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ABSTRACT: Traditionally  MPI  collective  operations  have  been  based  on  point-to-point
messages, with possible optimizations for system topologies and communication protocols.
The  Cray  X1  scatter/gather  hardware  and  shared  memory  mapping  features  allow  for
significantly  different   approaches  to  MPI  collectives  leading  to  substantial  performance
gains  over  standard  methods,  especially  for  short  message   lengths  and  higher  process
counts.   This paper describes some of  the algorithms used,  implementation features,  and
relevant performance data.
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1. Introduction

Almost all  message passing applications make use of
collective  communications  at  one  or  more  steps  in  their
operation.  In  some  cases,  the  performance  of  these
collective communication steps can be an important factor
in the overall scalability of a parallel application [1].  The
importance  of  collective  communication  operations  for
message  passing  style  applications  is  reflected  in  the
voluminous amount of literature on the subject.

The MPI standard [2] defines a number of frequently
used  collective  operations  including  broadcasts,  global
reductions, and all-to-all communication patterns.  Since its
adoption as a de facto standard for message passing parallel
applications,  a  number  of  computer  vendors  and  research
groups  have  optimized  these  operations  for  specific
computer architectures and interconnects.

Efforts  at  optimization  of  collective  communication
operations  for  some  of  the  first  MPI  implementations
focused  largely  on  mapping  point  to  point  send/recv
approaches efficiently to various mesh, hypercube, and torus
topologies [3]. As these types of systems were supplanted
by  clusters  of  workstations  and  SMPs,  more  effort  was
directed toward optimization of MPI for these topologies[4-
6].  On  these  types  of  systems,  efficient  MPI  collective
implementations typically divide operations into an on-host,
shared  memory  based  component,  and  a  point-to-point
based approach using a proprietary RDMA or TCP protocol
for the inter-host component of the  collective.

Some of the most recently reported investigations into
collective  communications  optimizations  have  focused  on
various OS-bypass networks for clusters of commodity one
to  four  way  SMP  servers.  These  include  Quadric's  MPI
implementation [7] and MPI over Infiniband [8].  Some of
the  largest  computer  systems  have  specialized  hardware

which MPI can use for certain types of collective operations.
The Earth Simulator(ES) MPI uses hardware support for its
barrier implementation [9]. For other collective operations,
the ES MPI is optimized along similar principles as those
used for clusters of SMPs.  The MPI for IBM BlueGene/L
will make use of dedicated networks for global sums and
barriers [10].

In this paper we describe ongoing work to improve the
performance of MPI collective operations on the CRAY X1
and  follow-on  systems.  Earlier  work  on  shared  memory
optimizations  for  MPI  collectives  for  X1  has  been
previously described [11].

The  rest  of  this  paper  is  organized  as  follows:   In
Section 2, we give some background on aspects of the X1
hardware and parallel job structure of importance to an MPI
implementation. In Section 3 we describe briefly some of
the initial optimization work done on X1 MPI, then proceed
to describe how these optimizations have been enhanced by
adopting algorithms that more efficiently utilize the vector
processor  units  and  network  bandwidth.  In  Section  4  we
describe  algorithms  for  specific  collective  operations  and
present  micro-benchmark  results  for  these  operations.  In
Section  5,  results  using  a  real  applications  are  presented.
Conclusions and future work are described in Section 6.

2. Background

X1 Hardware and OS Essentials

The  distributed,  shared  memory  architecture  of  the
CRAY  X1  has  a  number  of  features  important  to  the
implementation of efficient MPI collective operations.  

