
LINPACK Benchmark Optimizations
on a Virtual Processor Grid

1

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

Ed Anderson (eanderson@na-net.ornl.gov)
Maynard Brandt (retired)

Chao Yang (cwy@cray.com)

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

2

Outline

• Organization of the Cray LINPACK Benchmark code

• Kernel optimizations on the CRAY X1

• The virtual processor grid

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

3

The LINPACK benchmark
Solve a linear system

Ax = b
using Gaussian elimination with partial pivoting.

The problem size and implementation are not specified.

The algorithm factors A = L U and solves
y = L-1 b; x = U-1 y

Performance results are specified in
Gflop/s (billions of floating-point operations per second) or
Tflop/s (trillions of floating-point operations per second)

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

4

Block LU factorization
Right-looking algorithm:

I

II

III

I. Factor block column
 into A = LU

II. Exchange rows and
 update block row

III. Update the rest of
the matrix using
matrix multiplication

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

5

Optimizing the panel factorization
Sub- blocking or recursion is used within the block column so that

more work is done in the optimized MM kernel.

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

6

Software choices
HPL (High Performance LINPACK)
http://www.netlib.org/benchmark/hpl

• Block-cyclic distribution
• Column-wise storage of blocks
• MPI communication

Cray’s LINPACK Benchmark code
• Block-cyclic distribution
• Row-wise storage of blocks
• MPI or SHMEM communications

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

7

2-D block cyclic data distribution
Example on a 2x3 processor grid:

0

1

0

1

0

2

1

3

2

3

2

3

4

5

4

5

4

5

0

1

0

1

0

1

2

3

2

3

2

3

4

5

4

5

4

5

0

1

0

1

0

2

1

3

2

3

2

3

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

8

Local view: ScaLAPACK/HPL
Blocks stored by columns, on processor 0:

Advantage: With abstraction of BLAS and LAPACK routines, we
can maintain much of the LAPACK design.

Disadvantage: As matrix size gets large, distribution blocks get
spread out through memory.

A1,1

A5,1

A1,4

A5,4

A1,7

A5,7

A3,1

A7,1

A3,4

A7,4

A3,7

A7,7

A(mb*nrblks, nb*ncblks)

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

9

Local view: Cray LBM code
Blocks stored by rows, processor 0:

A1,1

A5,1

A1,4

A5,4

A1,7

A5,7

A3,1

A7,1

A3,4

A7,4

A3,7

A7,7

A(mb,nb,ncblks,1)

A(mb,nb,ncblks,2)

A(mb,nb,ncblks,3)

A(mb,nb,ncblks,4)

Advantage: Distribution blocks and block rows are contiguous.
Disadvantage: More indexing with the 4-D array.

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

10

Main computation kernel
After communication of the column and row blocks, each processor
performs a matrix-matrix multiplication of the form:

= -
x

In ScaLAPACK/HPL, one call to SGEMM is required for this
operation.

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

11

Optimizing data layout for SGEMM
With row-wise storage of blocks, one call to SGEMM is needed to

update each local block row.

x= -

x= -

x= -

(all the same block)

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

12

Internals of SGEMM on T3E
Basic operation: nb-by-nb matrix times nb-by-n matrix

A B C

x =

nb

nb n n

nb

Innermost kernel: 12×nb matrix-vector multiply, 12-element result
The nb-by-nb block of A is used repeatedly and will reside in cache.
The columns of B are streams (if LDB=nb, B is one long stream).
The result vector is held in registers until combined into C.

nb

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

13

Transition of SGEMM: T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E: Result vector was 12 elements long
X1: Result vector can be VL elements long (to 64)

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

14

Transition of SGEMM: T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E: nb x nb block constrained by size of
 1 set of Scache (4096W = 64x64)
X1: nb x nb block needs to fit in 2 MB
 cache (256KW = 512x512)

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

15

Transition of SGEMM: T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E: Compute one column of C at a time

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

16

Transition of SGEMM: T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E: Compute one column of C at a time
X1: Compute 4 columns of C at a time

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

17

Transition of SGEMM: T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E: Compute 12 x nb matrix-vector
 multiply in innermost kernel

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

18

Transition of SGEMM: T3E  X1

A B C

x =

nb

nb n n

nbnb

T3E: Compute 12 x nb matrix-vector
 multiply in innermost kernel
X1: Each SSP computes a 64 x nb
 matrix-vector multiply concurrently

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

19

Internals of SGEMM on X1
Basic operation: nb-by-nb matrix times nb-by-n matrix

SSP0

A B C

x =

nb

nb n n

nb

The nb-by-nb block of A is used repeatedly and will reside in cache.
B is read 4 columns at a time and is shared by the 4 SSPs.
The result vector is held in registers until combined into C.

