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ABSTRACT:  The Attila radiation transport code, which solves the Boltzmann neutron 
transport equation on three-dimensional unstructured tetrahedral meshes, was ported to a 
Cray SV1. Cray's performance analysis tools pointed to two subroutines that together 
accounted for 80%-90% of the total CPU time. Source code modifications were performed to 
enable vectorization of the most significant loops, to correct unfavorable strides through 
memory, and to replace a conjugate gradient solver subroutine with a call to the Cray 
Scientific Library. These optimizations resulted in a speedup of 7.79 for the INEEL’s largest 
ATR model. Parallel scalability of the OpenMP version of the code is also discussed, and 
timing results are given for other non-vector platforms. 
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1. Introduction 

1.1 INEEL 
The Idaho National Engineering and Environmental 

Laboratory (INEEL) is a science-based, applied engineering 
national laboratory dedicated to supporting the U.S. 
Department of Energy's (DOE’s) missions in environment, 
energy, science and national defense. Established in 1949 as 
the National Reactor Testing Station and for many years the 
site of the largest concentration of nuclear reactors in the 
world, the laboratory’s mission has changed and broadened 
into other areas over the years, such as biotechnology, 
energy and materials research, and conservation and 
renewable energy.  

For many years the lead laboratory for the DOE Office 
of Environmental Management, in the summer of 2002 the 
INEEL was given new mission direction from the Secretary 
of Energy. Designated the lead laboratory for the Office of 
Nuclear Energy, Science, and Technology in partnership 
with Argonne National Laboratory, the new Idaho National 
Laboratory will return to its historical roots as the nation’s 
leading center of nuclear energy research and development. 

1.2 ATR 
Of the 52 nuclear reactors built at the laboratory over 

the years, the Advanced Test Reactor (ATR) is one of three 
still in operation (Fig. 1). The world’s premier test reactor, it 
is a unique facility that is used to create a wide range of 
reactor environments in which the effects of radiation on 
materials and fuels may be studied. Information that would 
normally require years of irradiation can be obtained after 

only weeks or months of exposure in the ATR’s high flux 
environment. 

 
 

 
Figure 1: The Advanced Test Reactor in operation. The 
bright blue region that curves around the cylindrical test 
sections contains the fuel elements. 
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Although the primary user of the ATR is the Naval 
Nuclear Propulsion Program, there are other government, 
commercial, and foreign users. Its unique four-leaf-clover 
design provides nine main test spaces. Other smaller test 
spaces allow additional experiments to be conducted 
independently. These smaller spaces are routinely used for 
the production of medical and industrial isotopes. 

1.3 Motivation 
In early 2003, the INEEL obtained three Cray SV1s 

from the National Energy Research Scientific Computing 
Center (NERSC). One of the author’s first tasks was to 
evaluate the applications being run at the laboratory and 
decide which ones would perform well on a vector 
architecture. Any codes that could be moved to the Crays 
would free up cycles on the other non-vector machines, 
which were becoming rather heavily loaded. 

The laboratory’s main compute servers consist of:  1) 
an SGI Origin 3800 with 64 MIPS R12k 400 MHz 
processors, 2) two Sun Fire 4800s, each with 12 
UltraSPARC 750 MHz processors, and 3) three Linux 
clusters with AMD or Intel processors, containing up to 42 
dual-processor nodes. These platforms are often largely 
consumed by MCNP processes. MCNP [1] is a general-
purpose radiation transport code that uses Monte Carlo 
methods to solve the transport equation for neutrons, 
electrons, and photons. It is one of the workhorse 
applications used by nuclear engineers at the laboratory and 
probably consumes more CPU cycles at the INEEL than any 
other application. MCNP runs in parallel using either PVM 
or MPI, and it is not unusual for a run to consume 8 or 10 
processors and run for several days. 

