
M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

S
u
p
er

co
m

p
u
ti
n
g
,

V
is

u
al

iz
at

io
n
 &

 e
S
ci

en
ce

Lee Margetts, Mike Pettipher, Ian Smith
(lee.margetts@man.ac.uk,
m.pettipher@man.ac.uk,
Ian.smith@man.ac.uk)

19th May 2004
Cray User Group
Knoxville, Tennessee

ParaFEMParaFEM Library Library

A Suite of Finite Element Analysis Codes

ParaFEM, CUG May 20042

Acknowledgements

 Cray Inc. for access to Cray systems.

 Andrew Jones at University of Manchester for running the
codes.

ParaFEM, CUG May 20043

FEA on HPC

 FEA typically not one of the major users of HPC.
 In UK, neither national HPC service initially provided FEA

software for HPC users.
 Major third party codes such as Abaqus do not currently

scale well on large numbers of processors.
 Many engineers have limited their research to 2D because

of compute requirements, both cpu and memory, of large
3D problems.

 Increasing pressure to address this.
 Summer School in ‘HPC in FEA’ jointly run by UoM and

National Science Foundation at Manchester in September
2003.

ParaFEM, CUG May 20044

Engineering Areas at Manchester

 Geotechnics:
– ‘Traditional’ structural analysis

– Stochastic analysis

 Biomechanics
– Medical School

– Dentistry

 Mechanical Engineering
– Pressure Vessels

– Pipe whiplash

 Chemical Engineering

 Earth Sciences

 Aeronautics (CFD)

ParaFEM, CUG May 20045

Engineering codes at Manchester - 1

 Third Party Codes
– Abaqus

• Most widely used FEA code – site license.

• Used on local systems including SGI Origin and IBM SP

• Jobs typically large memory and small numbers of processors.

• Problem size limited by memory and scalability

• Widely used in other UK universities.

– FLUENT
• Small number of users, licensed individually.

– Other software
• Generally licensed for specific research groups

• CFX etc.

 Similar at other UK institutions

ParaFEM, CUG May 20046

Engineering Codes at Manchester - 2

 FEA suite of codes written by Prof Ian Smith (Manchester)
and Dr Vaughan Griffiths (Colorado)

 Areas covered:
– Static equilibrium of structures

– Static equilibrium of linear elastic solids

– Material nonlinearity

– Steady State flow

– Transient problems (uncoupled)

– Coupled problems

– Eigenvalue problems

– Forced Vibrations

ParaFEM, CUG May 20047

Engineering codes at Manchester - 3

 FEA Suite of Codes:
– About 50 example codes (and 100 library routines).

– Fortran 90 serial codes used by many engineers at Manchester, and also
at many institutions wolrdwide.

– Element-by-element approach. No matrix assembly.

– PCG, BiCGStab, Lanczos solver (Harwell library)

– Low memory, efficient code (matrix operations)

– Structured or unstructured grids.

– Problem size limited by cpu and memory of single processor.

ParaFEM, CUG May 20048

Engineering Codes at Manchester - 4

 How do we (computing service) encourage engineers to
exploit HPC?
– Wait for third party packages to scale well?

– Encourage users to start using alternative parallel software, e.g. PetSC,
ScaLAPACK?

– Provide alternative based on parallelising current codes?

ParaFEM, CUG May 20049

ParaFEM Library - objectives

 Implement highly parallel version of suite of FEA codes.

 Retain code style of serial codes, so engineers can use
with little if any knowledge of the parallel coding.
– Provide both message passing (MPI) and shared memory (OpenMP, MTA)

versions.

 Integrate with other packages for mesh generation,
preconditioners, alternative solvers and post
processing/visualisation.

 Provide framework for engineers to exploit HPC
architectures.

ParaFEM, CUG May 200410

Element By Element

 Inherent loop based parallelism throughout code.

 Non-linear and timestepping codes essentially involve
loops around the linear solver – thus if linear solver works
well, all other codes will (should).

