
CUG 2004 Proceedings 1

Extreme Vectorization in RELAP5-3D

Dr. George Mesina, and Peter Cebull
Idaho National Engineering and Environmental Laboratory

ABSTRACT:. Most of the work on vectorizing legacy Fortran programs was done in the
1980's and early 1990's. Developments by Cray, Inc. have made it possible to vectorize loops
that could not be vectorized in those days. Therefore, legacy programs should be re-
examined for possible vector speed gains. The remaining non-vector loops, subroutines, and
programs are most challenging to vectorize. Among the most challenging, is the RELAP5-3D
program that performs nuclear power plant modeling calculations for safety and simulator
applications. Two subroutines were vectorized to increase overall code run speed by up to
33% on some problems. These two subroutines effectively had 4900 lines and 7100 lines of
executable Fortran statements in single vectorizable do loops. This is extreme vectorization.
Many of the techniques used to vectorize these subroutines are reported here.

Keywords: RELAP5-3D, Cray, Vectorization, SV1, Nuclear power plant

1. Introduction

RELAP5-3D is used to model nuclear power plants and
predict the behaviour of these plants under a wide variety of
operational and accident conditions. Worldwide, RELAP5-
3D and its predecessor versions are used more often for
nuclear power plant safety analyses than any other power
plant modelling code. It has been adapted to nuclear power
plant simulators and is used in training power plant
operators. It is also seeing application in the design stages
of both generation 3 and generation 4 power plants.

RELAP5-3D modelling features include multi-
dimensional one- and two-phase flow, multi-dimensional
heat transfer, multi-dimensional neutron kinetics, complete
trips and control systems, and specialized models for
specific plant components such as many different types of
pumps and valves. Because of these features, it can be used
in non-nuclear application areas. Current application areas
include: nuclear fusion plant analysis, steam supply systems
analysis, paper and pulp plant simulators.

This code has been under continuous development
since the 1970s. It continues to grow with the changing
requirements for nuclear power plant modelling and
analysis and the improving capabilities provided by the
computing industry.

In the mid-1980s through the early 1990s, an effort was
undertaken to vectorize RELAP5-3D. The work was done
mostly on Cray XMP and YMP platforms. The computing
industry changed directions to various kinds of parallel
processing and use of fast scalar chip beginning in the early
1990s; so code optimization efforts shifted to those and
other trends in computing.

In recent times, there has been a renewed interest in
vector computing. The INEEL has acquired a CRAY SV1
with a 3333-picosecond clock. With this machine available,
the INEEL has undertaken an effort to optimize its
application software for vector and vector-parallel
processing; this effort includes RELAP5-3D.

It is noteworthy that Cray, Inc. has advanced the state
of the art in vectorization since the days of the YMP. It is
now possible to vectorize loops that contain inner loops.
With this and other improvements, it is now possible to
vectorize significant loops that could not previously be
vectorized.

2. Performance Analysis of RELAP5-3D

RELAP5-3D/Version 2.2.4 was examined with Cray
operating system performance measures. Perftrace 90.4 was
run as RELAP5-3D executed four different calculations to
determine where the performance enhancement could best
be obtained.

The first input model is designated TYPPWR. It is a
small input model having 139 control volumes and 142
junctions, which are connections between volumes. Most
vector loops in the code are over subsets of volumes and
junctions. Vector lengths are short in this problem.

The second problem is a model of the ROSA test
facility used in performing design experiments for
Generation 3 nuclear power plants. It has 448 control
volumes and 469 junctions. It is and average-size problem.

The third input model is designated AP600. It is a full-
scale model of the original Westinghouse 600 MW
Generation 3 reactor. It has 1232 control volumes and 2230
junctions. This is a normal sized problem and has vector
lengths averaging in the 50's.

CUG 2004 Proceedings 2

The fourth model is designated 3DFLOW15. It is a
rectangular pipe modeled with the full 3D capability of
RELAP5-3D. It has 693 control volumes and 1728
junctions, but produces such large linear systems that most
of the computation time is spent in the vectorized solver.

