Etnus TotalView on the Cray X1

Robert Moench, Cray Inc. and Robert Clark, Cray Inc.

ABSTRACT: Cray has ported the Etnus TotalView Debugger to the Cray X1 platform. This
paper will be a description of and tutorial for using TotalView on the Cray X1. A tour will be
given of both the Graphical User Interface and the Command Line Interface. Extensions
specific to the Cray X1 as well as any current limitations will be covered.

1. Introduction

Cray has ported the Etnus TotalView Debugger to the
Cray X1 platform. In this paper I would like to give some
background regarding the Etnus TotalView debugger with
respect to Cray and introduce a number of issues that are
specific to debugging on the Cray X1. I will describe the
current capabilities of the debugger and what features will
be in the next release. Additional features to be completed
still later will be reviewed. Finally, I will take the reader on
a guided tour of a subset of TotalView using both the
Graphical User Interface (GUI) as well as the Command
Line Interface (CLI).

2. Background on Etnus TotalView

Previous Cray customers may already be aware that a
debugger named TotalView has been part of our product
line for many years. Both Cray TotalView and Etnus
TotalView spring from a common source. Cray purchased
the rights to those sources close to 15 years ago. From that
point on the two debuggers were developed independently
and have gradually diverged. People moving from Cray
TotalView to Etnus TotalView will notice both similarities
and differences. On balance, it should be a fairly easy
transition.

Late in 2001, Cray purchased the rights to modify the
current Etnus TotalView source code, from Etnus, for the
purpose of porting it to the Cray X1. This agreement
includes the delivery of periodic updates from Etnus, several
of which Cray has already received and incorporated.

In December of 2002 Cray released the CLI version of
TotalView (totalviewcli) to our early Cray Xl
customers. This is followed by the GUI version
(totalview), which is currently in final exposure and will
be released in May of 2003.

3. Debugging Issues Unique to the Cray X1

While not uncommon in supercomputers, the Cray X1
vector registers are new to Etnus TotalView. The number,
layout, and format of the vector registers all bring new
requirements to the debugger.

The Cray X1 is powered by multi-stream processors
(MSPs), a tightly coupled set of independent single-stream
processors (SSPs). This delivers an additional level of
parallelism that must be addressed by the debugger.

The Cray X1 implements a Distributed Memory (DM)
machine that makes all of its memory available to all
processors. This brings a number of parallel programming
models to the fore.

The Remote Translation Table (RTT) of the Cray X1
allows for off node memory sharing. This in turn has an
impact on the core files generated during core dumps.

DM applications require the use of a launcher, such as
aprun. This necessarily complicates the starting up of the
debugger and application.

4. Current capabilities

TotalView is able to debug both command mode and
MSP mode executables. A command mode executable is
executing on a single SSP and does not involve streaming.
1ls and r m would be examples of command mode
programs. An MSP executable executes on an MSP and can
have its SSPs executing separate streams of code. User
applications would be an example of MSP mode programs.
However, DM invocations of user applications cannot yet be
debugged with TotalView.

TotalView can perform both live and core file
debugging on programs compiled with the -G0/-g
debugging options.

The languages Fortran, C-Language, C++, and
assembly are supported.

CUG 2003 Proceedings 1

The Cray X1 register set, the NV1 instruction set, and
the UNICOS/mp operating system are supported, with the
exception of the vector registers.

-G0/-g compiles force streaming to -Ostream0
levels of streaming. However, while the user code
compiled in this manner is at stream zero, library code
may well be streamed. TotalView is able to run
through such regions of streamed code with out
incident.

5. Next Release — 4™ Quarter, 2003

There are a number of key features that are planned for
the next release.

When a DM application is started up, each process is
relocated in memory. This causes the compile time debug
symbol information (created by =G0/ -g) to be inconsistent
with the run time locations. With the next release TotalView
will relocate the symbol information, just as start up has
done, to compensate for this.