MCNP is known to be a poor performer on vector 
architectures [1,2], so it is better suited to run on the clusters 
or the SGI Origin. However, Attila, another radiation 
transport code being evaluated for use at the laboratory, 
showed much more promise as a potential candidate for the 
SV1. The largest Attila ATR models developed at the 
INEEL contain 2.5 million computational elements and 
consume more than 7.5 Gbytes of memory. Prior to this 
porting effort, these large models were run on a single node 
of the AMD Opteron cluster, specially outfitted with enough 
extra RAM to hold them. This not only consumed resources 
that are better utilized by cluster-friendly codes like MCNP, 
it also limited the users to one run at a time. If Attila could 
be successfully ported to the high bandwidth, large memory 
(and more lightly utilized) Crays, the engineers would be 
able to make multiple runs simultaneously, hopefully with 
shorter run times, and free up computational resources for 
other applications. 

One added benefit gained from this project was the 
experience gained in vector programming and performance 
tuning. The laboratory had a Cray Y-MP until the early 
1990s, but it was removed and never replaced. The vector 
programming expertise gained up to that point has largely 
been forgotten or lost to attrition over the years. As the 
laboratory prepares itself to become the leading center for 

nuclear energy research and development, a renewed 
emphasis on high performance computing will likely require 
new expertise in the efficient utilization of vector platforms, 
among end users as well as support staff.  

2. Attila 

2.1 Description 
Attila is a radiation transport code developed by the 

Transport Methods Group (CCS-4) at Los Alamos National 
Laboratory [3]. Originally intended for internal research 
purposes only, it was later spun off by Radion 
Technologies, a for-profit company that develops and 
markets the commercial version [4]. It consists of 
approximately 45,000 lines of Fortran 90, with some C 
preprocessor commands. 

Attila is a deterministic radiation transport code, 
meaning it solves the Boltzmann transport equation 
analytically on a computational mesh. This is in contrast to 
statistical methods such as Monte Carlo, in which explicit 
transport equations are not solved, but rather large numbers 
of particles are tracked individually and their average 
behavior tallied. One benefit of using a deterministic code is 
that the solution is calculated everywhere on the 
computational mesh. Monte Carlo supplies information only 
for specific locations, which must be determined and 
specified prior to the calculation. 

Attila is a three-dimensional discrete ordinate (SN) 
code, which solves the first order form of the steady state 
transport equation on an unstructured, tetrahedral mesh. The 
SN approach discretizes the transport equation’s angular 
dependence into a set of solid angles. A multigroup energy 
discretization is used to represent energy dependence, and a 
linear discontinuous finite element method is used for 
spatial discretization. This results in four angular flux 
unknowns per computational element [5]. 

This system of equations is solved using a source 
iteration technique, meaning a series of source (outer) 
iterations are performed until the flux solution is converged. 
For optically thick problems dominated by scattering, 
source iterations can take a prohibitively long time to 
converge, thus some type of acceleration is required. Attila 
uses a modified diffusion synthetic acceleration (DSA) 
method to greatly reduce the number of source iterations 
required. 

One final note should be mentioned. The optimizations 
described in this paper were studied over a period of several 
months and three versions of Attila. However, the 
discussion of code structure refers to Attila Version 3.12.0, 
and all timing runs were performed again as necessary using 
this version to maintain consistency. 

2.2 Code Structure 
The general structure of the Attila solver is outlined in 

Figures 2 and 3. Subroutine OUTER performs the outer 
source iteration loop, which continues until the specified 
convergence criterion has been met. Within this outer loop 
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3. Performance Analysis is another loop over the number of energy groups being 
represented. 

For each energy group, a call to subroutine INNER is 
made. This performs a within-group scattering iteration, 
which continues until the flux solution converges. Each 
iteration performs a call to SOLVE_FO and, if required, a 
call to DSA. Subroutine SOLVE_FO solves the transport 
equation for the new angular flux moments in each element. 
Subroutine DSA performs the Diffusion Synthetic 
Acceleration scheme mentioned earlier. DSA can be turned 
on or off through user input. Its use will not change the 
solution, only the time to converge. 