Among the subroutines listed as taking the most
computational time in all four problems, were PHANTJ and
PHANTV. They ranked first and second for the smaller
problems but always in the top 5. A third subroutine,
FORCES, whose output is seldom used and is not used in
any of our test problems, ranked third in the small test cases.
It was decided to make it active only through input when
needed. Together, these 3 routines account for over 33% of
the code run time in the two smaller problems.
Theoretically, if vectorization (and shutting off) could
reduce their runtime to zero, an overall code speed-up of
approximately 50% could be achieved. This is summarized
in Table 2.1

 PHANTV PHANTJ FORCES Total
Test Case Exec % Exec % Exec % Exec %
TYPPWR 11.2 12.8 9.2 33.2
ROSA 11.6 13.0 9.3 33.9
Table 2.1 Percentage of run time spent in subroutines

Thus, it was decided to undertake the task to vectorize

both PHANTJ and PHANTV to improve code performance
with the goal of a 50% improvement in run speed on the
INEEL Cray SV1.

3. Subroutine Structure and Effective Size

Neither PHANTJ nor PHANTV had ever been
vectorized when the early vectorization work on RELAP5-
3D was performed. Upon further examination, it was
discovered that it had not been possible at the time,
primarily because a loop could not be vectorized if it
contained an inner loop. Both contain loops that have one
or more inner loops.

3.1 PHANTV & PHANTJ Structure
PHANTJ is comprised mainly of one huge loop, DO

10, that is 1423 lines long. PHANTV is comprised mostly
of two loops, DO 11 and DO 111, of lengths 1668 and 733
respectively, but it also contains about 30 other small loops.
Most of the small loops vectorize naturally without any
rewrite or directives, but some inherently cannot vectorize.

3.2 PHANTV & PHANTJ Size
There are six subprograms called from within the DO

11 loop of PHANTV, not counting intrinsic functions. One
of these in turn calls subroutines. Counting all calls and uses
of functions, there are 18 calls to subprograms within the
loop. If these subroutines were to be replaced by their
actual lines of executable code, they would add 2196 lines
to its 1668 lines. Additionally, there is a large backward go

to that often causes 1120 lines to be calculated a second
time. The loop effectively has 4984 executable lines of
code. A similar calculation shows that the DO 111 loop
would expand out to 933 executable lines of coding.

There are five subprograms called from within the DO
10 loop of PHANTJ. Some of these in turn call
subprograms so that 73 total subprogram calls are made
from within the loop. If these subroutines were to be
replaced by their actual lines of executable code, they would
add 5088 lines to its 1433 lines. Again a large backward go
to adds 660 lines. The loop effectively has 7171 lines.

Hereafter, the DO 10, DO 11, and DO 111 loops are
referred to as the huge loops.

3.3 PHANTV & PHANTJ Speed
Both PHANTV and PHANTJ run at scalar speed on the

Cray SV1. For some problems, PHANTV picks up some
vector performance from the small vector loops, but since
most of the work is in the huge loop that does not vectorize,
the performance is basically at scalar speed. See Table
3.3.1 where Exe% is the percentage of the run time spent in
the subroutine, MF means MFLOPS and Sec/C means
seconds per call to the subroutine. Note that PHANTJ has
lower MFLOPS rate and takes longer than PHANTV. Also,
it runs slower as the size of the problem increases.