Since each process in a DM application can access the
memory of all other processes, by virtue of the RTT, a
straight forward core dump of each process would end up
dumping a great deal of redundant memory. To this end, all
of the RTT shared memory on a node is dumped only to one
of the core files for the node. The other core files, while
they may well reference that memory, do not contain it.
With the next release TotalView will transparently track
down the necessary references.

Since user applications required the use of a launcher,
such as aprun, it would be very convenient for TotalView
and aprun to coordinate launching of applications that are
to be debugged. With the next release TotalView will
orchestrate this.

While -Ostream0 executables do not do anything
interesting with SSPs 1-3, there are still times when it is
desirable, or even necessary, to be able to examine those
streams. With the next release TotalView will make that
information available.

In an effort to capture any fixes or enhancements made
to TotalView by Etnus, the latest release level will be
integrated with TotalView for the Cray X1.

Regression tests are doubly valuable for our releases of
TotalView. They help us to confirm that our most recent
upgrade from Etnus was completed successfully and they
help us to confirm that our recent features have not
introduced errors. With the next release TotalView will be
validated with an improved regression test suite.

6. Still to Come

The release described above will fill in some important
holes in current TotalView functionality, but there are a
number of additional items scheduled for later releases.

While Distributed Memory models of parallel
programming can be debugged once the work above is
complete, debugging models such as MPI, CoArrays, and
UPC could be more transparent and complete. Work will
continue in this area.

Work still needs to be done so that Shared Memory
models of parallel programming, such as Pthreads and
OpenMP can be debugged.

Support for =G1/-gp compiler switches will be
completed. These switches allow higher levels of compiler
optimization, though with somewhat reduced levels of
debug granularity.

Support for the display and modification of the vector
registers will be added.

Both software and hardware support for watchpoints is
possible on the Cray X1, but work on these has not yet been
completed.

Previous Cray systems have provided a debugger utility
called debugview. It performed a low overhead, ASCII
capture of standard, key items from a core file (e.g. stack
trace, register dump, et. al.). TotalView’s CLI interface
should allow an analogous capability, with the additional
advantage of being easily customizable by individual users.

CUG 2003 Proceedings 2

7. Tour of Etnus TotalView for the Cray X1

7.1 The Graphical User Interface

The process/thread window (Figure 1) is the workhorse
of the TotalView graphical interface. It contains pull down
menus, action buttons, and five panes: the Stack Trace pane
(A), Stack Frame pane (B), the Source Code pane (C), the
Action Points pane (D), and the Thread pane (E).

CIEE]
File Edit “iew Group Process Thread Action Point Tools Window Help

Graup (Contral] = | Go| Halt| Next| Step| Out| Run Ta| Nextl| tepl| ‘ & -
Process 1 (315908): controller! (Stopped) ==
W Thread 1.1 (315508) (Stopped) <Trace Trap= |l
Stack Trace aj Stack Frame
main, FE=A0000200£180 ||| Function "main”: k|
_ start, FP=40000200£200 No arguments. =
Local wasdables:
A {type (GP IBCONTROLLE
i (000000000}
voe (IVIESTER))
¥pe (YOLTYMETRICS!
Py (type (RCME130))
SUPPLY:: {type (VOLTONSS))
|| wOLT_SUPPLY: (type(ACMEL30))
S 11 o 1 4
Function main in contraller! T | —'_
3221 s |
ggg program main
I this module uses Controller related classes, as described in
325 ! Scientific and Engineering C++, by John J. Barton and Lee R. Nackma
326 | [addison-Wesley, Reading, Ma, 1994], pp. 226-240.
327 use Voltmeter_class
328 use VoltageSupply class
329 use IVTester_class
330 type (GPIBController Stub) :: gpib
331 type (Bcmeldl), target :: wolt supply, supplyl
332 type (VoltyMetrics), target :: meter
333 type (VoltonS9), target :: supplyl
334 type (I¥Iester) :: 1w
335 real :: result, v step = 1.0
336 | first example, p. 228
call newivolt_supply, qpih, 12) | Supply at GPIE address 12
338 call set{wolt_supply, 3.6}
339 | second example, p. 23
340 call new{meter, gpib, 14}
41 call new(supplyl, gpib, 12) J
§ result = orig checktalibration(supplyl, neter, 1.0}
343 Print *, ‘Acmeldl relative error at 1 wolt 1s: *, result
344 | third example, p. 235
i E] rall mewismnle? ik 130 -
| |
Thread (1) i Action Points 2
T in main Al 1 controllerl. f#337 main-l
Figure 1

