
CrayPat Update

Luiz DeRose, Steve Kaufmann and Bill Homer, Cray Inc.

ABSTRACT: The Cray X1 Performance Analysis Tool, CrayPat, analyzes and evaluates the
performance of applications running on the Cray X1 system. It supports multiple performance
experiments. With CrayPat, instrumenting an application requires only a link step with no
required recompilation. The instrumented application is then executed on the Cray X1 like any
normal application to produce a binary experiment data file. CrayPat then evaluates the
contents of the data file and generates reports, the content and format of which can be custom-
ized. Experiment data can also be exported to alternate file formats for further processing.
1 Introduction

The Cray X1 represents the convergence of the Cray T3E
(MPP) and the traditional Cray parallel vector processors
(PVP). It s a highly scalable, cache coherent, shared-memory
multiprocessor, using powerful vector processors as its building
blocks.

The core of the Cray X1 system is its multi-streaming
processor (MSP), an eight-chip multi-chip module containing
four processor chips and four custom cache chips. Each
processor chip consists of a superscalar processor with a
two-pipe vector unit, and the four cache chips implement a 2
megabyte cache that is shared by the four processors.

The resources that an application consumes are often an
important development consideration. The amount of CPU
time, memory, cache, network, or disk resources needs to be at
least understood so that applications can take advantage of the
full potential of the Cray X1.

The CrayPat performance analysis tool collects data at all
levels of parallelism: the SSP-level, thread-level, and process
level. CrayPat then helps developers locate opportunities for
improvements in both performance and system resource usage.

2 Overview

The CrayPat tool is the performance analysis tool for the
Cray X1 platform. It was developed mindful of the performance
analysis tools that preceded it on the Cray PVP and Cray MPP
computer systems, and inherits some of their best features.

CrayPat performs experiments on running applications.
Copyright  2004. Cray Inc. All rights reserved.
An experiment is an evaluation of an application as it
executes. The way that experiments work is determined both by
how an application is instrumented, and how it is executed.

CrayPat is applied to applications for single or multiple PEs
with shared memory (SM) or distributed memory (DM) design.
CrayPat also supports threaded applications, including the
OpenMP programming model, and both MSP and SSP mode
applications.

CrayPat provides a number of experiments that collect data
in different ways. This way, if several experiments are applied
to the same application, the bias implicit in any given experi-
ment is rendered acceptable.

Instrumentation of an application is the first preparatory step
required for performance evaluation. Instrumentation sets up
the capture of software state, hardware state and time:

Software state can include thread and call stack information
or the actual parameter values passed into a function entry point.

Hardware state can include the Program Counter (PC) or
some Hardware Performance Counter (HWPC) event values.

Time stamps are recorded in high resolution using the
Real-Time Clock (RTC) and HWPC cycle counter.

Instrumentation uses the application itself to collect state and
timing information. The instrumented application is executed in
the same manner and in the same environment as the original
application. It can be executed multiple times with varying data
sets, each iteration producing a new experiment data file. The
CrayPat reporting features can accept multiple experiment data
CUG 2004 Proceedings 1

files for a single application - the more material, the more
complete and thorough the performance evaluation.

CrayPat does not require that applications or parts of applica-
tions be recompiled. A single link, managed by CrayPat, is all
that is required. Link details are contained in a special ELF
section in an executable file. CrayPat uses these details to create
the link operands and the instrumented application. The orig-
inal application is not changed.

3 Illustrations

The material in this section is intended to give an idea of how
to use CrayPat to accomplish some common performance anal-
ysis tasks. The next section contains a more systematic discus-
sion of the CrayPat component utilities used here.

3.1 Performance Metrics Across an Application
The easiest way to measure the performance of an application

as a whole is to use pat_hwpc. To both run and generate a
report, the simplest invocation is:

pat_hwpc ./a.out

In the more typical case in which aprun options are
required, you can use either of the following methods:

pat_hwpc aprun -n 8 ./a.out

env CRAY_AUTO_APRUN_OPTIONS=”-n 8” \
pat_hwpc ./a.out

The default report shows a number of metrics based on the
HWPCs for the P, E, and M chips, as well as elapsed time, exit
status, resource usage, etc.