3.1 Test Case Descriptions 
The first step in optimizing Attila was the selection of 

some appropriate test cases to run Cray’s performance 
analysis tools on. The Attila distribution came with example 
input for a nuclear reactor benchmark case. The Attila 
model, referred to here as “NEACRP,” represents a 1/8th 
reactor core. It uses two energy groups and 24 angles 
(discrete ordinates) in the transport calculation, and contains 
3,932 elements in the computational mesh. This model is 
relatively small, but it is good for initial performance tuning 
due to its short run time.  

The other major test case to be evaluated is the largest 
ATR model built to date. It contains 2,528,838 elements, 
four energy groups, and 24 angles. While too large to run in 
a reasonable amount of time using the profiling tools (at 
least prior to tuning), this case is most representative of the 
type and size that will be used most often to model the 
ATR. 

Figure 2: Subroutine OUTER controls the outer (fission 
source) iterations. NGROUPS is the number of energy 
groups being modelled. 

SUBROUTINE OUTER 
 
DO until converged 
   DO 1, NGROUPS 
    . 
    . 
      CALL INNER 
    . 
    . 
   END DO 
END DO 

SUBROUTINE INNER 
 
DO until converged 
    . 
 . 
   CALL SOLVE_FO 
 . 
 . 
   CALL DSA 
 . 
 . 
END DO 

Certain key characteristics of these models are 
summarized in Table 1. The variable npoints represents the 
number of cell vertices in the computational mesh (four 
vertices per tetrahedron), and ncells is the number of 
tetrahedral elements. For problems in which DSA has been 
selected, ncoeffs contains the number of non-zero 
coefficients in the upper triangular portion of the DSA 
operator. This number turns out to have a large impact on 
the overall run time and the amount of time spent in the 
DSA subroutine. 

Two other smaller ATR models are also listed in Table 
1. These models were run in order to check results after 
various optimizations were done, but their results are not 
discussed in this paper. 

 

 

Table 1. Test problems and some of their key parameters 

Model npoints ncells ncoeffs 
NEACRP 827 3,932 5,884 
ATR_small 37,016 110,823 221,868 
ATR_med 244,275 1,361,682 1,884,710 
ATR_large 439,695 2,528,838 3,444,470 

 

3.2 Analysis Results 
The NEACRP example problem was used for the initial 

performance analysis since it could be run quickly. On the 
SGI Origin the NEACRP problem ran in 34.1 s. The 
original unoptimized Cray version of Attila took 99.7 s to 
run on the SV1. The group 0 hardware counters indicated 
that the overall code was achieving only 21.78 MFLOPS 
and 80.49 MIPS, for a MFLOPS/MIPS ratio of only 0.27. 
This indicated a very low degree of vectorization for the 
code as a whole. 

Figure 3: Subroutine INNER performs the inner (within 
group) scattering source iteration. SOLVE_FO solves the 
transport equation for new angular flux moments, and DSA 
executes the Diffusion Synthetic Acceleration scheme, which 
speeds up the iteration process. 

Next, subroutine level timing was performed by 
recompiling Attila with the flowtrace feature enabled.  This 
indicated that the subroutine that solves the transport 
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4. Optimization equation, SOLVE_FO, was responsible for 83.9% of the 
CPU time (Fig. 4). Clearly, this was the target for the 
optimization effort, as any improvement here would have a 
significant effect on the overall run time. 

4.1 Vectorization of SOLVE_FO 
Further profiling showed that the three inner loops in 

SOLVE_FO were responsible for most of the CPU time 
consumed in that subroutine, so they were obvious 
candidates for vectorization. Examination of the loopmark 
listing showed that none of them was being vectorized, 
although at least one reason was obvious, calls to subroutine 
LU4 in each loop. 

The next two most significant subroutines were CGD 
and DSA, which together accounted for only 6.6% of the 
CPU time. DSA, as described previously, performs the 
Diffusion Synthetic Acceleration algorithm. CGD is simply 
a preconditioned conjugate gradient solver based on the 
algorithm described in Ref. 6. It is called from within DSA 
to solve the DSA system of equations.   