 Stages of codes …
– Geometric – mesh generation/partitioning

– Boundary conditions

– Application of loads

– Preconditioning (Simple diagonal preconditioner in PCG)

– Solver (PCG, BiCGStab, Lanczos)

– Stress recovery

– Interpretation of results - visualisation

ParaFEM, CUG May 200411

PCG Solver - Serial
 !--------------------preconditioned c. g. iterations---------------------------
 iters = 0

 iterations : DO

 iters=iters+1; u_pp=0._iwp; pmul_pp=.0_iwp

 elements_2 : DO iel = 1, nels

 g=g_g(:,iel); pmul=p(g)

 utemp_pp = MATMUL(km,pmul_pp)

 u_pp(g) = u_pp(g) + utemp_pp

 END DO elements_2

 !--------------------------pcg equation solution-------------------------------

 up=DOT_PRODUCT(r_pp,d_pp); alpha= up/ DOT_PRODUCT(p_pp,u_pp)

 xnew_pp = x_pp + p_pp* alpha ; r_pp=r_pp - u_pp*alpha

 d_pp = diag_precon_pp*r_pp; beta=DOT_PRODUCT(r_pp,d_pp)/up

 p_pp=d_pp+p_pp*beta

 CALL checon(xnew_pp,x_pp,tol,converged)

 IF(converged .OR. iters==limit) EXIT

 END DO iterations

 WRITE(11,'(A,I5)')"The number of iterations to convergence was ",iters

 WRITE(11,'(A,E12.4)')"The central nodal displacement is :",xnew_pp(1)

ParaFEM, CUG May 200412

PCG kernel

 Element–by-element approach dominated by:

pmul = p(g) ! gather
utemp = MATMUL(km,pmul) ! matrix-vector

u(g) – u(g) + utemp ! Scatter

 And vector operations involving (global) dot products

ParaFEM, CUG May 200413

Parallel Implementation

 Partitioning: simple …
– Elements split across processors

– Equations spilt across processors

– Matrix multiplication is local

– Splits cannot match exactly – nodes (generating equations) are shared by
elements which reside on different processors. Could duplicate nodes and
update correspondingly, but not done at present.

– Thus gather and scatter must be performed across processors.

– Gathering variable amounts of data from different processors. Cannot use
simple MPI_GATHER. Could use MPI_GATHERV if appropriate
communicators set up. Decided to write our own gather and scatter:

ParaFEM, CUG May 200414

PCG Solver - Parallel

 !--------------------preconditioned c. g. iterations---------------------------
 iters = 0
 iterations : DO
 iters=iters+1; u_pp=0._iwp; pmul_pp=.0_iwp
 CALL gather(p_pp,pmul_pp)
 elements_2 : DO iel = 1, nels_pp
 utemp_pp(:,iel) = MATMUL(km,pmul_pp(:,iel))
 END DO elements_2
 CALL scatter(u_pp,utemp_pp)
!--------------------------pcg equation solution--------------------------------
 up=DOT_PRODUCT_P(r_pp,d_pp); alpha= up/ DOT_PRODUCT_P(p_pp,u_pp)
 xnew_pp = x_pp + p_pp* alpha ; r_pp=r_pp - u_pp*alpha
 d_pp = diag_precon_pp*r_pp; beta=DOT_PRODUCT_P(r_pp,d_pp)/up
 p_pp=d_pp+p_pp*beta
 CALL checon_par94(xnew_pp,x_pp,tol,converged,neq_pp)
 IF(converged .OR. iters==limit) EXIT
 END DO iterations
 IF(numpe==1)THEN
 WRITE(11,'(A,I5)')"The number of iterations to convergence was ",iters
 WRITE(11,'(A,E12.4)')"The central nodal displacement is :",xnew_pp(1)
 END IF

ParaFEM, CUG May 200415

Serial -> Parallel

 Call gather()
– Performs gather for all elements – increasing memory requirements and

increasing size of messages, but reducing number of messages

 Matmul
– For all elements. When element types all the same, stiffness matrix, km is

the same, so can perform matrix matrix. In a more general case, km is
replaced by storkm(nels_pp,:,:).

 Call scatter()
– Scatter for all elements

ParaFEM, CUG May 200416

Dot products, convergence criteria
etc.

