ParaFEM Library

A Suite of Finite Element Analysis Codes

Lee Margetts, Mike Pettipher, Ian Smith
(lee.margetts@man.ac.uk,

W
O
-
9
O
n
W
o
c
®)
=
©
N
'©
-
AL
=
o
-
=
=
Q
=
O
O
)
Q
-
n

(o)
£
)

=

Q.

£

o
O

&

()
)

)]

()
i

O

o

(Y
>3

m.pettipher@man.ac. uk, R
Ian.smith@man.ac.uk) 1l
19th May 2004 .
Cray User Group THE UNIVERSITY

Knoxville, Tennessee o/ MANCHESTER

Acknowledgements

= Cray Inc. for access to Cray systems.

= Andrew Jones at University of Manchester for running the
codes.

2 ParaFEM, CUG May 2004

FEA on HPC

FEA typically not one of the major users of HPC.

In UK, neither national HPC service initially provided FEA
software for HPC users.

Major third party codes such as Abaqus do not currently
scale well on large numbers of processors.

Many engineers have limited their research to 2D because
of compute requirements, both cpu and memory, of large
3D problems.

Increasing pressure to address this.

Summer School in ‘HPC in FEA' jointly run by UoM and
National Science Foundation at Manchester in September
2003.

ParaFEM, CUG May 2004

Engineering Areas at Manchester

Geotechnics:
— ‘Traditional’ structural analysis
— Stochastic analysis

Biomechanics
— Medical School
— Dentistry

Mechanical Engineering
— Pressure Vessels
— Pipe whiplash

Chemical Engineering
Earth Sciences
Aeronautics (CFD)

ParaFEM, CUG May 2004

Engineering codes at Manchester - 1

= Third Party Codes

— Abaqus
« Most widely used FEA code — site license.
* Used on local systems including SGI Origin and IBM SP
« Jobs typically large memory and small numbers of processors.
* Problem size limited by memory and scalability
« Widely used in other UK universities.

— FLUENT
« Small number of users, licensed individually.

— Other software
» Generally licensed for specific research groups
« CFXetc.

= Similar at other UK institutions

5 ParaFEM, CUG May 2004

Engineering Codes at Manchester - 2

= FEA suite of codes written by Prof lan Smith (Manchester)
and Dr Vaughan Giriffiths (Colorado)

= Areas covered:
— Static equilibrium of structures
— Static equilibrium of linear elastic solids
— Material nonlinearity
— Steady State flow
— Transient problems (uncoupled)
— Coupled problems
— Eigenvalue problems
— Forced Vibrations

6 ParaFEM, CUG May 2004

Engineering codes at Manchester - 3

FEA Suite of Codes:

About 50 example codes (and 100 library routines).

Fortran 90 serial codes used by many engineers at Manchester, and also
at many institutions wolrdwide.

Element-by-element approach. No matrix assembly.

PCG, BiCGStab, Lanczos solver (Harwell library)

Low memory, efficient code (matrix operations)

Structured or unstructured grids.

Problem size limited by cpu and memory of single processor.

ParaFEM, CUG May 2004

Engineering Codes at Manchester - 4

= How do we (computing service) encourage engineers to
exploit HPC?
— Wait for third party packages to scale well?

— Encourage users to start using alternative parallel software, e.g. PetSC,
ScalLAPACK?

— Provide alternative based on parallelising current codes?

8 ParaFEM, CUG May 2004

ParaFEM Library - objectives

= |mplement highly parallel version of suite of FEA codes.

= Retain code style of serial codes, so engineers can use

with little if any knowledge of the parallel coding.

— Provide both message passing (MPI) and shared memory (OpenMP, MTA)
versions.

= |ntegrate with other packages for mesh generation,
preconditioners, alternative solvers and post
processing/visualisation.

= Provide framework for engineers to exploit HPC
architectures.

9 ParaFEM, CUG May 2004

Element By Element

= Inherent loop based parallelism throughout code.

= Non-linear and timestepping codes essentially involve
loops around the linear solver — thus if linear solver works
well, all other codes will (should).

= Stages of codes ...