 PHANTV PHANTJ
Test Case Exe% MF Sec/C Exe% MF Sec/C
TYPPWR 9.2 13.5 .00268 12.8 10.9 .00305
ROSA 11.6 18.8 .0132 13.0 10.6 .0149
AP600 3.7 14.9 .0654 7.9 10.3 .139
3Dflow15 1.2 16.0 .0482 2.6 9.7 .103
Table 3.3.1. Speed measures

4. Vectorization Techniques

In order to vectorize the loop, the coding constructs that
inhibit vectorization must be identified and overcome. The
following is a list of some of the vector inhibitors in the
huge loops:
• Subprogram calls
• Improper use of modules
• Variable length interior loops
• Backward GO TO
• Actual recurrence
• Apparent recursion
• If-tests too deeply nested

4.1 Subroutines and Modules
Subprograms are handled by inlining. For small

subprograms, it is sufficient to list them on the compiler
inline flag. However, for “large” subprograms (about 400
lines or more), a source code pre-compiler directive, namely
INLINEALWAYS, must be added to force the compiler to
inline it.

CUG 2004 Proceedings 3

Inlining can introduce vector inhibitors to the loop that
must be handled by rewriting the subprogram. Besides
those vector inhibitors listed in Section 4.1, two other
inhibitors resulting from inlining were the introduction of
active output statements and mismatch of call arguments.

Call argument mismatch requires either the reworking
of the variables declarations or the placing of passed data
into variables of appropriate type, or both. In the case of
RELAP5-3D, there were two problems with the arguments
of subroutine POLAT.

First, an integer datum was passed in a floating-point
array element and was declared an integer in POLAT. This
arises from an old programming trick for saving memory. It
equivalences all memory in RELAP5-3D to a single huge
array, called FA, that is declared to have a large size, but
which is reduced to the exact amount needed during
execution via an operating system call. In the days when
computer centers charged for supercomputer memory
usage, this was done to reduce computer charges. All
integer, floating point, and logical arrays were equivalences
to FA. For machines with 32-bit integers and 64-bit (double
precision) floats, in order to equivalence integers to floats,
vectors of integers were promoted to matrices with an
additional dimension (the first) being two. Thus pairs of
integers were equivalenced to single floats. The second of a
pair of integers carried actual data, while the other had junk.

One difficulty with this approach is in subprogram
calling. All calculations and assignments of integer array
entries, such as volno(iv), are promoted via a preprocessor
to volno(2,iv). Floating point array elements are passed by
simply placing the array element in the call sequence. With
integers however, passing the element requires that the first
index be one not two, e.g. volno(1,iv). In some places in the
code, integer quantities were passed via a float, to which
they were equivalenced, to avoid the call sequence
complication. Compilers ignore this mismatch of data being
declared floating point in the calling program but integer in
the subprogram unless either an interface is used or the
subroutine is inlined. Because POLAT is being inlined, this
became an issue.

The second problem involved the fact that a scalar real
was passed to POLAT in a position that was declared a real
array. In fact, only a single datum was calculated and
returned by the particular call. Once again, compilers allow
this except for interfaces and inlining.

The first problem was overcome by using the actual
integer array element. The second was solved by creating a
one-dimensional, one-entry real array, vdummy. The scalar
was copied into the array entry, passed to POLAT, and
copied back into the scalar. Eventually however, POLAT
was rewritten in structured Fortran 90 as LINT1; it passes a
real scalar rather than an array of length one.

Modules will inhibit inlining unless certain rules are
followed. First, the module itself must be compiled with a
flag that says it is allowed to be inlined. The compiler
documentation is written in such a way that one could read
that it means the program using the module must specify
that the module is inlinable. Second, use of allocatable

arrays in inlinable modules is not allowed. One way to
overcome this is by removing the contained subprogram
that is to be inlined from the module and placing it in a
separate file.

4.2 Code-length inhibitors
As noted, after the subroutines were inlined, the

effective size of the DO 11 loop was nearly 5000 lines. The
effective size of the DO 10 in PHANTJ was 7100 lines.
These huge loops were too large for the compiler to
vectorize. The compiler apparently runs out of internal
storage for the analysis.

Use of compiler directives, such as IVDEP and
CONCURRENT, cause the compiler to perform its
operations while ignoring certain kinds of analyses. This
sometimes allows the compiler to vectorize longer loops.
Alone, neither directive caused the loop to vectorize.
However, combining CONCURRENT with the aggressive
compiler optimzation flag was sufficient to achieve
vectorization, but only when all other inhibitors were
commented out.