 

SUBROUTINE SOLVE_FO 
 
DO over angles 
      
  DO over sweeps in angle 
       
    DO 1-side visible cells 
  . 
      CALL LU4 
  . 
    END DO 
 
    DO 2-sides visible cells 
  . 
      CALL LU4 
  . 
    END DO 
 
    DO 3-sides visible cells 
  . 
      CALL LU4 
  . 
    END DO 
   
  END DO 
   
END DO 

 
Figure 4: Flowview output for the unoptimized version of 
Attila. These results were obtained by running the NEACRP 
example problem. 

 
A closer look at SOLVE_FO revealed the structure 

outlined in Fig. 5. An outer loop cycles over the number of 
angles (24 for these test cases). For each angle, a 
predetermined number of sweeps is performed. During each 
sweep the transport equations are solved for each of three 
element types: those with one side visible, two sides visible, 
or three sides visible. 

The transport sweeps can be visualized by imagining 
the sweeps as wavefronts travelling across the entire mesh, 
roughly in the direction of the current angle [7]. This means 
that ncells 4 x 4 matrices are solved for each angle, or put 
another way, the transport equations for each element are 
solved 24 times, once for each direction. 

Figure 5: Basic structure of subroutine SOLVE_FO. The 
three interior loops, which solve the transport equations for 
each element, consumed the most CPU cycles and needed to 
be vectorized. 

This structure has implications from an optimization 
point of view. Rather than having a single, high trip count 
loop over the total number of mesh elements, the elements 
are instead broken up over several loops. Each sweep in the 
sweep loop only solves the transport equations for a subset 
of the total number of elements. Furthermore, this subset is 
further broken down into the three cell types across the 
three inner loops. This reduces the potential average vector 
length for the inner loops, but this effect should not be as 
significant for the mesh sizes typical of the ATR models 
described above. 

 
The 4 x 4 coefficient matrix for its associated element 

is constructed within each of the three inner loops. 
Subroutine LU4 is called to perform an LU decomposition 
of the coefficient matrix, and then the system of equations is 
solved by forward and back substitution to yield the new 
angular fluxes. LU4 uses Crout’s algorithm with partial 
pivoting. 
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After inlining the calls to LU4, the compiler still would 
not vectorize the loops because of recurrences in three 
arrays: AMAT(nvrtx,nvrtx), IB(nvrtx), and 
PSI(nvrtx), where nvrtx is the number of vertices (4 for 
tetrahedra). AMAT is the coefficient matrix for the current 
element, IB is the output vector from LU4 which records the 
row permutations created by the partial pivoting, and PSI 
contains the new angular fluxes for each vertex. 

One approach which seems to work is to promote these 
arrays by adding a new dimension, so that they are 
dimensioned as AMAT(nvrtx,nvrtx,ncells), IB(nvrtx,ncells), 
and PSI(nvrtx,ncells). A CONCURRENT directive was also 
required to convince the compiler to vectorize the loops, 
and a PREFERVECTOR directive was needed to prevent 
less significant inner loops from vectorizing instead. The 
modified arrays are now indexed by i, the loop index, and 
the appropriate array sections are passed during the call to 
LU4, instead if the original arrays: 

 
call lu4(ier, AMAT(:,:,i), IB(:,i)) 
 
This strategy comes at the cost of a lot of extra memory 

used. For example, for the ATR_large test case with over 
2.5 million elements, the extra dimension adds over 40 
million words of required storage for these three arrays. 
Still, the performance payoff is large, even with the added 
storage. 

A closer look at the loopmark listing revealed that, in a 
different section of SOLVE_FO, the wrong loop was 
vectorizing in a loop nest that accumulates angular flux 
moments. An inner loop with a trip count of four was 
vectorizing, so another PREFERVECTOR directive was 
used to get the outer loop to vectorize over the number of 
cells. 