 Different versions of PCG implemented

 Can reduce number of dot products and reduce impact of
convergence testing.

 Developments based on paper by Dongarra et al 2004

ParaFEM, CUG May 200417

Typical coding

 Main codes typically about 150 lines – serial or parallel.

 FEA library modules for:
– Geometry – for different element types

– Utility

– …

 Parallel library modules for:
– Partitioning

– Gather/scatter

– …

ParaFEM, CUG May 200418

Generic coding

 Changes made for parallel MPI version, particularly use of
gather and scatter routines, can be used in serial and
shared memory versions.

 Have run shared memory versions with OpenMP and on
MTA (reported at CUG 2003 – MTA particularly suitable for
minimising time in gather and scatter).

 Thus single generic main program may be used in any of
these environments – user maintains only one version,
selecting appropriate library code via f90 USE statement.

 Primary development is for MPI version.

ParaFEM, CUG May 200419

Performance

 Work started on Cray T3D/T3E
 Subsequently most development on SGI Origin/Altix and

IBM SP
 Peformance depends on good matrix-vector (or matrix-

matrix) and good communiations.
 Original simplistic assumptions about partitioning etc not a

problem on best balanced systems (=> Cray!).
 Typically time for gather/scatter is similar to time for

matmult, but scales consistently. (Improved versions under
development.)

 As communication/computation ratios increases,
performance has become more of an issue.

ParaFEM, CUG May 200420

Vector Machines

 What about vector machines – X1?

 Work is dominated by matrix-vector or matrix-matrix, which
should work well if vectors are long enough.

 20 node brick elements generate vectors of length 60 – is
this enough?

 Is there enough computation?

ParaFEM, CUG May 200421

Single node performance

 Typical performance on scalar systems. Matrix
multiplication (60x60 x 60xnels) about 50% peak
performance.

 On X1 SSP:
– Initial results - about 1% peak!
– Eventually discovered the problem is the calculation:

flops = 2.0*ndof*ndof*nels*iters
(used only in the calculation of a flop count to report performance) . The
answer should be about 230GB, but the value returned was about 4GB –
2.0 *maxint

– By ensuring real arithmetic is used, the correct figure is obtained giving
about 80% peak!

– Note that the matrix multiplication was performed with f90 MATMUL –
using BLAS resulted in lower performance (because MATMUL is inlined,
avoiding the overheads associated with calling subroutines).

ParaFEM, CUG May 200422

Matrix-matrix/matrix-vector

 Code does do repeated matrix-vector, but X1 recognised that this can
be replaced by matrix-matrix, so automatically did so. (Unless it can do
matrix-vector at 80% peak!) Not all other compilers do this. On one
system, had to use explicit dgemm call for best performance.

 Problems with identical elements (e.g. in biomechanics, use of CT
scans can generate voxel elements) can use matrix-matrix, thus
achieving very good performance.

 The other extreme with every element different results in matrix-vector
computations, potentially with little data re-use.

 Some simple test programs on the X1 indicated that matrix-vector runs
about half the performance of matrix-matrix, but this will be very
dependent on vector length.

 These provide upper and lower bounds for performance.

ParaFEM, CUG May 200423

Matrix-vector improvements

 Many problems will have some elements the same or at
least the same shape and property. This results in
duplication, which can be exploited:

ParaFEM, CUG May 200424

Reducing Element Stiffness Storage

 Consider the full Magnetohydrodyamics stiffness matrix
– There are 13 unique submatrices for each element

– Each submatrix has 400 entries

 Break up the element matrix vector computation, replacing

do iel=1,nels_pp
 u ’ = matmul (C11 , x ’)
end do
do iel=1,nels_pp
 u ’ = matmul (C55 , x ’)
end do
do iel=1,nels_pp
 u ’ = matmul (C15 , x ’)
end do

do iel=1,nels_pp
 u=matmul(ke,x)
end do

ParaFEM, CUG May 200425

Percentage Peak Performance

0

10

20

30

40

50

0 50 100 150 200 250 300

Number of Processors

%
 P

ea
k

P
er

fo
rm

an
ce

Origin 3800 ~300,000 unknowns

Matrix vector

Matrix vector + communication

ParaFEM, CUG May 200426

Matrix-vector: Superelements

 Can combine elements to generate vectors of length 120,
180 etc.