The strategy for vectorizing these subroutines was to
mark coding that inhibited vectorization with a CPP pre-
compiler flags. One kind of vector inhibitor was reworked
at a time until it was overcome and the compiler could
vectorize the loop with the alternate coding or appropriate
technique. In some cases, the reason that a section of
coding inhibited vectorization remained unknown until
work on the section was underway.

It should be noted that aggressive compilation takes
much longer than normal compilation. Now that all the
vector inhibitors have been eliminated, it takes 500 seconds
to compile PHANTV and 700 seconds to compile PHANTJ
on the Cray SV1.

4.3 Inner loops
A loop can vectorize if it contains an inner loop, but the

inner loop must both itself vectorize and have a fixed
length. Simple things like a table lookup can break
vectorization because the number of passes through the loop
is variable. In PHANTV and PHANTJ, interpolation on a
general table, preceded by a search in the table, and looping
over the junctions that are attached to a control volume are
important and occur more than once in the huge loops.

Some of these inhibitors were overcome by moving the
calculations outside the huge loops. The results are stored in
temporary arrays and used in the huge loops where needed.
This was only possible because none of these calculations
relied on any calculations done previously in the huge loop.

The table search for the critical Katatladze number,
which was in an inlined subroutine, did rely on calculations
from earlier in the huge loop. The variable length search
through the table was replaced by a direct calculation. The
table had a staggered mesh that caused the need for a
search. A new table with a uniform mesh was constructed to
include each of the staggered mesh grid points. A simple

CUG 2004 Proceedings 4

formula for directly calculating the subinterval from the
abscissa value was programmed. In this way the variable
length search loop was eliminated by a direct calculation.

4.4 Recurrences
Worse than variable length inner loops are recurrences.

These occur when a quantity is calculated in one iteration of
the loop with a quantity calculated in a previous iteration.
Examples include summing the entries of an array and
bisection. Both of these occurred in inner loops within the
huge loops of PHANTV and PHANTJ.

In the case of the sum loop, it did not rely on
calculations done before it in the huge loop. It was handled
in the same way as variable-length inner loops of this sort,
by moving it before the huge loop. It was placed inside a
loop with the same loop index and loop limits as the huge
loop of PHANTV. The value of each sum was saved in a
temporary array and used later in the huge loop.

The case of bisection was more complicated. The value
of the Burington angle, b, is the solution of the non-linear
equation:

b – sin(b) = 2παg, (4.4.1)
where αg is the void fraction of the gas and b is measured in
radians. This function has no analytical inverse and so a
function, HTHETA, was written. It used a fifth order
Taylor polynomial to approximate sine and calculated b via
bisection as the zero of the function

f(b; αg) = 2παg – b + sin(b) (4.4.2)
The bisection was programmed to take 16 or 17 iterations
depending on the value of void fraction.

Since bisection is inherently recursive, it had to be
replaced in order to achieve vectorization.

A cubic spline interpolation to the inverse function was
constructed. The values of the inverse function were
calculated by using bisection to find the value of b for
which

f(b; αg) = 0 (4.4.3)
for 200 different values of αg. Chebyschev points were
used to generate the values of αg. This created a table of
values that could be searched for the subinterval that
contained any value of void fraction and then cubic spline
interpolation could be applied to produce a good
approximation to b. The table is constructed once and
saved.

Normally, a search of this non-uniform mesh for a the
containing subinterval would be required and that would be
the kind of vector inhibitor discussed in Section 4.3, an
inner loop of variable length. However, the formula for
generating Chebyschev points is completely invertible and
leads to a direct formula for calculating the subinterval that
contains any void fraction. This is similar to the critical
Katataladze number.

Overall, this new method of calculating Burington
angle is faster than the original even on a non-vector

machine because it reduces the number of operations by an
order of magnitude.

