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ABSTRACT:.  Most of the work on vectorizing legacy Fortran programs was done in the 
1980's and early 1990's.  Developments by Cray, Inc. have made it possible to vectorize loops 
that could not be vectorized in those days.  Therefore, legacy programs should be re-
examined for possible vector speed gains.  The remaining non-vector loops, subroutines, and 
programs are most challenging to vectorize.  Among the most challenging, is the RELAP5-3D 
program that performs nuclear power plant modeling calculations for safety and simulator 
applications.    Two subroutines were vectorized to increase overall code run speed by up to 
33% on some problems.  These two subroutines effectively had 4900 lines and 7100 lines of 
executable Fortran statements in single vectorizable do loops.  This is extreme vectorization.  
Many of the techniques used to vectorize these subroutines are reported here. 
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1. Introduction 

RELAP5-3D is used to model nuclear power plants and 
predict the behaviour of these plants under a wide variety of 
operational and accident conditions.  Worldwide, RELAP5-
3D and its predecessor versions are used more often for 
nuclear power plant safety analyses than any other power 
plant modelling code.  It has been adapted to nuclear power 
plant simulators and is used in training power plant 
operators.  It is also seeing application in the design stages 
of both generation 3 and generation 4 power plants. 

RELAP5-3D modelling features include multi-
dimensional one- and two-phase flow, multi-dimensional 
heat transfer, multi-dimensional neutron kinetics, complete 
trips and control systems, and specialized models for 
specific plant components such as many different types of 
pumps and valves.  Because of these features, it can be used 
in non-nuclear application areas.  Current application areas 
include: nuclear fusion plant analysis, steam supply systems 
analysis, paper and pulp plant simulators. 

This code has been under continuous development 
since the 1970s. It continues to grow with the changing 
requirements for nuclear power plant modelling and 
analysis and the improving capabilities provided by the 
computing industry. 

In the mid-1980s through the early 1990s, an effort was 
undertaken to vectorize RELAP5-3D.  The work was done 
mostly on Cray XMP and YMP platforms.  The computing 
industry changed directions to various kinds of parallel 
processing and use of fast scalar chip beginning in the early 
1990s; so code optimization efforts shifted to those and 
other trends in computing.  

In recent times, there has been a renewed interest in 
vector computing.  The INEEL has acquired a CRAY SV1 
with a 3333-picosecond clock.  With this machine available, 
the INEEL has undertaken an effort to optimize its 
application software for vector and vector-parallel 
processing; this effort includes RELAP5-3D. 

It is noteworthy that Cray, Inc. has advanced the state 
of the art in vectorization since the days of the YMP.  It is 
now possible to vectorize loops that contain inner loops.  
With this and other improvements, it is now possible to 
vectorize significant loops that could not previously be 
vectorized. 

2. Performance Analysis of RELAP5-3D 

RELAP5-3D/Version 2.2.4 was examined with Cray 
operating system performance measures.  Perftrace 90.4 was 
run as RELAP5-3D executed four different calculations to 
determine where the performance enhancement could best 
be obtained. 

The first input model is designated TYPPWR.  It is a 
small input model having 139 control volumes and 142 
junctions, which are connections between volumes.  Most 
vector loops in the code are over subsets of volumes and 
junctions.  Vector lengths are short in this problem. 

The second problem is a model of the ROSA test 
facility used in performing design experiments for 
Generation 3 nuclear power plants.  It has 448 control 
volumes and 469 junctions. It is and average-size problem. 

The third input model is designated AP600.  It is a full-
scale model of the original Westinghouse 600 MW 
Generation 3 reactor.  It has 1232 control volumes and 2230 
junctions.  This is a normal sized problem and has vector 
lengths averaging in the 50's. 
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The fourth model is designated 3DFLOW15.  It is a 
rectangular pipe modeled with the full 3D capability of 
RELAP5-3D.  It has 693 control volumes and 1728 
junctions, but produces such large linear systems that most 
of the computation time is spent in the vectorized solver. 

