
Experience with the Full CCSM

Matthew Cordery and Ilene Carpenter (Cray),
John Drake and Pat Worley (ORNL)

May 04 2

Outline

• CCSM overview
• Porting strategy for coupled model
• Porting issues
• CAM/CLM optimization and performance
• Configuration
• Performance

May 04 3

CCSM overview

• CCSM, the Community Climate System Model
is a coupled model for simulating the earth’s
climate system.
– Developed at NCAR with significant collaborations

with US DoE, NASA and the university community
• Components include

– Atmospheric Model – CAM 2.0.2
– Ocean Model – POP 1.4.3
– Sea Ice Model – CSIM4
– Land Model – CLM2
– coupler

May 04 4

CCSM Components

CAM

CSIMcouplerCLM

POP

May 04 5

Porting Strategy

• Individual components vectorized by a
number of organizations including NCAR,
ORNL, ARSC, Cray, NEC and Earth Simulator

• Simultaneously, port coupled system
framework, which includes coupler (cpl6) and
utilities it uses:
– MCT – Model Coupling Toolkit from ANL
– MPEU – Message Passing Environment Utilities

from NASA DAO
– MPH – Multi Program Handshaking Utility from LBL

May 04 6

Porting Issues

• CAM needs to be compiled with –s real64 to
run correctly

• This means libraries and all component
models need to be built with –s real64

• Word length issues (double precision) in
utilities

• Minor MPI Word length issue in POP, which in
standalone code is not compiled with –s
real64

May 04 7

Porting Strategy

• Build with new multiple binary capability in
Cray MPI library.

• Use “data” models to exercise coupling
framework without real models
– read data from files and communicate with coupler.
– datm, dlnd, docn, dice, cpl

• Add real models one at a time to debug
– CAM, dlnd, docn, dice, cpl
– CAM, CLM, docn, dice, cpl
– datm, dlnd, POP, dice, cpl

…

May 04 8

Performance Optimization

• Land and Ice models already optimized by
other groups.

• Standalone POP has been optimized for X1
but don’t expect to need to use large number
of processors on POP in CCSM so may not
need to include those mods.

• Expect performance of CCSM to be
determined primarily by performance of the
atmospheric model (CAM) so focus attention
on it. Target of 20-25 simulated years per day
for T85 atmosphere.

May 04 9

CAM Porting Issues

• Mostly system calls and macro definitions
– E.g. getenv() ⇒ pxfgetenv()
– Define UNICOSMP macro

May 04 10

Optimization Rules and Issues

• Cannot impact performance on other target
systems

• Solution must be independent of # procs
• Cannot alter solution (bit-for-bit) on other

platforms
• Limited amounts of architecture-dependent

code allowed (i.e. no large scale #ifdef
NEC/CRAY/IBM sections)

• Frequent updates to models

May 04 11

CAM Optimization Hotspots

• Physics
• Dynamics
• Land Model
• Communications

As with many environmental applications, initial
profiles were relatively flat.

May 04 12

Physics Optimizations: Hotspots

• Hotspots (easy-to-hard)
– Function calls within loops

• estblf() – saturation pressure lookup
– Error checks with I/O
– Short/long-wavelength radiation routines

• Not streamed/vectorized
• Complex cloud overlap algorithm
• Few opportunities for long vectors

May 04 13

Physics Optimizations: Inlining

• Function calls within loops
– Estblf is called very often and its presence in loops

inhibits vectorization and streaming.
– Fixed with –Omodinline in certain modules

• Default behavior in newest compilers

May 04 14

Physics Optimizations: I/O

• Error checks with I/O
do i = 1, N
err = f(i) – g(i)
if(err > tol)then
write(6,fmt) msg, i, err

call endrun()

end if
end do

• Presence of write statement forces loop
to be scalar.

• Call to endrun() inhibits streaming.

May 04 15

Physics Optimizations: I/O

• Not the same, but it
streams/vectorizes....
j = 0; jerr = 0.0
do i = 1, N

err = f(i)-g(i)
if(err > tol) then
j = i; jerr = err

end if
end do
if(j > 0)then

write(6,*) msg, err, j
call endrun()

endif

• Done in qneg3, aerosols, etc.

May 04 16

Physics Optimizations: radclwmx

• Complex cloud algorithm limits vectorization
• $DIR CONCURRENT for loops with indirect

addressing, e.g. i = indx(j)
• Forced streaming over number of columns.

– Amount of work still less than optimized short
wavelength code.

– Streamed within radclwmx rather than at a higher
level

May 04 17

Physics Optimizations: radcswmx

• First pass:
– Vectorized across spectral bands
– Forced streaming across number of columns
– Very simple to implement and gives good

performance boost on X1.
• Problem:

– Short vector lengths (19) means relatively
inefficient performance compared to
vectorizing over daylight columns.

– Inefficient implementation for machines that
need long vectors.

May 04 18

Physics Optimizations: radcswmx

• Second pass:
– Developed by NEC
– Introduce new data structures and routines

that assist in vectorizing over the number of
daylight columns.

• Problem:
– Additional complexity. Compress-expand

overhead.
– No significant performance boost on X1 over

previous version.
– Still some bottleneck loops with short vector

lengths.