4.5 False Recurrences
RELAP5-3D equivalences all arrays to a single large

array. Because of this equivalence, the compiler interprets
all array references as potential recurrences. This is solved
by placing either the IVDEP or CONCURRENT compiler
directive before each loop.

The compiler is programmed with unit stride through
memory in mind. RELAP5-3D is programmed with a large
stride that depends on the data type. For example, normally
control volume data has a stride of 279 and junction data
has a stride of 111. Unit stride is found in very few places.

In the control volume data block, data for the x-, y-,
and z-direction are stored contiguously in data. For
example, the wall friction of the gas, FWALG, can occur in
all three directions Because everything is equivalenced to
one large array, the wall friction in the x-, y-, and z-
directions for volume IV are indexed FWALG(IV),
FWALG(IV+1), FWALG(IV+2).

When FWALG is first calculated, it is calculated in the
x-direction and the other directional components are
initialised to this same value and modified later. The
statements for this are:

FWALG(IV+1) = FWALG(IV) (4.5.1)
FWALG(IV+2) = FWALG(IV) (4.5.2)

The huge loop in which these and other such statements
reside has a unit stride on loop index M. However, IV =
VCTRLS(M) where array VCTRLS is a subset of numbers
of the form K + 279*J, J=1,2,…,N. In RELAP5-3D, there
is nothing remotely recursive about Statements 4.5.1 and
4.5.2. However, the compiler will not vectorize the loop
that contains such statements. The compiler directives
IVDEP and CONCURRENT do not overcome this.

The solution to this is to move transfer statements such
as 4.5.1 and 4.5.2 to out of the loop. They were placed in a
loop immediately after the huge loop. This removed the
false recurrence problem.

4.6 Backward GOTO Inhibitor
In both PHANTV and PHANTJ, there is a backwards

go to (go to 1521) that spans over 600 lines of code, 660 in
PHANTJ and 1120 in PHANTV. Statement 1521 has a
three clause if test whose body includes the backward go to
and terminates on the next statement. The backward go to
itself has a four clause if test for going backwards. In both
subroutines, the backward go to can be executed no more
than once per iteration of the huge loop.

The purpose of the backward jump is to provide smooth
calculation of fiction and heat transfer coefficients for a
volume/junction whose flow angle is in the transition region
between vertical and horizontal. The first pass calculates
horizontal or vertical coefficients. This is possible since the
calculations are mostly identical for both cases with the
main difference being the angle. The second pass is only

CUG 2004 Proceedings 5

necessary if the flow angle is in the transition region. In this
case, the second pass calculates the other type of coefficient
to allow a smooth interpolation between them.

The compiler refused to vectorize the loop with the
backward go to. This problem turned out to be much more
difficult to solve than the problems with recurrence.

Duplicating 600+ lines of code would have created an
unacceptable maintenance issue.

Replacing the backwards go to with a do-while loop
failed because it was an inner loop of variable length.

Replacing the go to with a do loop inside the body of
the 1521 if test and using the four clause if test to exit also
failed. The compiler’s messages were very obscure.

The solution was to create 2 subroutines, STRATV for
PHANTV and STRATJ for PHANTJ, that comprised the
entire bodies of the respective if statements at 1521. The
subroutine would be called once and called a second time if
the backward go to condition was true. This solved the
maintenance problem, performed the interpolation, removed
the backward go to, and eliminated the compiler objections.

It was not as simple as it sounds. There were over one
hundred quantities calculated inside the new subroutines
that had to be returned while numerous quantities were
required as input. A common block was constructed to
transfer most of them. It was found that if certain variables
were included in the common block, the answers would be
different for some input models, even though those
variables had identical values on entry and exit whether
they were calculated in STRATV/STRATJ or in
PHANTV/PHANTJ. These were time consuming to find.

4.7 Branching Inhibitors
The worst problem for getting these huge loops to

vectorize was the problem of deeply nested branches. The
compiler messages were the most obscure when explaining
why the huge loop could not vectorize when branching was
the cause (or even that branching was the cause).