In the default report, data is aggregated for the whole
program. You can use the -b option to see data broken out by
process, or by SSP within each process for MSP mode programs,
but not by thread for OpenMP programs.

If you anticipate wanting to see more than one report from the
data, you should use the -f option for pat_hwpc. This saves
the experiment data file, so that you can then repeatedly invoke
pat_report with the desired options on that data file.

See the pat_hwpc and pat_report man pages for more
details.

3.2 Profiling
The easiest way to determine where in the program most of

the execution time is spent is to use OS-based profiling:

The first step is to use pat_build to relink the program
with the CrayPat run-time library:

pat_build a.out a.out+pat
2 CUG 2004 Proceedings
This requires that the original objects files are still available,
either in their original locations, or under a directory specified
by the PAT_BUILD_LINK_DIR environment variable.

Then the instrumented program is run in the same way that
the original is run:

aprun -n 8 ./a.out+pat

When it is finished, there will be an experiment data file with
a name matching the pattern a.out+pat+*.xf. Invoking
pat_report on this file will produce a report showing
resource usage, exit status, etc., and also a table showing the
number of PC samples taken in each function, with a separate
section for each PE and SSP (when there are more than one).

The table heading shows the default pat_report options
that correspond to the table. These can be modified to show the
data in a different way. For example, the default for the -b
option is:

-b pe,ssp,function

The selection and order of these options give you a lot of
control over the content of the report. To see, for each function,
the number of samples across the PEs (processes), summing the
values across SSPs, if there are more than one, you can invoke:

pat_report -b function,pe ...

To see the data broken out by line number:

pat_report -b function,line,pe ...

By default, data is sorted, at each level in this hierarchical
report, by the value in the left most column, which is samples in
this case. If you prefer to see the line number data in line number
order, you can add a -s option:

pat_report -b function,line,pe -s \
sort_by_line=yes ...

The pat_report man page shows the available options,
and the interactive pat_help utility can also be used to see the
options that are available and some examples of their use.

3.3 Higher Resolution Sampling
OS-based profiling collects 100 samples per second for each

process and SSP, which may not be enough for short-running
programs. You can get more samples with:

env PAT_RT_EXPERIMENT=samp_pc_ovfl \
./a.out+pat

By default, this collects 1000 samples per second, and the rate
can be controlled with the PAT_RT_HWPC_OVERFLOW envi-

ronment variable. For long-running programs a larger interval is
recommended, to reduce the size of the data file. See the pat
man page or pat_help for more details.

3.4 Collecting HWPC Data
To get HWPC data, you set the PAT_RT_HWPC environment

variable to the list of events that you want to monitor, and set
PAT_RT_EXPERIMENT to any but the default (profil)
value. For example, the megaflops rate requires the collection of
the cycle counter and several floating point operation counters:

PAT_RT_HWPC=P:0:0,P:7:0,P:19:0,P:21:0,P:
23:0,P:25:1

See the counters man page and pat_help utility for the
available events.

Note that the collection of this data will incur more overhead
at run-time, and can produce a very large data file for a
long-running program. For such programs, you can use the
PAT_RT_INTERVAL environment variable (or
PAT_RT_HWPC_OVERFLOW for samp_pc_ovfl) to set an
interval longer than the default (0.01 seconds).

By its nature, sampled HWPC data is inaccurate, especially
for functions with relatively few samples. If you want accurate
data for particular functions, you should use pat_build to
produce a program instrumented to trace those functions. That
program can be used with PAT_RT_EXPERIMENT=trace to
get accurate time and HWPC data for the specified functions, or
with other values of PAT_RT_EXPERIMENT to limit sampling
to those functions. See the pat_build man page, or the
pat_help utility.

3.5 Call Stacks
Sampling data may show that the dominant functions are

library functions, and to see from where in the program these are
called you can collect callers as well as the program counter with
each sample.

env PAT_RT_EXPERIMENT=samp_cs_time \
./a.out+pat

There is a samp_cs_ovfl variant, and both can produce
data files that are very large for long-running programs. You
can control this both by the sample rate, as above, and also by
limiting the callstack depth (number of callers recorded in each
sample) with an environment variable. For example to see, for
each sampled function, its immediate caller, and the caller’s
caller, set:

env PAT_RT_CALLSTACK=2 \
PAT_RT_EXPERIMENT=samp_cs_time ...

