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CCSM overview

• CCSM, the Community Climate System Model  
is a coupled model for simulating the earth’s 
climate system. 
– Developed at NCAR with significant collaborations 

with US DoE, NASA and the university community
• Components include

– Atmospheric Model – CAM 2.0.2
– Ocean Model – POP 1.4.3
– Sea Ice Model – CSIM4
– Land Model – CLM2
– coupler 
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Porting Strategy

• Individual components vectorized by a 
number of organizations including NCAR, 
ORNL, ARSC, Cray, NEC and Earth Simulator

• Simultaneously, port coupled system 
framework, which includes coupler (cpl6) and 
utilities it uses:
– MCT – Model Coupling Toolkit from ANL
– MPEU – Message Passing Environment Utilities  

from NASA DAO
– MPH – Multi Program Handshaking Utility from LBL
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Porting Issues

• CAM needs to be compiled with –s real64 to 
run correctly

• This means libraries and all component 
models need to be built with   –s real64     

• Word length issues (double precision) in 
utilities

• Minor MPI Word length issue in POP, which in 
standalone code is not compiled with –s 
real64     
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Porting Strategy

• Build with new multiple binary capability in 
Cray MPI library. 

• Use “data” models to exercise coupling 
framework without real models
– read data from files and communicate with coupler.
– datm, dlnd, docn, dice, cpl

• Add real models one at a time to debug
– CAM, dlnd, docn, dice, cpl
– CAM, CLM, docn, dice, cpl
– datm, dlnd, POP, dice, cpl

…
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Performance Optimization

• Land and Ice models already optimized by 
other groups. 

• Standalone POP has been optimized for X1 
but don’t expect to need to use large number 
of processors on POP in CCSM so may not 
need to include those mods. 

• Expect performance of CCSM to be 
determined primarily by performance of the 
atmospheric model (CAM) so focus attention 
on it.  Target of 20-25 simulated years per day 
for T85 atmosphere.
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CAM Porting Issues

• Mostly system calls and macro definitions
– E.g. getenv() ⇒ pxfgetenv()
– Define UNICOSMP macro
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Optimization Rules and Issues

• Cannot impact performance on other target 
systems

• Solution must be independent of # procs
• Cannot alter solution (bit-for-bit) on other 

platforms
• Limited amounts of architecture-dependent 

code allowed (i.e. no large scale #ifdef
NEC/CRAY/IBM sections) 

• Frequent updates to models
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CAM Optimization Hotspots

• Physics
• Dynamics
• Land Model
• Communications

As with many environmental applications, initial 
profiles were relatively flat.
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Physics Optimizations: Hotspots

• Hotspots (easy-to-hard)
– Function calls within loops

• estblf() – saturation pressure lookup
– Error checks with I/O
– Short/long-wavelength radiation routines

• Not streamed/vectorized
• Complex cloud overlap algorithm
• Few opportunities for long vectors
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Physics Optimizations: Inlining

• Function calls within loops
– Estblf is called very often and its presence in loops 

inhibits vectorization and streaming. 
– Fixed with –Omodinline in certain modules

• Default behavior in newest compilers
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Physics Optimizations: I/O

• Error checks with I/O
do i = 1, N
err = f(i) – g(i)
if( err > tol )then
write(6,fmt) msg, i, err

call endrun()

end if
end do

• Presence of write statement forces loop 
to be scalar.

• Call to endrun() inhibits streaming.
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Physics Optimizations: I/O

• Not the same, but it 
streams/vectorizes....
j = 0; jerr = 0.0
do i = 1, N

err = f(i)-g(i)
if( err > tol ) then
j = i; jerr = err

end if
end do
if( j > 0 )then

write(6,*) msg, err, j
call endrun()

endif

• Done in qneg3, aerosols, etc.
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Physics Optimizations: radclwmx

• Complex cloud algorithm limits vectorization
• $DIR CONCURRENT for loops with indirect 

addressing, e.g. i = indx(j)
• Forced streaming over number of columns.

– Amount of work still less than optimized short 
wavelength code.

– Streamed within radclwmx rather than at a higher 
level
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Physics Optimizations: radcswmx

• First pass:
– Vectorized across spectral bands
– Forced streaming across number of columns
– Very simple to implement and gives good 

performance boost on X1.
• Problem: 

– Short vector lengths (19) means relatively 
inefficient performance compared to 
vectorizing over daylight columns.