Branching affects vector performance and the deeper
the nesting, the greater the effect. PHANTV has nine levels
of nested if tests within its two huge loops; PHANTJ has 10.
That does not count additional levels of branching
introduced when subroutines, themselves having multiple
levels of nesting, are inlined. For example, in PHANTJ,
FIDISJ is called from a place 9 levels of nesting deep.
FIDISJ has 6 levels of nesting and also calls subroutines
with up to 3 levels of nesting.

The compiler could not inline all of these and still
vectorize. The messages were hard to understand. At one
point, all subroutine calls inside FIDISJ were commented
out and turned on one by one until the compiler could not
produce vector code. Then experiments with different
subsets of the subroutine calls being activate were made.
From this came another "discovery" about the effect of if
tests on producing vector code.

The number of branches in an if test affects the
compiler's ability to vectorize just as much as the level of
deep nesting.

It seems that branches, beyond the first two, act as one
level of nesting each. The reason for this may relate to the
number of vector registers that the compiler has to work
with and the way it assigns them among the conditional
code.

Once this was understood, the strategy for overcoming
deep nesting was immediately apparent: Reduce the
number of branches and levels of nesting.

The means to do this is to create logical variables that
combine the logical tests in if statements and else if clauses.
In so doing, branches can be separated into independent if
statements. Nested if tests can be moved out one or more
levels.

For example, consider the following pseudo-code:
if (void>0) then
 if (void<1) then
 if (btest(c,n)) then
 CALCULATIONS 1
 if (hmap) then
 CALCULATIONS 1.1
 endif
 else

 CALCULATIONS 2
 endif
 ...

This can be converted to a single level of if test through the
use of logical variables as follows:

LV0 = void>0
LV1 = LV0 .and. void<1
LVCN = LV1 .and. btest(c,n)
LVCNH = LVCN .and. hmap

if (LVCN) then
 CALCULATIONS 1
end if
if (LVCNH) then
 CALCULATIONS 1.1
end if
if (LV1 .and. .not.LVCN) then
 CALCULATIONS 2
end if

Both versions of the code produce the same calculations.
The former is somewhat more readable, although using
better names for the logical variables can actually make the
second quite readable.

This example illustrates how four levels of nested if
tests can be turned into one level with no branches (else if
constructs). In PHANTJ and PHANTV, up to 6 levels of if
tests were eliminated in this way. This technique was
successively applied to nested if tests and if test branches
until the compiler was able to vectorize the entire loop.

5. Speed-up Results

The vectorized results were expected to differ from the
non-vector results because of the change in the calculation
of the Burington angle. These changes in answers were
within acceptable tolerances. The rest of the changes were

CUG 2004 Proceedings 6

tested independently and verified to not change the results.
Therefore, the overall code modification was deemed to be
acceptable.

Timings were made of the code before and after the
vectorization changes. In Table 5.1, the unmodified code is
identified as Orig. and the modified and vectorized code is
referred to as vector. The column marked V/O shows the
ratio of vector MFLOPS and original MFLOPS. It can be
seen that PHANTJ showed a speedup of 14 times its
original speed for the 3DFLOW15 problem!

 PHANTV PHANTJ
Test
Case

Orig Vect V/O Orig Vect V/O

TYPPWR 13.5 57 4.2 10.9 66.5 6.1
ROSA 18.8 76.5 4.1 10.6 88.6 8.4
AP600 14.9 92.5 6.2 10.3 127.6 12.4
3Dflow15 16.0 98.5 6.2 9.7 136.1 14.0

Table 5.1 Improvement in subroutine MFLOPS

In Table 5.2, the time spent in the subroutines per call
is listed. The column marked O/V shows the ratio of
original call time to vector call time. The vector version of
the code reduces the time spent in PHANTJ by up to a
factor of 8.7.