The default report will show the call stack for each function,
and to see a calltree view, use:
pat_report -b calltree ...

4 Components

A number of individual components make up the CrayPat
performance toolkit. They include:

• pat_hwpc

• pat_build

• CrayPat run-time library

• pat_report

• pat_help

In it’s current state of development, CrayPat is more a toolkit
than a single tool. Its effective use requires the user to invest
some effort to understand what performance data can be
measured, how to use the three component CrayPat utilities and
run-time library to make measurements, and how to summarize
and view the resulting data in textual reports. To make it easier
for the new or occasional user, we are exploring both changes to
the component utilities, and GUI interfaces for them.

The pat_hwpc utility is a stand-alone utility that executes a
given application, records specified HWPC events, and writes a
summary report to standard output. (Alternately, it can be used
to attach to a process that is already executing.) HWPC events
and other timing information can also be saved to a file for later
evaluation by the CrayPat report facility.

The pat_hwpc utility by default collects those HWPC
events that maximize the usefulness of the resulting report.
Derived statistics, such as average vector length, megaflops,
rates, and percentages are displayed.

The pat_build utility instruments the executable program
for data collection for performance analysis. An application can
be instrumented in one of two ways:

• asynchronously

• synchronously

If an application is instrumented for an asynchronous exper-
iment, the nature of the experiment is selected at run-time. Asyn-
chronous experiments are statistical: they sample the state of the
application at given intervals. The interval can be a time interval
(for example, every 10 milliseconds), or it can be an HWPC
event that overflows a defined value.

The type of asynchronous experiments include:

• PCs from OS-based profiling

• PCs from sampling via interval timers

When sampling, other state information can be recorded at
the time the PC is recorded. Among other information is the call
stack, dynamic heap, system resources, and the values of
selected HWPCs.
CUG 2004 Proceedings 3

Profiling experiments produce the most compact experiment
data files, and incur the least amount of run-time overhead.

If an application is instrumented for a synchronous experi-
ment, function entry points are counted and recorded. At the
time of instrumentation, you choose which function entry points
to record. For each instrumented function entry that is executed
during run-time, a tracing record is recorded in the experiment
data file.

All function entry points that have predefined trace wrappers
can be traced. However, if your desired function entry point does
not have a predefined trace wrapper, than only function entry
points written in C, C++, or Fortran can be selected for tracing.

A number of trace function groups are predefined. They
represent function entry points that are related in function and
application. These groups include:

• MPI, SHMEM, UPC, CAF

• OpenMP

• Pthreads

• System Calls

• Dynamic Heap

• ANSI Math

• raw I/O, buffered I/O, flexible file I/O

Instrumentation uses the application itself to collect state and
timing information. pat_build manages the link of the orig-
inal program with the run-time library that facilitates this data
collection. The instrumented application is executed in the same
manner and in the same environment as the original application.
During the course of the instrumented program executing, an
experiment data file is created that contains recorded state and
event information.

The pat_report utility analysis state and event data in the
experiment data file, created as a result of executing the instru-
mented program. It produces a report from that which you can
customize for content and format

The performance data is presented in one or more tables, each
having one or more columns of data values and a column of
labels, or key values. The pat_report utility can aggregate
data or keep it segregated by SSP, thread, and process. Reports
display such detail as HWPC event values, call trees, and special
processing for the function groups mentioned earlier.

The pat_help utility provides a text-based interactive help
facility for CrayPat. You can access information about and
examples of using the CrayPat performance analysis tool.

5 Application Programming Interface

The CrayPat tool provides an Application Programming
Interface (API) to provide you with finer control over the
recording of the state during run-time. The API encompasses a
number of functions that you can insert into your application
4 CUG 2004 Proceedings
source code. These functions are only activated in the instru-
mented program. The API facilitates recording similar state to
tracing. API functions are provided for both C and Fortran.