May 04 19

Physics Optimizations: load balancing

• Turned on load balancing option already
in code.
– Unlike other platforms, this pays off on X1

May 04 20

Dycore Optimizations

• While the physics scales well to high
processor counts, the spectral dycore did not.

• A number of issues needed to be addressed:
– Sub-optimal packing/unpacking before

communications
– Serial communications

• Use all-to-all or allgather
– Load imbalance caused by streaming of work-

critical loops with loop lengths less than four.
• Move streaming to loops with more work, e.g. loops over

number of latitude bands

May 04 21

Communications Optimizations

• Co-Array Fortran versions of MPI wrapper
routines
– Streamed and vectorized
– Used pointer structure keeps memory

requirements the same and allows use of co-
arrays.

– Additional barriers but offset by faster point-to-
point communications.

– Need to determine whether benefit outweighs goal
of minimizing platform-specific code.

• MPI optimization
– More all-to-all communications, less one-to-all and

all-to-one communications.

May 04 22

CAM T42 (dev50) Performance

0
10
20
30
40
50
60
70
80
90

100

2 4 8 16 32 64

Processors

Si
m

ul
at

ed
 Y

ea
rs

/W
al

l D
ay

Cray X1

May 04 23

CAM T85 (dev50) Performance

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128
Processors

Si
m

ul
at

ed
 Y

ea
rs

/W
al

l D
ay

Cray X1

May 04 24

CAM performance and versions

• Most of the optimization modifications in
CAM/CLM are in the latest CCSM3 source.

• CAM dev70 runs about as fast as dev50.

May 04 25

Land Model

• Original CLM2.2 contained data structures
that were inherently ‘vector unfriendly’
– The internal data structures were based on a

hierarchy of pointers to derived data types
containing scalar quantities scattered throughout
memory.

– Lowest level loops over ‘plant functional types’
with max loop lengths of 1-20 and snow/soil loops
with negligible work.

May 04 26

Land model optimization

• Develop a single code that runs well on both
vector and scalar architectures while
maintaining the hierarchical nature of the
current data structures.

• Move loops over columns into the science
subroutines, and vectorize over these outer
loops (instead of the short inner loops over
PFTs and soil/snow levels).

• Unroll short loops, interchange some loops,
fuse some loops, and inline subroutines to
improve performance.

May 04 27

New land model performance

• smaller memory footprint
• new data structures simplify history

updates and reduce complexity and # of
gather/scatters

• 25.8x faster on the Cray X1, and 1.8x
faster on the IBM

May 04 28

Coupler

• Small number of porting mods needed in
utilities used by coupler to deal with word
length and auto-promotion.

• No X1 specific optimization done.

May 04 29

Configuration Optimization/Plan

• Optimal performance of CCSM requires
determining how to distribute processors
among 5 executables

• Expect to run CAM with 128 processors to
maximize number of simulated years per wall
day.

• Expect to use smaller numbers of processors
on other components (8, 16, 24) – just enough
to not slow down the atmospheric model

May 04 30

Performance

• Initial runs have been made but final configuration
(number of processors for each component) has not
yet been determined. T85 runs used
– CAM 128, 64 or 32 MSPs
– POP 24 MSPs
– CLM 12 MSPs
– CSIM4 8 MSPs
– Cpl6 8 MSPs

• Initial performance is about 6-7x slower than
expected.
– Coupled model performance should be close to standalone

CAM performance.
– Have not yet analyzed results to determine bottleneck.
– Ran with timers on, no modinline (because of build issue with

coupled system) and with some streaming disabled in land
model.

May 04 31

Future Plans

• Validation of climate (NCAR).
• Identification and elimination of performance

problems that affect fully coupled runs.
– Examine overhead of coupler, determine if

additional optimization is needed.
– Examine performance of POP in coupled system,

determine which mods from optimized standalone
code may be needed in coupled model.

• Load balancing of coupled system.

May 04 32

Summary

• The full CCSM has been ported to the X1.
– Makefiles, scripts and many source code mods will

be in next release.
• Significant optimization of each component has been

done by groups at Cray, ORNL, NCAR and NEC.
• Performance of individual components is excellent.
• Initial performance of coupled model is currently

poor.
– Coupled model with vectorized components has

only been available for a few days.
– Some compiler optimizations were turned off

because of issues building coupled system.
– Expect this to be fixed within a few weeks.

	Experience with the Full CCSM
	Outline
	CCSM overview
	CCSM Components
	Porting Strategy
	Porting Issues
	Porting Strategy
	Performance Optimization
	CAM Porting Issues
	Optimization Rules and Issues
	CAM Optimization Hotspots
	Physics Optimizations: Hotspots
	Physics Optimizations: Inlining
	Physics Optimizations: I/O
	Physics Optimizations: I/O
	Physics Optimizations: radclwmx
	Physics Optimizations: radcswmx
	Physics Optimizations: radcswmx
	Physics Optimizations: load balancing
	Dycore Optimizations
	Communications Optimizations
	CAM T42 (dev50) Performance
	CAM T85 (dev50) Performance
	CAM performance and versions
	Land Model
	Land model optimization
	New land model performance
	Coupler
	Configuration Optimization/Plan
	Performance
	Future Plans
	Summary