 PHANTV Sec/Call PHANTJ Sec/Call
Test
Case

Orig. Vect. O/V Orig. Vect. O/V

TYPPWR .00268 .00123 2.18 .00305 .00098 3.11
ROSA .0132 .00333 3.96 .0149 .00398 3.74
AP600 .0654 .0156 4.19 .139 .0231 6.01
3Dflow15 .0482 .0119 4.05 .103 .0118 8.7

Table 5.2 Time spent in these subroutines per call

Generally, the speedup of PHANTJ is greater than that

of PHANTV. One reason is that there is time spent holding
issue. Another is the performance of numerous auxiliary
loops in PHANTV. In PHANTV, there are about 30 small
loops, some of which do not vectorize, while PHANTJ has
none. All the speedup in PHANTJ is from the vectorization
of one huge loop and all the work is in that loop. In
PHANTV, some work is in loops that do not vectorize; this
brings down the overall performance in accordance with
Amdahl’s Law.

The third and probably most important reason that
PHANTJ runs faster than PHANTV when vectorized has to
do with the difference in what each works on. PHANTV
loops over the control volumes of the system and PHANTJ
loops over the junctions. Junctions represent connections
between control volumes and there are usually significantly
more junctions than volumes. For multi-dimensional
models such as 3DFLOW15, the number of junctions is
more than twice that of volumes. This allows much longer
vector length in the vector loops and results in higher
MFLOPS.

The ultimate goal was to increase RELAP5-3D overall
run speed by a factor of 50% by vectorizing these two
subroutines and turning off the call to an optional
subroutine, FORCES, that is seldom used and is not used in
any of our test problems. The speedup for the whole code
was as follows: 1.17 for 3DFLOW15, 1.22 for AP600, 1.43
for ROSA, and 1.51 for TYPPWR.

The speedup was greater for the smaller problems
because PHANTV and PHANTJ took a larger percentage of
the computational time in those cases. In the larger
problems, more time is spent in the linear equation solver.

The goal of 50% speedup was actually exceeded for
TYPPWR. This is mystifying at first since the percentage of
time used by the three subroutines in question was only
33.2%. Even if the time taken by all three were reduced to
zero, the speedup would still be less than 50%. The reason
this happens is inlining of subroutines. Many subroutines
with extremely low MFLOPS rates become part of a
vectorizing loop in PHANTJ or PHANTV so that their
operations also vectorize. In fact, these subroutines are not
listed in the Perftrace timings after they have been inlined.
The percentage of their execution time is subsumed into the
execution time of the subroutine in which they were inlined.
This is what caused the speedup to exceed 50%.

Conclusions

There are several conclusions to draw from this work.
Legacy codes that were not vectorized in the early days of
vector supercomputing should be re-examined. New
developments in compiler technology, that have occurred
after the early 1990’s such as vectorization of a loop that
contains a loop, may allow formerly non-vector loops to
vectorize. Very long loops can be vectorized. Some of the
techniques presented in this paper can be useful in
vectorizing even extreme cases as were demonstrated here.

Acknowledgments

The authors would like to thank Bill Long of Cray, Inc.
for his useful advice about modules and his suggestion to
use MVBITS to further increase speed of certain operations.
We would also like to thank the INEEL Chief Information
Office for funding this work.

About the Authors

George Mesina has a Ph.D. in Mathematics and works
in the thermal fluids department as a Senior Advisory
Engineer. George does algorithm and code development for
RELAP5-3D and RGUI and is responsible for RELAP5-3D
code architecture and products. He can be reached at
INEEL P.O. Box 1625, MS 3890, Idaho Falls, ID 83415
USA. Phone: 208-526-8612, email: mesinagl@inel.gov.

Peter Cebull is an Advisory Engineer on the
HPC/visualization team at the INEEL. He has a
background in nuclear engineering code maintenance and
development and now serves as a Cray subject matter expert

CUG 2004 Proceedings 7

in support of INEEL staff. He can be reached at INEEL
P.O. Box 1625, MS 3605, Idaho Falls, ID 83415 USA.
Phone: 208-526-1909, email: cebupp@inel.gov.