After both of these modifications were done, 
SOLVE_FO went from 22.24 MFLOPS to 55.01 MFLOPS, 
a 147% increase. The average vector length went from 9.32 
to 21.82. This is a good improvement, although with the 
relatively small mesh size the vector performance still 
suffers. Overall, wall clock time decreased from 99.7 s to 
63.5 s, a speedup of 1.57. Floating point performance for 
the code as a whole improved from 21.78 MFLOPS to 
43.32 MFLOPS. 

4.2 Memory Stride Issues 
Although vectorization of the three loops in 

SOLVE_FO was a big first step, it still was not showing the 
kind of performance that one would expect from a well-
vectorized subroutine. MFLOPS rates still seemed low, 
even considering the small problem size. The performance 
analysis tools gave indications of possible memory access 
problems. For instance, in runs of the NEACRP problem the 
group 0 counters showed the percent of clock periods 
(%CP) in SOLVE_FO holding issue to be 80.83%. 
Furthermore, group 1 counters showed the percent of all 
CPs waiting on memory ports in SOLVE_FO to be 66.81%. 
A partial run of the ATR_med test case showed 91.74% of 

CPs holding issue, and 83.11% of all CPs waiting on 
memory ports. 

An examination of the array declarations in 
SOLVE_FO revealed that in several arrays (including 
AMAT and IB), either the first or first two leading 
dimensions were four, and loop iterations were being 
performed on the next dimension. This was resulting in 
strides of either four or sixteen, both powers of two (thereby 
hurting performance). 

The initial reaction was to rearrange the array 
dimensions such that the loop indices were iterating on the 
leading dimension, giving a unit stride through memory. 
This approach was eventually abandoned, because the three 
loops mentioned in the last section quit vectorizing. This 
was apparently because a non-contiguous section of 
memory was being passed to LU4 [8] (e.g., AMAT(:,:,i) 
is a contiguous array section, whereas AMAT(i,:,:) is 
not). The extra processes involved in passing the non-
contiguous sections to LU4 were enough to prevent the 
current inliner and optimizer from vectorizing the loops. 

Another, simpler technique was used instead. The 
strides were made odd by adding one to the leading 
dimensions. This resulted in a net improvement, although 
again at the cost of more memory being consumed. The 
actual number of CPs being spent waiting on memory ports 
dropped 35% (for the NEACRP case). Floating point 
performance in SOLVE_FO improved from 55.01 MFLOPS 
to 75.10 MFLOPS, and the overall wall clock time dropped 
another 10% from 63.5 s to 56.9 s. A final look at 
subroutine timings showed that SOLVE_FO now accounted 
for 61.2% of total CPU time, CGD 8.6%, and DSA 7.1%. 

4.3 Vectorization of DSA 
Once subroutine SOLVE_FO seemed to be tuned pretty 

well, it became time to try the performance tools on the 
largest test case, ATR_large. Running the optimized version 
of Attila containing the SOLVE_FO vectorization and 
memory stride changes produced the profile shown in Fig. 
6. On a mesh of this size, the vast majority of the 
computational effort has been shifted to subroutine CGD, 
which solves the DSA system of equations. SOLVE_FO 
now used only 9.6% of the total CPU time. 

Subroutine DSA only accounted for 1.8% of the CPU 
time, but a quick look at the loopmark listing revealed two 
loops that appeared to be vectorizable, so this routine was 
tackled prior to attempting CGD. The structure of DSA is 
relatively simple. There is an initial loop over ncells that 
creates the DSA source vector, followed by a call to CGD 
(which solves the DSA system), followed by a final loop 
over ncells that solves for the DSA scalar flux correction. 

The only thing preventing vectorization of the initial 
loop was the accumulation of an array at the bottom in 
which indirect addressing was used. The loop would 
vectorize with a CONCURRENT directive, but subscript 
collisions within the vector length resulted in code failure. 
This problem was solved by breaking the accumulation 
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portion into a separate loop, allowing the remainder of the 
loop to vectorize. 

 

 
Figure 6: Perfview output after running the large ATR 
model with the optimized version of SOLVE_FO. The much 
larger model spends most of its effort in the conjugate 
gradient solver, CGD. 