– Inefficient implementation for machines that 
need long vectors.
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Physics Optimizations: radcswmx

• Second pass:
– Developed by NEC
– Introduce new data structures and routines 

that assist in vectorizing over the number of 
daylight columns.

• Problem:
– Additional complexity. Compress-expand 

overhead.
– No significant performance boost on X1 over 

previous version.
– Still some bottleneck loops with short vector 

lengths.
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Physics Optimizations: load balancing

• Turned on load balancing option already 
in code.
– Unlike other platforms, this pays off on X1
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Dycore Optimizations

• While the physics scales well to high 
processor counts, the spectral dycore did not. 

• A number of issues needed to be addressed:
– Sub-optimal packing/unpacking before 

communications
– Serial communications

• Use all-to-all or allgather
– Load imbalance caused by streaming of work-

critical loops with loop lengths less than four.
• Move streaming to loops with more work, e.g. loops over 

number of latitude bands
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Communications Optimizations

• Co-Array Fortran versions of MPI wrapper 
routines
– Streamed and vectorized
– Used pointer structure keeps memory 

requirements the same and allows use of co-
arrays.

– Additional barriers but offset by faster point-to-
point communications.

– Need to determine whether benefit outweighs goal 
of minimizing platform-specific code. 

• MPI optimization
– More all-to-all communications, less one-to-all and 

all-to-one communications.
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CAM T42 (dev50) Performance
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CAM T85 (dev50) Performance
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CAM performance and versions

• Most of the optimization modifications in 
CAM/CLM are in the latest CCSM3 source.

• CAM dev70 runs about as fast as dev50.
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Land Model 

• Original CLM2.2 contained data structures 
that were inherently ‘vector unfriendly’
– The internal data structures were based on a 

hierarchy of pointers to derived data types 
containing scalar quantities scattered throughout 
memory. 

– Lowest level loops over ‘plant functional types’ 
with max loop lengths of 1-20 and snow/soil loops 
with negligible work.
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Land model optimization

• Develop a single code that runs well on both 
vector and scalar architectures while 
maintaining the hierarchical nature of the 
current data structures. 

• Move loops over columns into the science 
subroutines, and vectorize over these outer 
loops (instead of the short inner loops over 
PFTs and soil/snow levels). 

• Unroll short loops, interchange some loops, 
fuse some loops, and inline subroutines to 
improve performance. 
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New land model performance

• smaller memory footprint
• new data structures simplify history 

updates and reduce complexity and # of 
gather/scatters

• 25.8x faster on the Cray X1, and 1.8x 
faster on the IBM
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Coupler

• Small number of porting mods needed in 
utilities used by coupler to deal with word 
length and auto-promotion.

• No X1 specific optimization done. 
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Configuration Optimization/Plan

• Optimal performance of CCSM requires 
determining how to distribute processors 
among 5 executables

• Expect to run CAM with 128 processors to 
maximize number of simulated years per wall 
day.

• Expect to use smaller numbers of processors 
on other components (8, 16, 24) – just enough 
to not slow down the atmospheric model
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Performance

• Initial runs have been made but final configuration 
(number of processors for each component) has not 
yet been determined.  T85 runs used 
– CAM  128, 64 or 32 MSPs
– POP 24 MSPs
– CLM  12 MSPs
– CSIM4 8 MSPs
– Cpl6  8 MSPs

• Initial performance is about 6-7x slower than 
expected.
– Coupled model performance should be close to standalone 

CAM performance.
– Have not yet analyzed results to determine bottleneck.
– Ran with timers on, no modinline (because of build issue with 

coupled system) and with some streaming disabled in land 
model. 
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Future Plans

• Validation of climate (NCAR). 
• Identification and elimination of performance 

problems that affect fully coupled runs.
– Examine overhead of coupler, determine if 

additional optimization is needed.
– Examine performance of POP in coupled system, 

determine which mods from optimized standalone 
code may be needed in coupled model.

• Load balancing of coupled system.
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Summary

• The full CCSM has been ported to the X1. 
– Makefiles, scripts and many source code mods will 

be in next release.
• Significant optimization of each component has been 

done by groups at Cray, ORNL, NCAR and NEC.
• Performance of individual components is excellent.
• Initial performance of coupled model is currently 

poor.
– Coupled model with vectorized components has 

only been available for a few days. 
– Some compiler optimizations were turned off 

because of issues building coupled system. 
– Expect this to be fixed within a few weeks.
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