Among the subroutines listed as taking the most 
computational time in all four problems, were PHANTJ and 
PHANTV.  They ranked first and second for the smaller 
problems but always in the top 5. A third subroutine, 
FORCES, whose output is seldom used and is not used in 
any of our test problems, ranked third in the small test cases. 
It was decided to make it active only through input when 
needed.  Together, these 3 routines account for over 33% of 
the code run time in the two smaller problems.  
Theoretically, if vectorization (and shutting off) could 
reduce their runtime to zero, an overall code speed-up of 
approximately 50% could be achieved.  This is summarized 
in Table 2.1 

 
 PHANTV PHANTJ FORCES Total 
Test Case Exec % Exec % Exec % Exec % 
TYPPWR 11.2 12.8 9.2 33.2 
ROSA 11.6 13.0 9.3 33.9 
Table 2.1 Percentage of run time spent in subroutines 

 
Thus, it was decided to undertake the task to vectorize 

both PHANTJ and PHANTV to improve code performance 
with the goal of a 50% improvement in run speed on the 
INEEL Cray SV1. 

3. Subroutine Structure and Effective Size 

Neither PHANTJ nor PHANTV had ever been 
vectorized when the early vectorization work on RELAP5-
3D was performed.  Upon further examination, it was 
discovered that it had not been possible at the time, 
primarily because a loop could not be vectorized if it 
contained an inner loop.  Both contain loops that have one 
or more inner loops. 

 

3.1 PHANTV & PHANTJ Structure 
PHANTJ is comprised mainly of one huge loop, DO 

10, that is 1423 lines long.  PHANTV is comprised mostly 
of two loops, DO 11 and DO 111, of lengths 1668 and 733 
respectively, but it also contains about 30 other small loops.  
Most of the small loops vectorize naturally without any 
rewrite or directives, but some inherently cannot vectorize. 

 

3.2 PHANTV & PHANTJ Size 
There are six subprograms called from within the DO 

11 loop of PHANTV, not counting intrinsic functions.  One 
of these in turn calls subroutines. Counting all calls and uses 
of functions, there are 18 calls to subprograms within the 
loop.  If these subroutines were to be replaced by their 
actual lines of executable code, they would add 2196 lines 
to its 1668 lines. Additionally, there is a large backward go 

to that often causes 1120 lines to be calculated a second 
time. The loop effectively has 4984 executable lines of 
code.  A similar calculation shows that the DO 111 loop 
would expand out to 933 executable lines of coding. 

There are five subprograms called from within the DO 
10 loop of PHANTJ.  Some of these in turn call 
subprograms so that 73 total subprogram calls are made 
from within the loop.  If these subroutines were to be 
replaced by their actual lines of executable code, they would 
add 5088 lines to its 1433 lines.  Again a large backward go 
to adds 660 lines.  The loop effectively has 7171 lines. 

Hereafter, the DO 10, DO 11, and DO 111 loops are 
referred to as the huge loops. 

 

3.3 PHANTV & PHANTJ Speed 
Both PHANTV and PHANTJ run at scalar speed on the 

Cray SV1.  For some problems, PHANTV picks up some 
vector performance from the small vector loops, but since 
most of the work is in the huge loop that does not vectorize, 
the performance is basically at scalar speed.  See Table 
3.3.1 where Exe% is the percentage of the run time spent in 
the subroutine, MF means MFLOPS and Sec/C means 
seconds per call to the subroutine. Note that PHANTJ has 
lower MFLOPS rate and takes longer than PHANTV. Also, 
it runs slower as the size of the problem increases. 

