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Outline

• Organization of the Cray LINPACK Benchmark code

• Kernel optimizations on the CRAY X1

• The virtual processor grid
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The LINPACK benchmark
Solve a linear system

Ax = b
using Gaussian elimination with partial pivoting.

The problem size and implementation are not specified.

The algorithm factors A = L U and solves
y = L-1 b;  x = U-1 y

Performance results are specified in
Gflop/s (billions of floating-point operations per second) or
Tflop/s (trillions of floating-point operations per second)
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Block LU factorization
Right-looking algorithm:

I

II

III

I.  Factor block column
     into A = LU

II.  Exchange rows and
     update block row

III.  Update the rest of
the matrix using
matrix multiplication
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Optimizing the panel factorization
Sub- blocking or recursion is used within the block column so that

more work is  done in the optimized MM kernel.
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Software choices
HPL (High Performance LINPACK)
http://www.netlib.org/benchmark/hpl

• Block-cyclic distribution
• Column-wise storage of blocks
• MPI communication

Cray’s LINPACK Benchmark code
• Block-cyclic distribution
• Row-wise storage of blocks
• MPI or SHMEM communications
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2-D block cyclic data distribution
Example on a 2x3 processor grid:
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Local view:  ScaLAPACK/HPL
Blocks stored by columns, on processor 0:

Advantage:  With abstraction of BLAS and LAPACK routines, we
can maintain much of the LAPACK design.

Disadvantage:  As matrix size gets large, distribution blocks get
spread out through memory.

A1,1

A5,1

A1,4

A5,4

A1,7

A5,7

A3,1

A7,1

A3,4

A7,4

A3,7

A7,7

A(mb*nrblks, nb*ncblks)
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Local view:  Cray LBM code
Blocks stored by rows, processor 0:

A1,1

A5,1

A1,4

A5,4

A1,7

A5,7

A3,1

A7,1

A3,4

A7,4

A3,7

A7,7

A(mb,nb,ncblks,1)

A(mb,nb,ncblks,2)

A(mb,nb,ncblks,3)

A(mb,nb,ncblks,4)

Advantage:  Distribution blocks and block rows are contiguous.
Disadvantage:  More indexing with the 4-D array.
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Main computation kernel
After communication of the column and row blocks, each processor
performs a matrix-matrix multiplication of the form:

= -
x

In ScaLAPACK/HPL, one call to SGEMM is required for this
operation.
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Optimizing data layout for SGEMM
With row-wise storage of blocks, one call to SGEMM is needed to

update each local block row.

x= -

x= -

x= -

(all the same block)
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Internals of SGEMM on T3E
Basic operation:  nb-by-nb matrix times nb-by-n matrix

A B C

x =

nb

nb n n

nb

Innermost kernel:  12×nb matrix-vector multiply, 12-element result
The nb-by-nb block of A is used repeatedly and will reside in cache.
The columns of B are streams (if LDB=nb, B is one long stream).
The result vector is held in registers until combined into C.

nb
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Transition of SGEMM:  T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E:  Result vector was 12 elements long
X1:  Result vector can be VL elements long (to 64)
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Transition of SGEMM:  T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E:  nb x nb block constrained by size of
          1 set of Scache (4096W = 64x64)
X1:  nb x nb block needs to fit in 2 MB
          cache (256KW = 512x512)
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Transition of SGEMM:  T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E:  Compute one column of C at a time
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Transition of SGEMM:  T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E:  Compute one column of C at a time
X1:  Compute 4 columns of C at a time
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Transition of SGEMM:  T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E:  Compute 12 x nb matrix-vector
        multiply in innermost kernel
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Transition of SGEMM:  T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E:  Compute 12 x nb matrix-vector
        multiply in innermost kernel
X1:  Each SSP computes a 64 x nb
        matrix-vector multiply concurrently
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Internals of SGEMM on X1
Basic operation:  nb-by-nb matrix times nb-by-n matrix

SSP0

A B C

x =

nb

nb n n

nb

The nb-by-nb block of A is used repeatedly and will reside in cache.
B is read 4 columns at a time and is shared by the 4 SSPs.
The result vector is held in registers until combined into C.