At the top of the window, the standard GUI style pull-
down-menus, are available for a variety of functions. More
accessible yet are the actions buttons right underneath the
menus. They make the most common functions (go, step,
etc.) immediately available. Alternatively, single keystroke
short cuts (documented in the pull downs) can be used to
enter commends. The right most buttons (P+, P-, T+, T-)
allow for scrolling through processes and corresponding
threads.

Underneath the buttons (inside the wide oval callout)
one can find the current status of the displayed process and
thread. Common values are key words such as Running,
Stopped, At breakpoint 1, and so on.

The Stack Trace pane (A) is both a view of your current
call chain and a navigation tool. By left clicking on a routine
in the stack trace, the Stack Frame pane and Source Code
pane will update with information pertinent to that routine.

The Stack Frame pane (B) contains stack frame specific
information such as the call arguments, local variables, and
the machine registers

The Source Code pane (C) displays the source code
associated with the call site of the current frame.
Breakpointable lines have a box outlining them. If a
breakpoint is set, the box is filled in red with the word
“STOP”. Line 337 is in this state. TotalView indicates the
current program counter (or call site) with a yellow arrow.

Notice that line 342 is highlighted. The process window
reached this state by hitting the breakpoint at line 337. I then
selected line 342 by clicking on it and selected the Run To
button. This, essentially, creates a temporary breakpoint to
which the Run To button advances program execution.

The Action Points pane (D) displays lines with
associated breakpoints, watchpoints, or expression points. If
enabled, they have bright red boxes similar to those in the
Source Code pane. If disabled, the red fades out. Just like
the stack trace, the action point entries here can be left
clicked on and the Source Code pane will scroll to the
breakpointed line.

The Thread pane (E) shows the current location of each
active thread. It provides more direct access to the threads
than scrolling via the buttons.

CUG 2003 Proceedings 3

By using the Step button we can go into
orig_checkcalibration, as seen in figure 2.
Notice that the stack trace now includes
orig_checkcalibration and that the Source Code
window is labelled with the new routine and file name. You
can also see, peeking out from the bottom of the Stack
Frame pane, a couple of the X1 registers.

==X
File Edit ¥iew Group Process Thread Action Point Tools Window Help

Group {Contral) -+ | Go|Halt| Newt|Step| out|2us to| NewtI|stepl| |
Process 1 (49742): controllerl (Stopped)
- 742) (Stopped) <Trace Trapy [NNITTHMRATGTTHI
Stack Trace N Stack Frang
ORIG_CHECKCALIERATION, FP=40000200/— || Finction "0RIG_CHECKCALIERATION": =
Fo0| main, FP=40000200£0c0 UPPLY (type (ACMEL30)) =
_ start, FP=40000200£140 | [+ METER: (type (VOLTRMETRICS))
TST_¥OLTAGE: 1
Local wariahles
ORIG_CHECKCALIERATION: 2.60752e-09
Registers for the frame:
al: 0x00000000 {0}
— al: 0x40000200ee98 (7036877779317
E . -0 _fanacorrriaaiol;
Function ORIG_CHECKCALIBRATION in controllerl.f B
360 real . tst_wvoltage &l
361 | Relative error at specified test voltage.
362 call set{supply, tst_woltage)
checkCalibration = absitst_voltage - readimeter)) /tst_voltage
364 end function checkCalibration
3851
real function orig_checkGalibration(supply, meter, tst_woltage)
type (Acmel30) supply
368 type (¥oltyMetrics) :: meter
369 real tst_voltage
370 | Relative error at specified test voltage.
=D call setisupply, tst_woltage)
g g orig_checkCalibration = =hs(tst_voltage - read{meter))/ &
&tst_woltage
374 end function orig_checkCalibration
375 end program main
3T ! History
377 | $Log: controllerl f,v &
378 IRevision 3.1 1087/11/04 00:04:24 cor
370 1Tnitial rewision
3g0. !

