor_defined’ is unspecified, and included for
backward compatibility. The default rounding mode is
processor dependent. Status: later implementation. Example:

open (unit=10, .., round="down’, .)

wite (10, ‘(g20.7)’, round="nearest’) X

Text encoding

Support for character variables containing SO 10646
characters is complemented by 1/0 support for files
containing a standard encoding, called Unicode, of the ISO
10646 characters. Records from a file containing these
characters should be transferred to and from character
variables with the ISO_10646 kind type. The encoding
keyword values are ‘utf-8' and ‘default’. The default is
‘default’ and corresponds to ASCII on Cray systems. Status:
later implementation. Example:

open(uni t=10, .., encoding="utf-8, .)

Keywordsin read and write statements

Six of the keywords that can be specified in open
statements to describe 1/0O modes may also be specified in a
read or write statement. The value specified in the read or
write statement overrides the corresponding value specified
in the open statement, and affects only the I/O performed by
that statement. The alowed changeable mode keywords
are BLANK, DECIMAL, DELIM, PAD, ROUND, and
SIGN. Status: later implementation. Example:

wite (unit=10,fnt =*, deci mal = comm’) X

Error message text

A new keyword, iomsg, is provided for most 1/O
statements. If there is a error, end of file, or end of record,
in the execution of the I/O operation, the character variable
specified by iomsg is set to a text message describing the
error or condition. This message could be used to provide
more useful output in the case of an error. This option is
typically used in conjunction with iostat to ensure that an
error condition does not abort the program before the user
has a chance to print the iomsg value. Status: later
implementation. Example:

character(132) :: nsg

read(10, i onsg=nsg, i ostat =n) x

CUG 2003 Proceedings 13

Derived type /O control

The default mechanism for handling a derived type
variablein an 1/0O list isto effectively expand the item into a
list of items, one for each component of the type. Fortran
2000 allows the user to specify subroutines that handle the
I/O operations to be performed on a derived type variable.
Up to four routines may be specified with these generic
names: read(formatted), write(formatted),
read(unformatted), and write(unformatted). These are
typically type-bound procedures and are invoked for
formatted 1/O if the format contains a corresponding DT
format specifier. Status: later implementation. Examples:

type :: dna
i nteger,allocatable :: ascii_text(:)
i nt eger l ength
cont ai ns
generic :: wite(formatted) => fw dna

end type dna

type(dna) hs_chr 20

wite (10,° (dt)’') hs_chr20

In printing out the dna string for human chromosome
20, only the text should appear, and not the length. In this
case the default derived type 1/0O would not provide the
desired result. It would be possible to write out the
individual component, but thisis not in the OOP spirit. The
form of the user written function, fw_dna, must have a
specific interface since this will be called by an I/O library
routine. Interfaces are detailed in the standard for al 4 of
the possible routines. For this example:

subroutine fw dna(dtv, &
unit, &
i otype, &
vliist, &
iostat, &
i onsQ)

class(dna),intent(in) ::dtv ! hs_char20
i nteger,intent(in) Dlounit I 10

character(*),intent(in):: iotype ! “DT"
i nteger,intent(in) covlist
i nteger,intent (out) :: iostat
i nteger,intent(inout) :: ionsg

I Wite out the first dtv%ength

I characters in dtv%ascii _|list.

I Set iostat based on results of the
I wite.

I Set ionsg if iostat was non-zero.
I The vlist argunent is not used in
I this exanple

end subroutine fw dna

7. Future

Standardization process and schedule

The completion of a new standard for Fortran involves
the collaboration of two standards organizations. The SO
committee, named WGS, creates a list of features to be
included in a new standard based on input from member
countries and comments from the wider community. Once
the specification of requirements is completed, it is
transferred to the technical committee, named J3, which is
charged with writing the document that defines Fortran. The
development of a new standard document goes through a
series of drafts.

The current Fortran 2000 standard is nearing
completion. A WG5S meeting is scheduled for the end of
July, 2003, to review the current draft and make
recommendations for minor corrections and changes. A
subsequent J3 meeting in August will implement those
changes in the document and produce a draft for a four-
month vote by WG5 member countries. That vote may
result in comments and suggestions for minor changes.
Once those comments are processed and a final document is
produced there will be a final vote in 2004. That vote is
either yes or no, with no comments allowed. Once the final
vote is completed (and hopefully the standard is approved),
it is published by SO and becomes official. The plan calls
for this to be completed by the end of 2004. A copy of the
current draft document, as well as the J3 meeting schedule
and membership list, is available at the J3 committee web
site: j3-fortran.org.

Futuredirections

As the Fortran 2000 standard nears completion,
consideration is being given to the shape of future versions
of Fortran. If the pattern of 90 and f95 is followed, the next
update should be fairly minor, followed by a major revision
near the end of the decade. Three significant features have
been discussed for future Fortran.

A proposal to add SUBMODULES to Fortran is already
well developed. The basic idea of submodules is to separate
the interface from the actual definition of module
procedures. This would allow for the definitions of the
procedures to be in submodules that are in separate files.
The main benefits of this structure are a better environment
for large-scale projects with many developers, and as a
mechanism to avoid compilation cascades common with the
current module structure.

Parallel execution dominates large-scale scientific
computations, which is the traditional focus of Fortran. The
most attractive candidate for parallel structures within

CUG 2003 Proceedings 14

Fortran is the Co-Array Fortran (CAF) model. Specific
proposals to standardize Co-Arrays have been made in the
past. These may resurface with the addition of CAF
equivalent features to C. Wider adoption of Co-Arrays by
the user community would enhance the chances of it being
standardized.

Fortran has traditionally focused on numeric computing
and has strong support for numeric data types. Emerging
fields like bioinformatics have a significant computational
component that involves non-numeric bit manipulation. The
addition of typeless or bit data types to Fortran will be
raised for the next standard. This feature would also
simplify some procedure interface issues, better handle
hexadecimal, octal, and binary constants, and standardize
some of the bit manipulation intrinsics such as popcnt.

Acknowledgments

The author would like to thank the Cray Fortran
compiler group for early implementation of many of the
Fortran 2000 features as well as substantial input on the
future implementation schedule.

About the Author

Bill Long represents Cray as a primary member of the
J3 Fortran standard committee. He is also the primary
author of the Cray Bioinformatics Library, most of which is
written in Fortran 2000. Bill can be reached at Cray Inc.,
1340 Mendota Heights Road, Mendota Heights, MN 55120,
Email: longb@cray.com.

CUG 2003 Proceedings

15