Geometric — mesh generation/partitioning

Boundary conditions

Application of loads

Preconditioning (Simple diagonal preconditioner in PCG)
Solver (PCG, BiCGStab, Lanczos)

Stress recovery

Interpretation of results - visualisation

10

ParaFEM, CUG May 2004

PCG Solver - Serial

e preconditioned c. g. iterations--------——----————-——-—-——————-

iters = 0
iterations : DO
iters=iters+1l; u pp=0. iwp; pmul pp=.0 1iwp
elements 2 : DO iel = 1, nels
g=g g(:,1iel); pmul=p (qg)
utemp pp = MATMUL (km, pmul pp)

u pp(g) = u pp(g) + utemp pp
END DO elements 2

up=DOT PRODUCT (r pp,d pp); alpha= up/ DOT PRODUCT (p_pp,u_pp)
Xxnew pp = x pp + p pp* alpha ; r pp=r pp - u pp*alpha
d pp = diag precon pp*r pp; beta=DOT PRODUCT (r pp,d pp)/up
p_pp=d_pp+p_pp*beta
CALL checon (xnew pp,X pp,tol,converged)
IF (converged .OR. iters==limit) EXIT

END DO iterations

WRITE (11, "' (A,I5)")"The number of iterations to convergence was ",iters

WRITE (11, ' (A,E12.4) ') "The central nodal displacement is :",xnew pp (1)
T

11 ParaFEM, CUG May 2004

PCG kernel

= Element-by-element approach dominated by:

pmul = p(g) | gather
utemp = MATMUL(km,pmul) ! matrix-vector
u(g) — u(g) + utemp | Scatter

= And vector operations involving (global) dot products

12 ParaFEM, CUG May 2004

Parallel Implementation

= Partitioning: simple ...

13

Elements split across processors
Equations spilt across processors
Matrix multiplication is local

Splits cannot match exactly — nodes (generating equations) are shared by
elements which reside on different processors. Could duplicate nodes and
update correspondingly, but not done at present.

Thus gather and scatter must be performed across processors.

Gathering variable amounts of data from different processors. Cannot use
simple MPI_GATHER. Could use MPI_GATHERYV if appropriate
communicators set up. Decided to write our own gather and scatter:

ParaFEM, CUG May 2004

PCG Solver - Parallel

l—— preconditioned c¢. g. iterations--——-——-—-"----"-""—"-"-"——-——————
iters = 0
iterations : DO
iters=iters+1l; u pp=0. iwp; pmul pp=.0 1iwp
CALL gather (p_pp,pmul pp)
elements 2 : DO iel = 1, nels pp
utemp pp(:,iel) = MATMUL (km,pmul pp(:,iel))
END DO elements 2
CALL scatter (u _pp,utemp pp)
l-—_ pcg equation solution----————----"--"-"--"--————————————
up=DOT_PRODUCT P (r pp,d pp); alpha= up/ DOT_ PRODUCT P (p pp,u pp)
Xxnew pp = x pp + p pp* alpha ; r pp=r pp - u pp*alpha
d pp = diag precon pp*r pp; beta=DOT PRODUCT P (r pp,d pp)/up
p_pp=d_pp+p_pp*beta
CALL checon par94 (xnew pp, X pp,tol,converged,neq_pp)
IF (converged .OR. iters==limit) EXIT
END DO iterations
IF (numpe==1) THEN

WRITE (11, "' (A,I5)")"The number of iterations to convergence was ",iters
WRITE (11, ' (A,E12.4) ") "The central nodal displacement is :",xnew pp (1)
END IF

.
14 ParaFEM, CUG May 2004

Serial -> Parallel

= Call gather()

— Performs gather for all elements — increasing memory requirements and
increasing size of messages, but reducing number of messages

= Matmul

— For all elements. When element types all the same, stiffness matrix, km is
the same, so can perform matrix matrix. In a more general case, km is
replaced by storkm(nels_pp,:,:).

= Call scatter()
— Scatter for all elements

15 ParaFEM, CUG May 2004

Dot products, convergence criteria

etc.

= Different versions of PCG implemented

= Can reduce number of dot products and reduce impact of
convergence testing.