3l | N
) |
Thread (1) 1 4ction Points
AT in ORIG_CHECKCALIERATION [1 controllerl. f#337 main+0x90c|3

.
Figure 2

Figure 3 is the result of using the Qut button to return
out of the current function. Sometimes you just wish you
had not gone into a function, or at any rate, you have seen
enough of it.

An additional change has happened in figure 3.
TotalView can display source level code, or disassembled
code, or both. Comparing the two can explain what appears
to be an anomaly in the debugger’s display of the source
code. The yellow arrow seems to indicate that the program
is still working on the call of the routine from which we just
returned. By looking at the disassembly we can see that the
call (j,a60 a6l,sr) has indeed completed. However,
the assignment of the result, not actually a part of the
routine, has not yet been completed.

=IEE)
File Edit Yiew Group Process Thread Action Point Tools Window ﬂelpl

Group (Control) — | Go| Halt| Next| Step | out Mextl| Stepl | |

i Process 1 (316041): contraller] (Stapped)
Thread 1.1 (318041) (Stopped) <Trace Trap=
Stack Trace Hf Stack Frame

main, FP=40000200£180 = ||Function "main”: i |
_ start, FP=40000200£200 Ho arquments =
Local variables:
GPIE: {type {GPIBCONTROLLY
kg 0 {0x00000000)
Iv: {type (IVTESTER))
METER: {type (VOLTYMETRICS)
RESULT 1}
SUPPLY1: (type (ACMEL30))
SUPPLYZ: {t¥pe (WOLTONSD))
VOLT_SUPPLY: (type (ACME130)) |
T u_cmEn 1 nEl
Function main in controller] f o B
331 type (Acmelld0), target :[So 00100278 ab8 BEL35:a il
332 type (VoltyMetrics), tai i 0x0100a7cc: ab6, 1 a62|0
333 type (VoltOnb9), target B 001002740 ad, 1 abT+al
334 type (I¥Tester] :: iv B 0x010027d4: &85, 1 =ad|0
335 real :: result, v_step - BY Ox010027d8: a4 0:a3
336 | first example, p. 228 5B O0x010027dc: a5 256:c
call new(volt_supply. gpi Bf Ox0100a7e0: ad:h 0
335 call setivolt_supply, 3.f O0x010027ed: a5:d 40144
339 | second example, p. 232 Ox0100a7e8: a6l.1 ad|aS
340 call new(meter, gpih, 14) Ox0100a7ec
3471 e " E0I00=T£0 j. 260 a6l, sr
=D result = orig_checkCalil = e
343 i T~ 1 || NG 0x010027£8: sl,w [a62-143] |7
344 | third example, p. 235 & 0x0100aTfc [aB2-135] sl,w
345 call new(supplyZ, gpib, 11 343 Ox01002800: al 0:a
result = checkGalibratic Ox0100=804 a2 575:c
247 Print *, 'Acmel30 relatis 0x01002808: =al:bh O
result = checkCalibratic 0x0100280c: =a2:d 31680
349 Print *, ‘¥oltOnS9 relati Ox01002810: =a30,1 aljal
350 | fourth example, p. 249 G Ox01002814: al 64384:abcd
call newiiv, VoltageSupy J BY Ox01002818: 22,1 a6l+al
do i =0, 9 B Ox0100281lc: sl1,1 [230+0]
result = currentiiv, s| | B 001002820 [a2+0] s1.1
anddn = Me1NN=824 . =1 1 1230411
| I] A
Thread {1} je| Action Paints)
Bl b in main = 1 controllerl. £#337 main-fo
Figure 3

If we click the Go button, this application will request
some input. I have provided a response of 4.5. The program
requests additional input, but instead of supplying it, I have
clicked on the Halt button to interrupt the application and
have the debugger take control of it. Figure 4 is the resulting
screen.