 
 PHANTV PHANTJ 
Test Case Exe% MF Sec/C Exe% MF Sec/C 
TYPPWR 9.2 13.5 .00268 12.8 10.9 .00305
ROSA 11.6 18.8 .0132 13.0 10.6 .0149 
AP600 3.7 14.9 .0654 7.9 10.3 .139 
3Dflow15 1.2 16.0 .0482 2.6 9.7 .103 
Table 3.3.1. Speed measures 

4. Vectorization Techniques 

In order to vectorize the loop, the coding constructs that 
inhibit vectorization must be identified and overcome.  The 
following is a list of some of the vector inhibitors in the 
huge loops: 
• Subprogram calls 
• Improper use of modules 
• Variable length interior loops 
• Backward GO TO 
• Actual recurrence 
• Apparent recursion 
• If-tests too deeply nested 
 

4.1 Subroutines and Modules 
Subprograms are handled by inlining.  For small 

subprograms, it is sufficient to list them on the compiler 
inline flag.  However, for “large” subprograms (about 400 
lines or more), a source code pre-compiler directive, namely 
INLINEALWAYS, must be added to force the compiler to 
inline it. 
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Inlining can introduce vector inhibitors to the loop that 
must be handled by rewriting the subprogram.  Besides 
those vector inhibitors listed in Section 4.1, two other 
inhibitors resulting from inlining were the introduction of 
active output statements and mismatch of call arguments. 

Call argument mismatch requires either the reworking 
of the variables declarations or the placing of passed data 
into variables of appropriate type, or both.  In the case of 
RELAP5-3D, there were two problems with the arguments 
of subroutine POLAT. 

First, an integer datum was passed in a floating-point 
array element and was declared an integer in POLAT.  This 
arises from an old programming trick for saving memory. It 
equivalences all memory in RELAP5-3D to a single huge 
array, called FA, that is declared to have a large size, but 
which is reduced to the exact amount needed during 
execution via an operating system call.  In the days when 
computer centers charged for supercomputer memory 
usage, this was done to reduce computer charges.  All 
integer, floating point, and logical arrays were equivalences 
to FA.  For machines with 32-bit integers and 64-bit (double 
precision) floats, in order to equivalence integers to floats, 
vectors of integers were promoted to matrices with an 
additional dimension (the first) being two.  Thus pairs of 
integers were equivalenced to single floats.  The second of a 
pair of integers carried actual data, while the other had junk. 

One difficulty with this approach is in subprogram 
calling.  All calculations and assignments of integer array 
entries, such as volno(iv), are promoted via a preprocessor 
to volno(2,iv).  Floating point array elements are passed by 
simply placing the array element in the call sequence.  With 
integers however, passing the element requires that the first 
index be one not two, e.g. volno(1,iv). In some places in the 
code, integer quantities were passed via a float, to which 
they were equivalenced, to avoid the call sequence 
complication.  Compilers ignore this mismatch of data being 
declared floating point in the calling program but integer in 
the subprogram unless either an interface is used or the 
subroutine is inlined.  Because POLAT is being inlined, this 
became an issue. 

The second problem involved the fact that a scalar real 
was passed to POLAT in a position that was declared a real 
array.  In fact, only a single datum was calculated and 
returned by the particular call.  Once again, compilers allow 
this except for interfaces and inlining.   

The first problem was overcome by using the actual 
integer array element.  The second was solved by creating a 
one-dimensional, one-entry real array, vdummy.  The scalar 
was copied into the array entry, passed to POLAT, and 
copied back into the scalar.  Eventually however, POLAT 
was rewritten in structured Fortran 90 as LINT1; it passes a 
real scalar rather than an array of length one. 

Modules will inhibit inlining unless certain rules are 
followed.  First, the module itself must be compiled with a 
flag that says it is allowed to be inlined.  The compiler 
documentation is written in such a way that one could read 
that it means the program using the module must specify 
that the module is inlinable.  Second, use of allocatable 

arrays in inlinable modules is not allowed.  One way to 
overcome this is by removing the contained subprogram 
that is to be inlined from the module and placing it in a 
separate file. 
 

4.2 Code-length inhibitors 
As noted, after the subroutines were inlined, the 

effective size of the DO 11 loop was nearly 5000 lines.  The 
effective size of the DO 10 in PHANTJ was 7100 lines.  
These huge loops were too large for the compiler to 
vectorize.  The compiler apparently runs out of internal 
storage for the analysis.  