 Additional computation, but less dense. Higher flop/s but
higher flops. Is it worth it?

 Not yet implemented.

ParaFEM, CUG May 200427

Matrix-vector: Coupling

 Coupling different physics at element level
– Navier Stokes - Pressure + velocity - vector of 68

– MHD - Pressure + velocity + magnetism - vector of 128

– Biot - Fluid + solid - vector of 68

ParaFEM, CUG May 200428

Gather/Scatter - scalar systems

 On scalar systems gather/scatter typically takes similar
time to matrix multiplication, thus lowering %peak by a
factor of 2.

 Looking into ways to reduce this, but it scales, so can still
achieve 25% peak across large systems.

ParaFEM, CUG May 200429

Gather/scatter on X1

 On X1, initially, time in matmul was 25s, and that in the
scatter routine 296s!

 However, the time in scatter is dominated by a loop with
indirect addressing which was therefore not vectorised.

 There is no recursion in this loop, so the IVDEP directive
can be used.

 Time in scatter drops to 34s.
 Still slightly higher percentage of total time than on other

systems.
 Uses MPI – currently not optimal on X1. Can try SHMEM

or CAF (John Levesque showed simple CAF code for
similar scatter).

ParaFEM, CUG May 200430

Linear solver – 12M equations

33%6875.174%15261.6152.8161.464

31%12931.975%30630.581.989.1128

30%18430.174%45320.656.763.9192

37%38127.075%77121.5286.8298.032

mm/gs

%pk

mm/gs

GF

mm/gs

Sec

mm

%pk

mm

GF

mm

sec

Iters

sec

Total

secl

ParaFEM, CUG May 200431

Linear Solver – 12 M equations

12M equations

0

10

20

30

40

50

60

70

80

32 64 128 192

Processors

%
P

ea
k Matmul

Matmul/gs

ParaFEM, CUG May 200432

Linear solver – 0.75M equations

64000 elements

0

10

20

30

40

50

60

70

80

90

16 32 64 128

Processors

%
pe

ak Matmul

Matmul/gs

ParaFEM, CUG May 200433

MSP Performance

 Matrix-matrix fine:
– 10GF (~80% peak)

 However gather/scatter takes similar time to SSP, so
overall, performance is much lower than on SSP.

 Improvements in communication are key to good
performance on MSP.
– SHMEM of CAF may help, but other changes planned to minimise the

communication times likely to be most beneficial.

ParaFEM, CUG May 200434

Other Problem Types?

 Not yet run on X1.

 Given known information from running on other systems,
and results so far on X1, expect similar results.

ParaFEM, CUG May 200435

Developments

 Communications
– Approach adopted by Carey (Texas), uses element-by-element, duplicating

nodes on processors. This eliminates communications in gather and
communication in scatter is overlapped with computations.

 Provide alternative ‘components’:
– Mesh partitioning - Par Metis etc

– Preconditioners

– Solvers

– Algebraic multigrid (Adams, Livermore) – excellent performance on very
large problems and systems.

– Visualisation integration
• Virtual prototyping project

ParaFEM, CUG May 200436

Conclusions

 The ParaFEM software is designed to provide engineers
with a framework for solving FEA problems in an HPC
environment.

 Previously implemented successfully on scalar MPP
systems.

 Easy to port to X1.
– Requires only the addition of a single compiler directive to obtain good

performance on SSP, at least for 20 node brick elements.
– Vector length is certainly an issue, particularly with simpler element types,

but there are ways in which this can be addressed.

 Improvements already planned to improve communications
in scalar version will help, particularly with MSP version.

 www.parafem.org.uk

M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

S
u
p
er

co
m

p
u
ti
n
g
,

V
is

u
al

iz
at

io
n
 &

 e
S
ci

en
ce

World Leading Supercomputing
Service, Support and Research

Bringing Science and
Supercomputers Together

www.man.ac.uk/sve
sve@man.ac.uk

SVE @ Manchester ComputingSVE @ Manchester Computing