CUG 2003 Proceedings 4

The stack trace shows us that we have interrupted the
C-Language library routine, __read. Notice that
TotalView can accept mixed language executables and
highlights the language of each routine.

]
File Edit Miew Group Process Thread Action Point Tools Window Help

Group (Contral) = | Go| Halt| Next| Step| Out| e Y| hextl| Stepl| | 2o

Process 1 (8750]: controller (Stopped)
Thread 1.1 (8750) (Stopped) <stop Signal>
tack Trace] Stack Frame

FP=40000200c8al | = (|Function "_ read": k|
read, FP=40000200chal fildes: 0x00000000 0} =
_ filbuf, FP=40000200ceal 0x342e350a00000000
_frech, FP=40000200d760 nbyte <Bad address: 0x001
_sr_endrec, FP=400002004be0 ﬁcal wvariables:
_FFF, FP=40000200e100 _rv: (struct _svZos_sysc
RECEIVE, FP=40000200e520
EREAD_VM, Fp=40000200e7e0 Registers for the frame:
CHECECALIBRATAON, FP=40000200eaal
nain, FP=40000200£180 all: 0x00000000 (0}
__start, Fp=40000200f200 |- al. 0x00000000 (0}

=0 NuNododdnn sa0coctTey Kl

Function _rei{d in read.c oA B

TF—#inelnde "sys/svE/syscall b

#include <unistd. h>

ssize_t

_ readiint fildes, woid #buf, size_t nbyte)
USUAL_SYSCALL (shize_t. 5YS_read, BRG_LIST3(fildes, buf, rhyte

i

#ifndef LIBRESTART LJEC
#* Wrapper for pthrgfad callback */
#pragma weak read ¥ _read

#include "synomn
#include "mplib. k"

ssize_t
read(int fild¢s, woid *buf, size_t nbyte)
i

MTLPE_ELOCK_CNCL RET(ssize_t, _ read(fildes, buf, nbyte));:
¥

#endif s+ LIBRESTART LIBC */ /V

v i |

/ Thread (1) i Action Points 5

i ‘ in _read i) 1 controllerl f#337 main-_|
/

//

Dive Targets

Figure 4

An extremely powerful capability of TotalView is its
ability to dive on various objects. This is accomplished by a
middle click on the object of interest. When a dive is
requested, TotalView zooms in to give a closer look, as
defined by the object of focus. Figure 4 calls out a number
of possible dive objects. A dive on an action point will
cause the source code pane to scroll to the source code to
which the action point pertains. Diving on a routine being
called in the source pane will scroll the source code pane
similarly. Breakpoint “stop signs” in the source code will
bring up a properties window when dived upon.

Perhaps the most frequent use of diving is to dive on
data objects. The first window in Figure 5 shows a dive on
buf, an argument to __read A new window is created
that displays the type, location, and value of buf. On
inspection, something seems a bit amiss. buf is a pointer to
void, but according to the window, it is a bad address. A
pointer can certainly hold a bad address, but a more likely
explanation is that the __read routine was written with a
very noncommittal interface and, taking the variable name

into account (buf), the value probably is not an address, but
rather, data — probably ASCII data.

read.c#__ read#bur

File Edit Wiew Tools Window

JLHARAMMITAAMULNND reao.ce_readsbur - 1.1

(at 0x024edded) Type: wvoid *

¥alue: Dx342e35%0a00000000 -3 <Bad address: 0x342e350a00000001

Figure 5

Any field shown by TotalView in bold type is an
editable field. We can actually change the type of buf to try
out this theory. Figure 6 shows the effect of clicking on the
type field. It becomes a text edit field with a text cursor.
Using the TotalView primitive type, <string>, we can type
cast buf to be interpreted as a null terminated array of
characters.