SSP1

SSP2

SSP3

nb

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

20

Prototype matrix multiply code
 subroutine sgemmnn(m, n, k, alpha, a, inra, b, inrb,
 & beta, c, inrc)
 integer m, n, k, inra, inrb, inrc
 real alpha, beta, a(inra,*), b(inrb,*), c(inrc,*)
 integer i, js, m4
cdir$ SSP_PRIVATE dmmnn
 m4 = (m+3)/4
 do i = 0, 3
 js = min(m4, max(m-i*m4, 0))
 call dmmnn(js, n, k, alpha, a(1+i*m4,1), inra,
 & b, inrb, beta, c(1+i*m4,1), inrc)
 end do
 return
 end

Compile with:
 ftn -Oaggress -O3 -s default64 –c sgemmnn.f

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

21

Optimizing the row exchanges
A row exchange is performed at each step of the block column

factorization to put the largest element (in absolute value) on the
diagonal. The vector IPIV records the exchanges.

Example:
IPIV(1) = 20
IPIV(2) = 6
IPIV(3) = 9
IPIV(4) = 31
IPIV(5) = 5
IPIV(6) = 22
IPIV(7) = 20
IPIV(8) = 20

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

22

Gather/scatter indices
We can avoid synchronizing after every exchange by translating

IPIV into gather and scatter permutation vectors.

 scatter gather
1  7 1  20
2  22 2  6
3  9 3  9
4  31 4  31
5  5 5  5
6  2 6  22
7  8 7  1
8  20 8  7

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

23

Optimizing the communication
To optimize the communication, rows to be exchanged are first

copied locally into a contiguous buffer.

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

24

When a p×q grid isn’t enough

Shortcomings of existing algorithm:
• Many processors are idle during column factorization.
• Not every processor count factors neatly into N = p×q.

Example:
124 = 4x31
123 = 3x41
122 = 2x61
121 = 11x11

• On some systems it is better to leave one or two processors idle
(–1 may not factor neatly).N p

p

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

25

The Virtual Processor Grid
Generalize the 2-D grid factorization to p×q = k×N ,

where k ≥ 1, p ≤ N , and lcm(p,N) = k×N .
Example: 6 processors in a 4×3 virtual grid

0

1

2

3

4

5

0

1

2

3

4

5

This becomes the tiling pattern
for the distributed 2-D matrix

p pp

p

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

26

Data structure for VPG
Recall the 4-D array used for row-wise storage of blocks:

A(mb, nb, ncblks, nrblks)

Now add another dimension for the virtual processor index:
A(mb, nb, ncblks, nrblks, nvpi)

Maintains contiguousness of distribution blocks and row blocks.
Need to add a loop over the virtual processor indices.
No extra storage except for some extra buffers for each virtual

processor.

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

27

Coding issues for VPG
Loop doesn’t always go from 1 to nvpi.
Example: Send second column of following matrix across rows.

0

1

4

5

2

3

0

1

4

5

2

3

0

1

2

3

Send is initiated with virtual
processor index 1 on {4,5},
with v.p. index 2 on {0,1}.

Recv is initiated with virtual
processor index 2 on {2,3,4,5}
and with v.p. index 1 on {0,1}

do i = 0, nvpi-1
 {work on block numbered
 1 + mod(start-1+i, nvpi)}
end do

4

5

0

1

4

5

2

3

0

1

4

5

2

3

0

1

4

5

2

3

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

28

LINPACK Benchmark Performance
CRAY X1, 124 MSPs

0

200

400

600

800

1000

1200

1400

1600

0 50000 100000 150000 200000 250000

N

G
fl

o
p

/s 4x31 grid

31x4 grid

32x31 grid

LINPACK Benchmark Optimizations
on a Virtual Processor Grid

29

Summary
• Storage order of distribution blocks was optimized for

the cache.
• Leading dimension was padded from 256 to 260 to

optimize the matrix-multiply kernel.
• Main computational kernel uses SSP parallelism.
• Communication was optimized using SHMEM.
• No barriers! Communication was extensively

overlapped with computation.
• Virtual processor grid improves parallelism of column

and row operations.