= Developments based on paper by Dongarra et al 2004

16 ParaFEM, CUG May 2004

Typical coding

= Main codes typically about 150 lines — serial or parallel.
= FEA library modules for:

— Geometry — for different element types
— Utility
= Parallel library modules for:
— Partitioning
— Gather/scatter

17 ParaFEM, CUG May 2004

Generic coding

= Changes made for parallel MPI version, particularly use of
gather and scatter routines, can be used in serial and
shared memory versions.

= Have run shared memory versions with OpenMP and on
MTA (reported at CUG 2003 — MTA particularly suitable for
minimising time in gather and scatter).

= Thus single generic main program may be used in any of
these environments — user maintains only one version,
selecting appropriate library code via f90 USE statement.

= Primary development is for MPI version.

18 ParaFEM, CUG May 2004

Performance

= Work started on Cray T3D/T3E

= Subsequently most development on SGI Origin/Altix and
IBM SP

= Peformance depends on good matrix-vector (or matrix-
matrix) and good communiations.

= QOriginal simplistic assumptions about partitioning etc not a
problem on best balanced systems (=> Cray!).

= Typically time for gather/scatter is similar to time for
matmult, but scales consistently. (Improved versions under
development.)

= As communication/computation ratios increases,
performance has become more of an issue.

19 ParaFEM, CUG May 2004

Vector Machines

= \What about vector machines — X1?

= Work is dominated by matrix-vector or matrix-matrix, which
should work well if vectors are long enough.

= 20 node brick elements generate vectors of length 60 — is
this enough?

= |s there enough computation?

20 ParaFEM, CUG May 2004

Single node performance

= Typical performance on scalar systems. Matrix
multiplication (60x60 x 60xnels) about 50% peak
performance.

= On X1 SSP:

Initial results - about 1% peak!

— Eventually discovered the problem is the calculation:
flops = 2.0*ndof*ndof*nels*iters
(used only in the calculation of a flop count to report performance) . The
answer should be about 230GB, but the value returned was about 4GB —
2.0 *maxint

— By ensuring real arithmetic is used, the correct figure is obtained giving
about 80% peak!

— Note that the matrix multiplication was performed with f90 MATMUL —
using BLAS resulted in lower performance (because MATMUL is inlined,
avoiding the overheads associated with calling subroutines).

I
21 ParaFEM, CUG May 2004

Matrix-matrix/matrix-vector

= Code does do repeated matrix-vector, but X1 recognised that this can
be replaced by matrix-matrix, so automatically did so. (Unless it can do
matrix-vector at 80% peak!) Not all other compilers do this. On one
system, had to use explicit dgemm call for best performance.

= Problems with identical elements (e.g. in biomechanics, use of CT
scans can generate voxel elements) can use matrix-matrix, thus
achieving very good performance.

= The other extreme with every element different results in matrix-vector
computations, potentially with little data re-use.

= Some simple test programs on the X1 indicated that matrix-vector runs
about half the performance of matrix-matrix, but this will be very
dependent on vector length.

= These provide upper and lower bounds for performance.

22 ParaFEM, CUG May 2004

Matrix-vector improvements

= Many problems will have some elements the same or at
least the same shape and property. This results in
duplication, which can be exploited:

23 ParaFEM, CUG May 2004

24

Reducing Element Stiffness Storage

Consider the full Magnetohydrodyamics stiffness matrix
— There are 13 unique submatrices for each element
— Each submatrix has 400 entries

Break up the element matrix vector computation, replacing

do iel=1,nels_pp
u=matmul(ke,x)
end do

=

do iel=1,nels_pp

u’'= matmul (C11,x")
end do
do iel=1,nels_pp

u’'= matmul (C55,x")
end do
do iel=1,nels_pp

u’'= matmul (C15,x")
end do

ParaFEM, CUG May 2004

25

% Peak Performance

50

40

30

20

10

Percentage Peak Performance

B o O

Matrix vector

ﬁ\m\%/ﬂ

Matrix vector + communication

50 100 150 200 250

Number of Processors

Origin 3800 ~300,000 unknowns

300

ParaFEM, CUG May 2004

Matrix-vector: Superelements

= Can combine elements to generate vectors of length 120,
180 etc.