__read#buf

Edit Wiew Toals Window

{at Dx02deddeD) T@oid T

¥alue: Dx342e35%0a00000000 -: <Ead address: 0x342e350a00000001

CUG 2003 Proceedings 5

In Figure 7 we see that we guessed correctly. buf does
indeed contain a string — the very 4 .5 that I entered as input
when first queried by the application.

File Edit View Tools Window

{at O0x024eddel] Ty'pe <str:i.m_:p

Walue: "4.5%yn"

Figure 7

Diving can examine arbitrarily complex structures as
represented by figure 8. Each succesve dive can drill deeper
and deeper into complex data, and with each dive the
window is reused. Forward and backward arrows allow easy
navigation to review the chain of diving. Alternatively, one
can dive anew (right mouse button menu choice), which will
create a new window, leaving the original window intact.

T frch.c# _freh#stat

File Edit Yiew Tools Window

(at. 0x40000200cf40] Type: struct ffsw =)
Field Type value
aw_flag msigned int:1 0=00 (D)
SW_Error wnsigned int:31 0=00000000 (O}
<padding> (n:har)[4] (Array)
sw_count lon 0x0000000000000000 (0}
sw_stat lmslgned int:16 0x0000 (0}
<padding» <char>[2] (Array)
SH_User int:32 0x00000001 (1)
sw_iptr void * 0x02484020 -> 0x0000000000000000 (0)
sw_sptr void * 0x00000000
sw_rsvl int Oxfffffaec (-1300)
<padding> <char>[4] (Array)
aioch struct aioch (struct)
aio_fildes int 0x00000000 (0)
<padding> <char>[4] (Array)
aio_huf void * 0x01320668 (% p_ SYPT cnpll and swap
aio nbytes ungigned long int 0x000040000200d260 (70363777785952)
aio_offset long OxfE££ebaB00000000 (-22368189677568)
aio_reqpric int 0x00000000 (0}
<padding> <char>[4] (Array)
aio_sigevent struct sigevent {(Struct)
Sigev_notify int 00000000 (D)
<padding> <char>[4] (Array)
sigev_notifyinfo union notifyinfo (Union)
sigev_value union sigval (Union)
sigev notify function void (*) (void) Ox013acebe : pthread mutex unlocksOsx
siqev_notify attributes struck @Fe_type 20 + 0x01329228 (& p_ SVET cmp_and_swap)
sigev_reserved unsigned long int[11] (array)
0 0x000040000200d2a0 (T70368777786016) |
11 0x0000000000000000 {03
2] 0x000000000000002L (43}
[3] 0x00000000024e600 (28604400)
[4] 0x00000000010743£4 (17253364)
[5] 0x000000000000002k (43)
[6] 0x0000000000000000 (0}
71 0x0000000000000000 (0}
(81 0x000000000112a7d0 {17993824)
[91 OxfE££Fa0000000000 (1B844673809511507
[10] 0x0000000000000001 (1)
sigev_pad unsigned long int[6] (Array)
[01 0=00000000010£4460 (177280064)
[11 0x0000000001055af4 (17128180)
2] 0x0000000000000000 (0
[
Figure 8

7.2 The Command Line Interface

A relatively recent addition to TotalView is its
command line interface. It fills a number of needs. First,
some people simply prefer keyboard control over the tools
they use. Or, for security reasons, a GUI interface is not an

option. TotalView’s CLI addresses these issues and goes
beyond them. It has been implemented by using the
embeddable scripting language, Tcl. As a consequence, it is
not restricted to human entry of commands, but can actually
be turned into a program. This makes it much more
powerful than most debugger CLIs.