6 References

All of the components of the CrayPat performance toolkit and
related information are located in the man pages. Details about
the use and description of the HWPCs is in the counters(5)
man page.

An additional document with examples and more details
about how to use CrayPat is the publication Optimizing Applica-
tions on the Cray X1 System (number S-2315-52).

7 Recent Updates and Features

Over the last year, CrayPat has been improved in a number of
areas, including the addition of many features.

Some of the more significant changes affecting instrumenta-
tion and execution of the program include:

• finer control over entry point instrumentation

• creating an instrumented program that collects state just at
the main and _exit entry points of the process

• detailed versioning to identify the CrayPat release

• automatic tracing of OpenMP slave threads

• recording the No Forward Progress state

• terminating functions upon executing a longjmp, effec-
tively terminating the function

• the addition of new function entry point trace groups, includ-
ing Flexible File I/O, Fortran I/O, FILE* I/O, and ANSI
math

• appending to an existing experiment data file

• preventing an instrumented program being used by
pat_hwpc

• more accurate collection of HWPC per-thread

• limiting profiling and sampling to only instrumented func-
tion entry points (focused)

• increasing the accuracy of profiling and sampling for MSP
programs

• ensuring system calls in the users program do not interfere
with CrayPat’s run-time data collection

• recording accounting information for each process

• recording only call stacks for those SSPs being recorded

• finer control over threads being recorded

• support for large file systems

• finer control over the run-time API

Changes affecting reporting include:

• additional options for content and appearance of table

1. selection (by literal string or pattern for function name, PE,
line, etc.)

2. sorting (by data value, function name, PE, line, etc.)

3. aggregation (max or sum, depending on data item and con-
text)

4. appearance (column and line separators)

• reporting I/O activity (summary for the program from the
accounting record)

• derived data (max, min, and average for any data); average
vector length

• improve robustness

• support for No Forward Progress data collection

• support for non-summed E chip and M chip HWPC event
data

8 Future Development

Development continues on the CrayPat toolkit. Included as
part of development are a number of features. <more>

8.1 Graphic User Interface

A GUI that supports MPI, OpenMP, and I/O displays is
planned for an upcoming release. Development of the GUI will
continue, providing interpretation and analysis of performance
data of all programming models.

8.2 Support for Dynamic Linking

The follow-on systems to the Cray X1 support dynamically
shared objects. Dynamically shared objects will eventually be
available on Cray X1 systems. CrayPat will be enhanced using
dynamically shared objects in the run-time library. In addition, a
function trace group for tracing dynamic link functions will be
provided.

8.3 Better Support for OpenMP Programming Model

In addition to tracing the slave threads, CrayPat will be
updated to identify the master thread in a parallel region. This
enhances the analysis done for programs that use the OpenMP
programming model

8.4 Support for OpenMP Performance Monitoring API

The OpenMP Architectural Review Board is defining an API
that defines a standardize method of monitoring the performance
of OpenMP programs. CrayPat will provide the underlying
run-time library to facilitate recording event data for OpenMP
programs that use this API.

8.5 Experiment Data File Compaction

Especially for long-running distributed memory MSP appli-
cations, the experiment data file can become quite large. The
overall size of the experiment data files will become more
compacted.
8.6 Experiment Data File Processing
Large experiment data files result in longer processing times

when reports are generated. The speed at which the experiment
data file is processed by the report components will be reduced.

8.7 Light-Weight Tracing
As part of reducing the size of the experiment data file,

light-weight tracing will be implemented. This requires more
overhead at run-time, but results in a much smaller experiment
data file. However, temporal and state information will be
severely reduced, limiting the types of analysis that can be
performed by the report components.

8.8 True per-Thread Profiling and Sampling
Presently, CrayPat can not perform complete data collection

for threaded programs, including OpenMP. This is only for
asynchronously instrumented programs. The operating system
does not provide the necessary thread-resolution needed to
support detailed per-thread data collection. This limitation is
expected to be corrected in an upcoming operating system
release.

8.9 Expansion of Help Facility
The pat_help utility provides immediate text-based help

and examples. The utility will continue to be expanded and
supplemented to display the latest methods in using CrayPat in
the most efficient and useful way.