Use of compiler directives, such as IVDEP and 
CONCURRENT, cause the compiler to perform its 
operations while ignoring certain kinds of analyses.  This 
sometimes allows the compiler to vectorize longer loops. 
Alone, neither directive caused the loop to vectorize. 
However, combining CONCURRENT with the aggressive 
compiler optimzation flag was sufficient to achieve 
vectorization, but only when all other inhibitors were 
commented out. 

The strategy for vectorizing these subroutines was to 
mark coding that inhibited vectorization with a CPP pre-
compiler flags.  One kind of vector inhibitor was reworked 
at a time until it was overcome and the compiler could 
vectorize the loop with the alternate coding or appropriate 
technique.  In some cases, the reason that a section of 
coding inhibited vectorization remained unknown until 
work on the section was underway. 

It should be noted that aggressive compilation takes 
much longer than normal compilation. Now that all the 
vector inhibitors have been eliminated, it takes 500 seconds 
to compile PHANTV and 700 seconds to compile PHANTJ 
on the Cray SV1. 

 

4.3 Inner loops 
A loop can vectorize if it contains an inner loop, but the 

inner loop must both itself vectorize and have a fixed 
length.  Simple things like a table lookup can break 
vectorization because the number of passes through the loop 
is variable.  In PHANTV and PHANTJ, interpolation on a 
general table, preceded by a search in the table, and looping 
over the junctions that are attached to a control volume are 
important and occur more than once in the huge loops. 

Some of these inhibitors were overcome by moving the 
calculations outside the huge loops. The results are stored in 
temporary arrays and used in the huge loops where needed.  
This was only possible because none of these calculations 
relied on any calculations done previously in the huge loop. 

The table search for the critical Katatladze number, 
which was in an inlined subroutine, did rely on calculations 
from earlier in the huge loop.  The variable length search 
through the table was replaced by a direct calculation.  The 
table had a staggered mesh that caused the need for a 
search. A new table with a uniform mesh was constructed to 
include each of the staggered mesh grid points.  A simple 
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formula for directly calculating the subinterval from the 
abscissa value was programmed.  In this way the variable 
length search loop was eliminated by a direct calculation. 

 

4.4 Recurrences 
Worse than variable length inner loops are recurrences.  

These occur when a quantity is calculated in one iteration of 
the loop with a quantity calculated in a previous iteration.  
Examples include summing the entries of an array and 
bisection.   Both of these occurred in inner loops within the 
huge loops of PHANTV and PHANTJ. 

In the case of the sum loop, it did not rely on 
calculations done before it in the huge loop.  It was handled 
in the same way as variable-length inner loops of this sort, 
by moving it before the huge loop.  It was placed inside a 
loop with the same loop index and loop limits as the huge 
loop of PHANTV.  The value of each sum was saved in a 
temporary array and used later in the huge loop. 

The case of bisection was more complicated.  The value 
of the Burington angle, b, is the solution of the non-linear 
equation: 

b – sin(b) = 2παg, (4.4.1) 
where αg is the void fraction of the gas and b is measured in 
radians. This function has no analytical inverse and so a 
function, HTHETA, was written.  It used a fifth order 
Taylor polynomial to approximate sine and calculated b via 
bisection as the zero of the function 

f(b; αg) = 2παg – b + sin(b) (4.4.2) 
The bisection was programmed to take 16 or 17 iterations 
depending on the value of void fraction. 

Since bisection is inherently recursive, it had to be 
replaced in order to achieve vectorization.   

A cubic spline interpolation to the inverse function was 
constructed.  The values of the inverse function were 
calculated by using bisection to find the value of b for 
which  

f(b; αg) = 0  (4.4.3) 
for 200 different values of αg.  Chebyschev points were 
used to generate the values of αg.  This created a table of 
values that could be searched for the subinterval that 
contained any value of void fraction and then cubic spline 
interpolation could be applied to produce a good 
approximation to b.  The table is constructed once and 
saved. 