Of course, with power often comes complexity and this
is certainly true in this case. Tcl will first interpret any
command entered, before going on to TotalView. This
means that the syntax of Tcl must be followed. Avoiding
tripping over Tcl’s syntax is not overly difficult, but must be
accounted for. A number of characters have specific
meaning in the Tcl syntax and must be escaped if they are
intended for Total View rather than Tcl. They are as follows:
s, [, 1, {, 3}, #, ;, , and the space character.
The most common troublemakers are the space and the
dollar sign.

If your TotalView command includes spaces it may
need to be quoted in order to be parsed properly. TotalView
uses the dollar sign to prefix register names. Tcl uses it as a
substitution operator. The result it that register names need
to be prefixed first by a backslash (to tell Tcl to skip the
substitution meaning) and then prefixed by a dollar sign (to
tell TotalView that the name following is a register name).

All TotalView commands start with the letter ‘d’. For
example, there is a dbreak command rather than break, a
dgo rather than go. This has effectively carved out a name
space for TotalView to separate its commands from those of
Tcl. That being said, terse aliases have been predefined for
all TotalView commands (e.g. b for dbreak, g for dgo).
The help command documents the alias for each
command. Note that the TotalView commands can be
abbreviated, while the aliases must be typed precisely.

Now let us take a look at how a simplified version the
GUI tour of TotalView looks when performed with the CLI.

In the output below, totalviewcli is started on the
executable named controller]l and a breakpoint is set at line
337. Execution is started via dgo and the process comes to
life. It eventually hits the breakpoint that we set and stops.

Notice the totalviewcli prompt. The numeral ‘I’
indicates that the current focus is on process number one. If
this were a parallel debugging session we could change our
focus to other processes and the prompt would remind us at
which process our commands are directed. Were it a
threaded session, the ‘<>’ would contain a thread number.

sn702> totalviewcli controllerl
dl.<> dbreak 337
1
dl.<> dgo
Created process 1 (71894),

named "controllerl"
Thread 1.1 has appeared
Thread 1.1 hit breakpoint 1 at line 337

in "main"

CUG 2003 Proceedings 6

Since totalviewcliis a parallel debugger, a
command such as dgo will release the process to run, but
the debugger will continue to run as well. Both
totalviewcli and controllerl are sharing stdin and
stdout. Up until now they were taking turns nicely, but if
controller] were to continue at this point, it would start
reading input from stdin and the debugger would continue to
read its input from stdin, simultaneously. To avoid this the
dcontinue command, subtly different than dgo, is used
next. dcontinue continues the processes, but does not
perform anymore input until the process reaches a stopped
state. (Await is another way to wait for the process, but the
debugger isn’t likely to see that command if the process is
busy reading stdin.)

dl.<> dcont
(Acmel30 now at address 12)
(GPIB instrument # 12 sends value
3.5999999)
(VoltyMetrics now at address 14)
(Acmel30 now at address 12)
(GPIB instrument # 12 sends value 1.)
(Please enter number for GPIB instrument
14)
4.5
Acmel30 relative error at 1 volt is:
3.5999999
(GPIB instrument # 13 sends value 1.)
(Please enter number for GPIB instrument
14)
Thread 1.1 received a signal (Interrupt)

Controller]l continues above and requests input. I
supply the “4.5” and it continues on, requesting input
again. Typing a control-C sends an interrupt to the process
and the debugger takes control once again. Below you can
see the CLI stack trace. The greater than sign (‘>’) indicates
the routine the PC is in. If you walked the stack (dup,
ddown) you would see an equal sign (‘=’) marking our
currently walked to stack frame.

dl.<> dwhere

>0 _ read PC=0x0110e810,
FP=0x40000200c7e0 [read.c#23]
1 _read PC=0x0110ee0lc,

FP=0x40000200cae0 [read.c#36]
2 _ filbuf PC=0x0110c614,
FP=0x40000200cde0
[_filbuf.c#65]
PC=0x010e51b4,
FP=0x40000200d6a0 [frch.c#224]
4 _sr_endrec PC=0x0108eceS8,
FP=0x40000200daa0 [rf.c#876]
5 _FRF PC=0x01041d00,
FP=0x40000200e040 [rf90.c#333]