8.10 Simplifying Run-time Selections
Since environment variables are key in controlling the

run-time aspects of CrayPat’s data collection, tools that simplify
this aspect of CrayPat are being defined and developed. Through
a much streamlined process, the run-time and report parameters
will be set, freeing the user from setting up the environment and
providing pat_report with the proper options.

8.11 Enhanced Reports
The report components continue to be enhanced to provide

better summaries and textual reports, especially for distributed
memory and OpenMP applications.

9 Acknowledgements

The authors would like to thank colleagues of the Program-
ming Environments and Testing group, and users in the Bench-
marking and Applications group at Cray Inc. in Mendota
Heights, MN for their contributions during the development,
implementation, and testing of CrayPat.

About the Authors

Luiz DeRose is manager of the Tools section in the Program-
ming Environment group at Cray Inc. His email is
ldr@cray.com.

Steve Kaufmann and Bill Homer are Software Engineers in
the Tools section of the Programming Environment group at
Cray Inc. Their email is sbk@cray.com and
homer@cray.com, respectively.
CUG 2004 Proceedings 5

	CrayPat Update
	Luiz DeRose, Steve Kaufmann and Bill Homer, Cray Inc.
	1 Introduction
	The Cray X1 represents the convergence of the Cray T3E (MPP) and the traditional Cray parallel ve...
	The core of the Cray X1 system is its multi-streaming processor (MSP), an eight-chip multi-chip m...
	The resources that an application consumes are often an important development consideration. The ...
	The CrayPat performance analysis tool collects data at all levels of parallelism: the SSP-level, ...

	2 Overview
	The CrayPat tool is the performance analysis tool for the Cray X1 platform. It was developed mind...
	CrayPat performs experiments on running applications.
	An experiment is an evaluation of an application as it executes. The way that experiments work is...
	CrayPat is applied to applications for single or multiple PEs with shared memory (SM) or distribu...
	CrayPat provides a number of experiments that collect data in different ways. This way, if severa...
	Instrumentation of an application is the first preparatory step required for performance evaluati...
	Software state can include thread and call stack information or the actual parameter values passe...
	Hardware state can include the Program Counter (PC) or some Hardware Performance Counter (HWPC) e...
	Time stamps are recorded in high resolution using the Real-Time Clock (RTC) and HWPC cycle counter.
	Instrumentation uses the application itself to collect state and timing information. The instrume...
	CrayPat does not require that applications or parts of applications be recompiled. A single link,...

	3 Illustrations
	The material in this section is intended to give an idea of how to use CrayPat to accomplish some...
	3.1 Performance Metrics Across an Application
	The easiest way to measure the performance of an application as a whole is to use pat_hwpc. To bo...
	In the more typical case in which aprun options are required, you can use either of the following...
	The default report shows a number of metrics based on the HWPCs for the P, E, and M chips, as wel...
	In the default report, data is aggregated for the whole program. You can use the -b option to see...
	If you anticipate wanting to see more than one report from the data, you should use the -f option...
	See the pat_hwpc and pat_report man pages for more details.

	3.2 Profiling
	The easiest way to determine where in the program most of the execution time is spent is to use O...
	The first step is to use pat_build to relink the program with the CrayPat run-time library:
	This requires that the original objects files are still available, either in their original locat...
	Then the instrumented program is run in the same way that the original is run:
	When it is finished, there will be an experiment data file with a name matching the pattern a.out...
	The table heading shows the default pat_report options that correspond to the table. These can be...
	The selection and order of these options give you a lot of control over the content of the report...
	To see the data broken out by line number:
	By default, data is sorted, at each level in this hierarchical report, by the value in the left m...
	The pat_report man page shows the available options, and the interactive pat_help utility can als...

	3.3 Higher Resolution Sampling
	OS-based profiling collects 100 samples per second for each process and SSP, which may not be eno...
	By default, this collects 1000 samples per second, and the rate can be controlled with the PAT_RT...