Normally, a search of this non-uniform mesh for a the 
containing subinterval would be required and that would be 
the kind of vector inhibitor discussed in Section 4.3, an 
inner loop of variable length.  However, the formula for 
generating Chebyschev points is completely invertible and 
leads to a direct formula for calculating the subinterval that 
contains any void fraction.  This is similar to the critical 
Katataladze number. 

Overall, this new method of calculating Burington 
angle is faster than the original even on a non-vector 

machine because it reduces the number of operations by an 
order of magnitude. 

 

4.5 False Recurrences 
RELAP5-3D equivalences all arrays to a single large 

array.  Because of this equivalence, the compiler interprets 
all array references as potential recurrences.  This is solved 
by placing either the IVDEP or CONCURRENT compiler 
directive before each loop. 

The compiler is programmed with unit stride through 
memory in mind.  RELAP5-3D is programmed with a large 
stride that depends on the data type.  For example, normally 
control volume data has a stride of 279 and junction data 
has a stride of 111.  Unit stride is found in very few places. 

In the control volume data block, data for the x-, y-, 
and z-direction are stored contiguously in data.  For 
example, the wall friction of the gas, FWALG, can occur in 
all three directions Because everything is equivalenced to 
one large array, the wall friction in the x-, y-, and z-
directions for volume IV are indexed FWALG(IV), 
FWALG(IV+1), FWALG(IV+2). 

When FWALG is first calculated, it is calculated in the 
x-direction and the other directional components are 
initialised to this same value and modified later.  The 
statements for this are: 

FWALG(IV+1) = FWALG(IV) (4.5.1) 
FWALG(IV+2) = FWALG(IV) (4.5.2) 

The huge loop in which these and other such statements 
reside has a unit stride on loop index M.  However, IV = 
VCTRLS(M) where array VCTRLS is a subset of numbers 
of the form K + 279*J, J=1,2,…,N.  In RELAP5-3D, there 
is nothing remotely recursive about Statements 4.5.1 and 
4.5.2.  However, the compiler will not vectorize the loop 
that contains such statements.  The compiler directives 
IVDEP and CONCURRENT do not overcome this. 

The solution to this is to move transfer statements such 
as 4.5.1 and 4.5.2 to out of the loop.  They were placed in a 
loop immediately after the huge loop.  This removed the 
false recurrence problem. 

 

4.6 Backward GOTO Inhibitor 
In both PHANTV and PHANTJ, there is a backwards 

go to (go to 1521) that spans over 600 lines of code, 660 in 
PHANTJ and 1120 in PHANTV.  Statement 1521 has a 
three clause if test whose body includes the backward go to 
and terminates on the next statement.  The backward go to 
itself has a four clause if test for going backwards.  In both 
subroutines, the backward go to can be executed no more 
than once per iteration of the huge loop. 

The purpose of the backward jump is to provide smooth 
calculation of fiction and heat transfer coefficients for a 
volume/junction whose flow angle is in the transition region 
between vertical and horizontal.  The first pass calculates 
horizontal or vertical coefficients.  This is possible since the 
calculations are mostly identical for both cases with the 
main difference being the angle.  The second pass is only 
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necessary if the flow angle is in the transition region.  In this 
case, the second pass calculates the other type of coefficient 
to allow a smooth interpolation between them. 

The compiler refused to vectorize the loop with the 
backward go to.  This problem turned out to be much more 
difficult to solve than the problems with recurrence. 

Duplicating 600+ lines of code would have created an 
unacceptable maintenance issue. 

Replacing the backwards go to with a do-while loop 
failed because it was an inner loop of variable length. 

Replacing the go to with a do loop inside the body of 
the 1521 if test and using the four clause if test to exit also 
failed.  The compiler’s messages were very obscure. 

The solution was to create 2 subroutines, STRATV for 
PHANTV and STRATJ for PHANTJ, that comprised the 
entire bodies of the respective if statements at 1521.   The 
subroutine would be called once and called a second time if 
the backward go to condition was true.  This solved the 
maintenance problem, performed the interpolation, removed 
the backward go to, and eliminated the compiler objections. 