= Additional computation, but less dense. Higher flop/s but
higher flops. Is it worth it?

= Not yet implemented.

26 ParaFEM, CUG May 2004

Matrix-vector: Coupling

= Coupling different physics at element level
— Navier Stokes - Pressure + velocity - vector of 68
— MHD - Pressure + velocity + magnetism - vector of 128
— Biot - Fluid + solid - vector of 68

27 ParaFEM, CUG May 2004

Gather/Scatter - scalar systems

= On scalar systems gather/scatter typically takes similar
time to matrix multiplication, thus lowering %peak by a
factor of 2.

= Looking into ways to reduce this, but it scales, so can still
achieve 25% peak across large systems.

28 ParaFEM, CUG May 2004

Gather/scatter on X1

= On X1, initially, time in matmul was 25s, and that in the
scatter routine 296s!

= However, the time in scatter is dominated by a loop with
indirect addressing which was therefore not vectorised.

= There is no recursion in this loop, so the IVDEP directive
can be used.

= Time in scatter drops to 34s.

= Still slightly higher percentage of total time than on other
systems.

= Uses MPI — currently not optimal on X1. Can try SHMEM
or CAF (John Levesque showed simple CAF code for
similar scatter).

29 ParaFEM, CUG May 2004

Linear solver — 12M equations

Total |lters mm mm mm mm/gs | mm/gs | mm/gs

secl sec sec GF %pk Sec GF % pk
32 298.0 |286.8 |121.5 |77 15% 127.0 |38 37%
64 161.4 |152.8 |61.6 152 4% | 75.1 68 33%
128 89.1 81.9 |30.5 |306 5% |31.9 129 31%
192 63.9 |56.7 |20.6 |453 74% | 30.1 184 30%

30

ParaFEM, CUG May 2004

31

Linear Solver — 12 M equations

%Peak

12M equations

—e— Matmul

—m Matmul/gs

32 4 128

Processors

192

ParaFEM, CUG May 2004

32

Linear solver — 0.75M equations

%peak

8 8 8 8 8 3 8 8

64000 elements

Q/‘\“ D)

—e¢— Matmul
— = Matmul/gs

——

16 32 64 128

Processors

ParaFEM, CUG May 2004

MSP Performance

= Matrix-matrix fine:
— 10GF (~80% peak)

= However gather/scatter takes similar time to SSP, so
overall, performance is much lower than on SSP.

= |Improvements in communication are key to good

performance on MSP.

— SHMEM of CAF may help, but other changes planned to minimise the
communication times likely to be most beneficial.

33 ParaFEM, CUG May 2004

Other Problem Types?

= Not yet run on X1.

= Given known information from running on other systems,
and results so far on X1, expect similar results.

34 ParaFEM, CUG May 2004

Developments

= Communications
— Approach adopted by Carey (Texas), uses element-by-element, duplicating

nodes on processors. This eliminates communications in gather and
communication in scatter is overlapped with computations.

= Provide alternative ‘components’:

35

Mesh partitioning - Par Metis etc
Preconditioners
Solvers

Algebraic multigrid (Adams, Livermore) — excellent performance on very
large problems and systems.

Visualisation integration
 Virtual prototyping project

ParaFEM, CUG May 2004

Conclusions

= The ParaFEM software is designed to provide engineers
with a framework for solving FEA problems in an HPC
environment.

= Previously implemented successfully on scalar MPP
systems.

= Easy to port to X1.

— Requires only the addition of a single compiler directive to obtain good
performance on SSP, at least for 20 node brick elements.

— Vector length is certainly an issue, particularly with simpler element types,
but there are ways in which this can be addressed.

= Improvements already planned to improve communications
in scalar version will help, particularly with MSP version.

= www.parafem.org.uk

36 ParaFEM, CUG May 2004

)
O
c -
o' SVE @ Manchester Computing
o O
-
Q c
£ 2
o =X
@ By World Leading Supercomputing
:I-) = Service, Support and Research
= O
= Bringing Science and
g o Supercomputers Together
O 5
c % WWWw.mahn.ac.uk/sve «
fZU o sve@man.ac.uk Lofa]
0 1
THE UNIVERSITY

of MANCHESTER