 
The final loop in DSA is similar to the inner loops in 

SOLVE_FO. A 4 x 4 system of equations is set up and 
solved for each cell, except here the loop is over ncells and 
is not split up into separate loops. An additional dimension 
had to be added to the coefficient matrix and solution vector 
to eliminate recurrences, as was done in SOLVE_FO. This 
time, a PREFERVECTOR directive was sufficient to get the 
loop to vectorize, so no CONCURRENT directive was 
required. 

Vectorizing the two main loops in DSA increased 
performance from 22.4 MFLOPS to 71.0 MFLOPS and 
increased the average vector length from 59.2 to 64. 

4.4 Conjugate Gradient Solver 
Subroutine CGD obviously needed to be improved in 

order for Attila to perform well enough to be run on the 
SV1. It was achieving only 21.8 MFLOPS and consuming 
87.6% of the total CPU time. Unfortunately, there was no 
way to get it to vectorize as it was written. A complete 
replacement would be necessary in order to get acceptable 
performance. 

As luck would have it, the entire CGD subroutine could 
be replaced by a call to SITRSOL in the Cray Scientific 
Library. Subroutine CGD is simply a preconditioned 
conjugate gradient solver, and the same functionality is 
supplied in SITRSOL [9,10]. The call to CGD was 
commented out and replaced by calls to DFAULTS (to 
assign default values to the parameter arguments for 
SITRSOL) and SITRSOL. Diagonal (Jacobi) 
preconditioning was selected to conform to the 
preconditioning option available in Attila. 

The magnitude of the speedup achieved with this 
modification can best be seen by looking at the average time 
per call to subroutine DSA, including the time spent in the 

conjugate gradient solver. Using the CGD solver, the 
average time per call for DSA was 7.06 s, and the time per 
call to CGD was 1,100 s, for a total of 1,107 s per call. After 
replacing CGD with SITRSOL, the time per call to DSA 
was 102 s (including time spent in SITRSOL). This 
represents an order of magnitude improvement in the time 
spent solving the DSA equations. Wall clock time for the 
entire run went from 99.0 hours to 19.8 hours for a speedup 
of five. 

5. Results 

5.1 NEACRP 
The overall speedup results for this model were not 

particularly impressive, although they are a definite 
improvement. The floating point performance for the entire 
code increased from 21.8 MFLOPS to 59.5 MFLOPS. The 
wall clock time decreased from 99.3 s to 52.1 s, for a 
speedup of 1.91. The ratio of MFLOPS to MIPS increased 
from 0.27 to 1.09, showing a modest improvement in vector 
performance. 

As mentioned previously, this model is really too small 
to show good performance in Attila. A relatively large 
amount of time is spent performing I/O while input files are 
being read and output files are being created, compared to 
the amount of time actually spent performing the transport 
calculations. 

Fig. 7 shows the speedup achieved with each of the 
optimizations described in this paper. Most of the 
improvement for a model of this size is seen by vectorizing 
SOLVE_FO. Not enough time is spent in the DSA solving 
routines for the latter optimizations to have as significant an 
effect. 

Fig. 8 shows the wall clock run times for three 
platforms: the 300 MHz Cray SV1, a 400 MHz SGI Origin 
3800, and a 1.8 GHz Opteron-based PC. Although much 
improved, the SV1 run time for a model this small is still 
not comparable to that achieved with a modern desktop PC. 

1

1.2

1.4

1.6

1.8

2

orig vec odd dsa sitrsol

Speedup

 
Figure 7: Speedup achieved during each stage of the 
optimization process running the NEACRP model. The 
labels on the x-axis indicate the original, vectorized 
SOLVE_FO, odd memory stride, vectorized DSA, and 
SITRSOL versions. 
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Figure 8: Wall clock run times for the NEACRP model. The 
SV1 results are with the final optimized version. SGI and 
PC results are for the original unmodified source. 

Figure 10: Wall clock run times for the large ATR model. 
SV1 results are with the final optimized version. The SV1 is 
slightly faster for a single-processor run, approximately 20 
hrs vs. 21 hrs. 