It was not as simple as it sounds.  There were over one 
hundred quantities calculated inside the new subroutines 
that had to be returned while numerous quantities were 
required as input.  A common block was constructed to 
transfer most of them.  It was found that if certain variables 
were included in the common block, the answers would be 
different for some input models, even though those 
variables had identical values on entry and exit whether 
they were calculated in STRATV/STRATJ or in 
PHANTV/PHANTJ.  These were time consuming to find. 

 

4.7 Branching Inhibitors 
The worst problem for getting these huge loops to 

vectorize was the problem of deeply nested branches.  The 
compiler messages were the most obscure when explaining 
why the huge loop could not vectorize when branching was 
the cause (or even that branching was the cause). 

Branching affects vector performance and the deeper 
the nesting, the greater the effect.  PHANTV has nine levels 
of nested if tests within its two huge loops; PHANTJ has 10.  
That does not count additional levels of branching 
introduced when subroutines, themselves having multiple 
levels of nesting, are inlined.  For example, in PHANTJ, 
FIDISJ is called from a place 9 levels of nesting deep.  
FIDISJ has 6 levels of nesting and also calls subroutines 
with up to 3 levels of nesting. 

The compiler could not inline all of these and still 
vectorize.  The messages were hard to understand.  At one 
point, all subroutine calls inside FIDISJ were commented 
out and turned on one by one until the compiler could not 
produce vector code.  Then experiments with different 
subsets of the subroutine calls being activate were made.  
From this came another "discovery" about the effect of if 
tests on producing vector code. 

The number of branches in an if test affects the 
compiler's ability to vectorize just as much as the level of 
deep nesting. 

It seems that branches, beyond the first two, act as one 
level of nesting each.  The reason for this may relate to the 
number of vector registers that the compiler has to work 
with and the way it assigns them among the conditional 
code. 

Once this was understood, the strategy for overcoming 
deep nesting was immediately apparent:  Reduce the 
number of branches and levels of nesting. 

The means to do this is to create logical variables that 
combine the logical tests in if statements and else if clauses.   
In so doing, branches can be separated into independent if 
statements.  Nested if tests can be moved out one or more 
levels. 

For example, consider the following pseudo-code: 
if ( void>0 ) then 
  if ( void<1 ) then 
    if ( btest(c,n) ) then 
      CALCULATIONS 1 
      if (hmap) then 
        CALCULATIONS 1.1 
      endif 
    else 

   CALCULATIONS 2 
 endif 
 ... 
 

This can be converted to a single level of if test through the 
use of logical variables as follows: 
 
LV0 = void>0 
LV1 = LV0 .and. void<1 
LVCN = LV1 .and. btest(c,n) 
LVCNH = LVCN .and. hmap 
 
if (LVCN) then 
  CALCULATIONS 1 
end if 
if (LVCNH) then 
  CALCULATIONS 1.1 
end if 
if (LV1 .and. .not.LVCN) then 
  CALCULATIONS 2 
end if 
 
Both versions of the code produce the same calculations.  
The former is somewhat more readable, although using 
better names for the logical variables can actually make the 
second quite readable.  

This example illustrates how four levels of nested if 
tests can be turned into one level with no branches (else if 
constructs).  In PHANTJ and PHANTV, up to 6 levels of if 
tests were eliminated in this way.  This technique was 
successively applied to nested if tests and if test branches 
until the compiler was able to vectorize the entire loop. 

5. Speed-up Results 

The vectorized results were expected to differ from the 
non-vector results because of the change in the calculation 
of the Burington angle.  These changes in answers were 
within acceptable tolerances.  The rest of the changes were 
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tested independently and verified to not change the results.  
Therefore, the overall code modification was deemed to be 
acceptable. 

Timings were made of the code before and after the 
vectorization changes.  In Table 5.1, the unmodified code is 
identified as Orig. and the modified and vectorized code is 
referred to as vector.  The column marked V/O shows the 
ratio of vector MFLOPS and original MFLOPS.  It can be 
seen that PHANTJ showed a speedup of 14 times its 
original speed for the 3DFLOW15 problem! 