SSP1

SSP2

SSP3

nb
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Prototype matrix multiply code
    subroutine sgemmnn( m, n, k, alpha, a, inra, b, inrb,
     &                    beta, c, inrc )
      integer m, n, k, inra, inrb, inrc
      real alpha, beta, a(inra,*), b(inrb,*), c(inrc,*)
      integer i, js, m4
cdir$ SSP_PRIVATE dmmnn
      m4 = (m+3)/4
      do i = 0, 3
        js = min( m4, max( m-i*m4, 0 ) )
        call dmmnn( js, n, k, alpha, a(1+i*m4,1), inra,
     &              b, inrb, beta, c(1+i*m4,1), inrc )
      end do
      return
      end

Compile with:
     ftn -Oaggress -O3 -s default64 –c sgemmnn.f
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Optimizing the row exchanges
A row exchange is performed at each step of the block column

factorization to put the largest element (in absolute value) on the
diagonal.  The vector IPIV records the exchanges.

Example:
IPIV(1) = 20
IPIV(2) =   6
IPIV(3) =   9
IPIV(4) = 31
IPIV(5) =   5
IPIV(6) = 22
IPIV(7) = 20
IPIV(8) = 20
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Gather/scatter indices
We can avoid synchronizing after every exchange by translating

IPIV into gather and scatter permutation vectors.

  scatter     gather  
1  7 1  20
2  22 2  6
3  9 3  9
4  31 4  31
5  5 5  5
6  2 6  22
7  8 7  1
8  20 8  7
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Optimizing the communication
To optimize the communication, rows to be exchanged are first

copied locally into a contiguous buffer.
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When a p×q grid isn’t enough

Shortcomings of existing algorithm:
• Many processors are idle during column factorization.
• Not every processor count factors neatly into  N  = p×q.

Example:
124 = 4x31
123 = 3x41
122 = 2x61
121 = 11x11

• On some systems it is better to leave one or two processors idle
(       –1 may not factor neatly).N p

p
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The Virtual Processor Grid
Generalize the 2-D grid factorization to p×q = k×N  ,

where k ≥ 1, p ≤ N  , and lcm(p,N  ) =  k×N  .
Example:  6 processors in a 4×3 virtual grid
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This becomes the tiling pattern
for the distributed 2-D matrix

p pp
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Data structure for VPG
Recall the 4-D array used for row-wise storage of blocks:

A( mb, nb, ncblks, nrblks )

Now add another dimension for the virtual processor index:
A( mb, nb, ncblks, nrblks, nvpi )

Maintains contiguousness of distribution blocks and row blocks.
Need to add a loop over the virtual processor indices.
No extra storage except for some extra buffers for each virtual

processor.
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Coding issues for VPG
Loop doesn’t always go from 1 to nvpi.
Example:   Send second column of following matrix across rows.
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Send is initiated with virtual
processor index 1 on {4,5},
with v.p. index 2 on {0,1}.

Recv is initiated with virtual
processor index 2 on {2,3,4,5}
and with v.p. index 1 on {0,1}

do i = 0, nvpi-1
     {work on block numbered
          1 + mod(start-1+i, nvpi)}
end do
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LINPACK Benchmark Performance
CRAY X1, 124 MSPs
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Summary
• Storage order of distribution blocks was optimized for

the cache.
• Leading dimension was padded from 256 to 260 to

optimize the matrix-multiply kernel.
• Main computational kernel uses SSP parallelism.
• Communication was optimized using SHMEM.
• No barriers!  Communication was extensively

overlapped with computation.
• Virtual processor grid improves parallelism of column

and row operations.