5.2 Large ATR Model 
5.3 Parallel Performance This model, which is typical of the kind that will be 

used at the INEEL, showed a much more dramatic increase 
in performance. The code improved from 22.3 MFLOPS for 
the unaltered version to 136.6 MFLOPS with the final, 
optimized version. The final MFLOPS/MIPS ratio was 4.34. 
The most dramatic improvement was in wall clock time. It 
decreased from 154.5 hrs (6.4 days) to 19.8 hrs, a speedup 
of 7.79. 

Attila was originally intended to be run on single-
processor desktop PCs or workstations [3], and this mode of 
operation is perfectly adequate for most “typical” models, 
such as the NEACRP test case. However, full-core models 
of reactors such as the ATR can quickly overwhelm the 
capabilities of these machines. In Version 3.12.0 of Attila, 
the developers began looking at ways to run the code in 
parallel. The speedup graph in Fig. 9 shows that the largest 

single improvement was obtained by replacing the generic 
conjugate gradient solver CGD with the optimized version 
found in the Cray Scientific Library. With so much time 
being spent in the DSA equation solver, it is imperative that 
this portion of the code be well vectorized. This is a clear 
demonstration of the utility of vendor-optimized library 
routines as compared to hand-coded versions, especially for 
a vector platform. 

They began in an incremental fashion, using OpenMP 
directives to parallelize two loops. One loop is in subroutine 
OUTER, but it is in a portion of code that is not executed an 
appreciable amount of time, at least for the ATR models. 
The one major loop that was parallelized by the developers 
is the outer loop in SOLVE_FO over the number of angles 
(see Fig. 5). An OpenMP PARALLEL DO directive was 
used with a static schedule to split the angles over the 
number of threads. Wall clock times for the Cray and Opteron PC are 

shown in Fig. 10. The SV1 is slightly faster when run on a 
single Single Streaming Processor (SSP). 

Parallelizing this portion of code will help increase 
code speed most for those problems that spend a lot of time 
in SOLVE_FO, like the NEACRP test case. Unfortunately, 
ATR models of the size being run at the INEEL will not 
show appreciable speedup, since most of the time is spent in 
DSA. 

1
2
3
4
5
6
7
8

orig vec odd dsa sitrsol

Speedup

 

It is for this reason that the use of the SITRSOL solver 
provides another benefit beyond the single-process speedup 
already observed. Since SITRSOL is multitasked as well as 
vectorized [9], a greater parallel scalability is seen by 
running the Cray version of Attila, especially for large 
problems. Fig. 11 shows the scalability of the Cray and 
Opteron-based PC versions when running the ATR_med 
model. 

Not only is the Opteron PC limited by low parallel 
scalability, the user is also limited to two processors, since it 
is a dual-processor node. The INEEL SV1s are only limited 
by the current license to four processors. Fig. 12 shows the 
wall clock times for both machines, for single- and multiple-
processor runs of the ATR_large model.  

Figure 9: Speedup achieved during each stage of the 
optimization process running the large ATR model. For a 
model of this size, almost all of the speedup was obtained by 
using the optimized solver in the Cray Scientific Library. 
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The results of this optimization effort show that Attila 
can be modified to produce an acceptable level of 
performance on the Cray SV1. The SITRSOL sparse matrix 
solver in the Cray Scientific Library produced the greatest 
speedup for the large ATR model, due to the extremely 
large DSA system of equations that had to be solved. In 
addition, the ability of SITRSOL to run in parallel resulted 
in greater scalability in the Cray version of Attila. 
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The bottom line is that the nuclear engineers at the 
INEEL are now able to run their largest models in less than 
half the time than they previously could. They also have the 
capability to run multiple jobs simultaneously. 

There is probably more that can be done to optimize 
Attila, and there very well may be better ways of 
vectorizing the subroutines than were used here. Now that 
Attila has been demonstrated to run well on the Crays, a 
larger effort to optimize the code is likely to occur. 
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