 
 PHANTV PHANTJ 
Test 
Case 

Orig Vect V/O Orig Vect V/O 

TYPPWR 13.5 57 4.2 10.9 66.5 6.1 
ROSA 18.8 76.5 4.1 10.6 88.6 8.4 
AP600 14.9 92.5 6.2 10.3 127.6 12.4 
3Dflow15 16.0 98.5 6.2 9.7 136.1 14.0 

Table 5.1 Improvement in subroutine MFLOPS 
 

In Table 5.2, the time spent in the subroutines per call 
is listed.  The column marked O/V shows the ratio of 
original call time to vector call time.  The vector version of 
the code reduces the time spent in PHANTJ by up to a 
factor of 8.7. 

 
 PHANTV Sec/Call PHANTJ Sec/Call 
Test 
Case 

Orig. Vect. O/V Orig. Vect. O/V 

TYPPWR .00268 .00123 2.18 .00305 .00098 3.11 
ROSA .0132 .00333 3.96 .0149 .00398 3.74 
AP600 .0654 .0156 4.19 .139 .0231 6.01 
3Dflow15 .0482 .0119 4.05 .103 .0118 8.7 

Table 5.2 Time spent in these subroutines per call 
 
Generally, the speedup of PHANTJ is greater than that 

of PHANTV.  One reason is that there is time spent holding 
issue.  Another is the performance of numerous auxiliary 
loops in PHANTV.  In PHANTV, there are about 30 small 
loops, some of which do not vectorize, while PHANTJ has 
none.  All the speedup in PHANTJ is from the vectorization 
of one huge loop and all the work is in that loop.  In 
PHANTV, some work is in loops that do not vectorize; this 
brings down the overall performance in accordance with 
Amdahl’s Law. 

The third and probably most important reason that 
PHANTJ runs faster than PHANTV when vectorized has to 
do with the difference in what each works on.  PHANTV 
loops over the control volumes of the system and PHANTJ 
loops over the junctions.  Junctions represent connections 
between control volumes and there are usually significantly 
more junctions than volumes.  For multi-dimensional 
models such as 3DFLOW15, the number of junctions is 
more than twice that of volumes.  This allows much longer 
vector length in the vector loops and results in higher 
MFLOPS. 

The ultimate goal was to increase RELAP5-3D overall 
run speed by a factor of 50% by vectorizing these two 
subroutines and turning off the call to an optional 
subroutine, FORCES, that is seldom used and is not used in 
any of our test problems.  The speedup for the whole code 
was as follows: 1.17 for 3DFLOW15, 1.22 for AP600, 1.43 
for ROSA, and 1.51 for TYPPWR. 

The speedup was greater for the smaller problems 
because PHANTV and PHANTJ took a larger percentage of 
the computational time in those cases.  In the larger 
problems, more time is spent in the linear equation solver. 

The goal of 50% speedup was actually exceeded for 
TYPPWR. This is mystifying at first since the percentage of 
time used by the three subroutines in question was only 
33.2%.  Even if the time taken by all three were reduced to 
zero, the speedup would still be less than 50%.   The reason 
this happens is inlining of subroutines.  Many subroutines 
with extremely low MFLOPS rates become part of a 
vectorizing loop in PHANTJ or PHANTV so that their 
operations also vectorize.  In fact, these subroutines are not 
listed in the Perftrace timings after they have been inlined.  
The percentage of their execution time is subsumed into the 
execution time of the subroutine in which they were inlined.  
This is what caused the speedup to exceed 50%. 

Conclusions 

There are several conclusions to draw from this work.  
Legacy codes that were not vectorized in the early days of 
vector supercomputing should be re-examined. New 
developments in compiler technology, that have occurred 
after the early 1990’s such as vectorization of a loop that 
contains a loop, may allow formerly non-vector loops to 
vectorize.  Very long loops can be vectorized.  Some of the 
techniques presented in this paper can be useful in 
vectorizing even extreme cases as were demonstrated here. 
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