	3.4 Collecting HWPC Data
	To get HWPC data, you set the PAT_RT_HWPC environment variable to the list of events that you wan...
	See the counters man page and pat_help utility for the available events.
	Note that the collection of this data will incur more overhead at run-time, and can produce a ver...
	By its nature, sampled HWPC data is inaccurate, especially for functions with relatively few samp...

	3.5 Call Stacks
	Sampling data may show that the dominant functions are library functions, and to see from where i...
	There is a samp_cs_ovfl variant, and both can produce data files that are very large for long-run...
	The default report will show the call stack for each function, and to see a calltree view, use:

	4 Components
	A number of individual components make up the CrayPat performance toolkit. They include:
	In it’s current state of development, CrayPat is more a toolkit than a single tool. Its effective...
	The pat_hwpc utility is a stand-alone utility that executes a given application, records specifie...
	The pat_hwpc utility by default collects those HWPC events that maximize the usefulness of the re...
	The pat_build utility instruments the executable program for data collection for performance anal...
	If an application is instrumented for an asynchronous experiment, the nature of the experiment is...
	The type of asynchronous experiments include:
	When sampling, other state information can be recorded at the time the PC is recorded. Among othe...
	Profiling experiments produce the most compact experiment data files, and incur the least amount ...
	If an application is instrumented for a synchronous experiment, function entry points are counted...
	All function entry points that have predefined trace wrappers can be traced. However, if your des...
	A number of trace function groups are predefined. They represent function entry points that are r...
	Instrumentation uses the application itself to collect state and timing information. pat_build ma...
	The pat_report utility analysis state and event data in the experiment data file, created as a re...
	The performance data is presented in one or more tables, each having one or more columns of data ...
	The pat_help utility provides a text-based interactive help facility for CrayPat. You can access ...

	5 Application Programming Interface
	The CrayPat tool provides an Application Programming Interface (API) to provide you with finer co...

	6 References
	All of the components of the CrayPat performance toolkit and related information are located in t...
	An additional document with examples and more details about how to use CrayPat is the publication...

	7 Recent Updates and Features
	Over the last year, CrayPat has been improved in a number of areas, including the addition of man...
	Some of the more significant changes affecting instrumentation and execution of the program include:
	Changes affecting reporting include:
	1. selection (by literal string or pattern for function name, PE, line, etc.)
	2. sorting (by data value, function name, PE, line, etc.)
	3. aggregation (max or sum, depending on data item and context)
	4. appearance (column and line separators)

	8 Future Development
	Development continues on the CrayPat toolkit. Included as part of development are a number of fea...
	8.1 Graphic User Interface
	A GUI that supports MPI, OpenMP, and I/O displays is planned for an upcoming release. Development...

	8.2 Support for Dynamic Linking
	The follow-on systems to the Cray X1 support dynamically shared objects. Dynamically shared objec...

	8.3 Better Support for OpenMP Programming Model
	In addition to tracing the slave threads, CrayPat will be updated to identify the master thread i...

	8.4 Support for OpenMP Performance Monitoring API
	The OpenMP Architectural Review Board is defining an API that defines a standardize method of mon...

	8.5 Experiment Data File Compaction
	Especially for long-running distributed memory MSP applications, the experiment data file can bec...

	8.6 Experiment Data File Processing
	Large experiment data files result in longer processing times when reports are generated. The spe...

	8.7 Light-Weight Tracing
	As part of reducing the size of the experiment data file, light-weight tracing will be implemente...

	8.8 True per-Thread Profiling and Sampling
	Presently, CrayPat can not perform complete data collection for threaded programs, including Open...

	8.9 Expansion of Help Facility
	The pat_help utility provides immediate text-based help and examples. The utility will continue t...

	8.10 Simplifying Run-time Selections
	Since environment variables are key in controlling the run-time aspects of CrayPat’s data collect...

	8.11 Enhanced Reports
	The report components continue to be enhanced to provide better summaries and textual reports, es...

	9 Acknowledgements
	The authors would like to thank colleagues of the Programming Environments and Testing group, and...
	Luiz DeRose is manager of the Tools section in the Programming Environment group at Cray Inc. His...
	Steve Kaufmann and Bill Homer are Software Engineers in the Tools section of the Programming Envi...