3 _frch

6 RECEIVE PC=0x01003c3c,
FP=0x40000200e460 [cont.f#50]
7 READ_VM PC=0x01005af0,

FP=0x40000200e720 [cont.f#142]
8 CHECKCAL PC=0x01009928,

FP=0x40000200e9e0 [cont.f#363]
9 main PC=0x0100abac,

FP=0x40000200f0c0 [cont.f#348]

Below, the source code has been listed with dlist.
Again, a greater than sign marks the current PC location. If
a breakpoint were set in this code, such lines would be
marked with an ‘@ character.

dl.<> dlist
16 #include <sys.s>
17 #include "sys/sv2/syscall.h"
18 #include <unistd.h>

19

20 ssize_t

21 __read(int fildes, void *buf, size_t
nbyte)

22 {

23 > USUAL_SYSCALL (ssize_t, SYS read,
ARG_LIST3 (fildes,

24

buf, nbyte));
25 }
26

27 #ifndef LIBRESTART LIBC
28 /* Wrapper for pthread callback */
29 #pragma weak read = _read

The dprint commands below demonstrate manual type
casting analogous to the cast in the GUI example prior. In
the CLI, expression evaluation is performed in the language
of the current function.

dl.<> dprint *buf
*buf = <Bad address: 0x342e350a00000000>
dl.<> dwhat buf
In thread 1.1:
Name: buf; Type: void *;
Size: 8 bytes;Addr: 0x024e4del
Scope: ##controllerl#read.c#__read(
Scope class: Any)
Address class: reference_param(
Reference parameter)
dl.<> dprint *(<string>*)&buf
* (<string>*)&buf = "4.5\n"

CUG 2003 Proceedings 7

Below is a small example of using the Tcl interface
programmatically. In the example, the Tcl procedures, for,
set, and incr are used to control the invocation of the
TotalView defined dprint procedure. £or takes the four
parameters one might expect, with curly braces delineating
them. The braces are for Tcl, with no need to escape them.
The first and third dollar sign are also for Tcl. The dollar
sign requests a substitution for the value of ‘i’. However,
there is no variable ‘a’ and that dollar sign is for TotalView,
to tell it that ‘a57’, ‘a58’ etc. are register names. The
backslash (“\”) escapes the dollar sign so that Tcl will pass
it on through, undisturbed.

dl.<> for {set i 57} {$i < 64} {incr i}
{dprint \ai}
Sab57 = 0x00002fffffffffel

(52776558133216)
$a58 = 0x0000300000000000
(52776558133248)
$a59 = OxFffffb8c00000000
(-4896262717440)
$a60 = 0x000000000110eelc
(17886732)
$a61 = 0x000000000110e7c8
(17885128)
$a62 = 0x000040000200c7e0
(70368777783264)
$a63 = 0x000040000200c500
(70368777782528)
Conclusion

The Etnus TotalView debugger is a strong base for the
Cray X1 debugging future. While currently usable, up
coming releases will leverage this base to more fully address
the spectrum of debugging needs of our customers. A great
deal has been accomplished, but there are still substantial
items to be completed. To this end, Cray management has
recently allocated additional resources.

About the Authors

Bob Moench is a Software Engineer at Cray Inc. He has
worked on debuggers for the last several years. He can be
reached at 1340 Mendota Heights Rd, Mendota Heights,
MN 55120 USA, E-mail: rwm @cray.com

Bob Clark is a Software Engineer at Cray Inc. He has
worked on debuggers for the last several years. He can be
reached at 1340 Mendota Heights Rd, Mendota Heights,
MN 55120 USA, E-mail: clark@cray.com

CUG 2003 Proceedings