The X1 is  organized as  a  group of  nodes,  with each
node containing 16 memory controllers  (M-chip)  coupled
via a set of vector caches to four multistreaming processors
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(MSPs).   Each  MSP  consists  of  four  tightly  coupled
subprocessors (SSPs).  Each M-chip on a node is connected
by  two  1.6  GB/sec  ports  to  an  external  network.   This
network  connects  the  memory  controller  with  the
corresponding memory controller on each of the other nodes
of  the  system.  Pages  of  memory  are  striped  across  the
sixteen controllers in 32 byte (cacheline size) chunks.  Each
M-chip contains remote translation table (RTT) hardware to
efficiently  translate incoming virtual memory addresses to
physical  addresses.   The  RTT  eliminates  the  need  for
extensive  page  tables  for  processes  which  make  many
remote memory accesses [12].

MPI applications can be built to run one MPI process on
each MSP (MSP mode), or to run one MPI process on each
SSP (SSP mode).  

As with most distributed shared memory architectures,
memory on remote nodes is accessed via loads and stores
generated by the processor.  There is no need for OS-bypass
or system calls to move data between nodes.  Unlike most
other  contemporary  cache-coherent,  distributed  shared
memory  architectures,  only  local  memory  references  are
cacheable.  As will be shown in the next section, this type of
cache  coherency  matches  closely  the  requirements  for
efficient  shared  memory  collective  communication
operations.  In addition, vector load/store operations can be
given  a  non-cacheline  allocating  attribute  even  for  local,
cacheable memory.  This makes it  easier for the X1 MPI
implementation  to  avoid  cache  pollution  problems  that
occur with shared memory MPI implementations on some
cache coherent shared memory systems.

The X1 provides additional hardware support for shared
memory  communication  protocols  including  atomic
memory  operations  (AMO's)  and  memory  fencing
instructions (gsync).

In order to effectively use the X1 RTT hardware and
vector  processors,  parallel  applications  are  organized  as
application teams.  The virtual memory layout of processes
within an application team differs substantially from that of
a  standard  UNIX  process.   Although  each  process  has
private data, heap, and stack segments, these segments are
cross mapped into the address space of the other processes
within the team at regularly spaced intervals.  In addition to
these segments, the processes also share a symmetric heap
segment analogous to that supported on older CRAY MPP
platforms.   This virtual memory structure allows for  very
efficient  strided  vector  load/store  operations  across
processes in the team.   

The application team virtual memory layout also greatly
simplifies the design of MPI for X1.  There is no need for
shared memory buffers and the resulting buffer management
code, except for performance reasons.  There is also no need
to  worry  about  whether  or  not  a  target  virtual  memory
region in another process has been prepared for access by a
DMA device.  Processes merely need to exchange memory

pointers to access data from other processes.   These features
are used extensively in the optimization of MPI collectives.

3.  Improving  the Performance  of MPI
Collectives  on X1

The  X1  MPI  is  derived  from  the  SGI/CRAY  MPI
version for  SGI Origin clusters and CRAY PVP systems.
This implementation used cluster topology aware point-to-
point  algorithms  for  several  MPI  collective  operations,
retaining older MPICH algorithms for the remainder.  As a
first step to improving the performance on X1, the cluster
awareness  was  removed,  and  explicit  point-to-point  MPI
send/recvs  were  replaced  with  analogous  shared  memory
constructs  involving  pointer  exchanges  and  AMO's  for
synchronization.  This eliminated the substantial amount of
scalar  overhead  associated  with  MPI  send/receive
operations.  Significant improvements in performance were
observed  on  smaller  system configurations.  Unfortunately
some of these changes led to severe memory bank/network
contention problems on larger system configurations.  The
use  of  AMOs for  large  scale  synchronization  also  led  to
scalability issues on larger systems.  For certain operations,
the  aggregate  bandwidth  for  long  messages  was  also
relatively low.

Analysis of these performance problems indicated that
several strategies needed to be pursued, depending primarily
on the amount of data each process exchanged with every
other process in a collective operation. It is not atypical for
MPI collectives to use different point-to-point algorithms for
different size message lengths.  For example, MPICH2 uses
three different strategies for MPI_Alltoall depending on the
message size [13].

To maximize the reusability of this optimization work
in the event that it is found to be useful in other software,
the algorithmic improvements described in the next several
sections are being introduced into the X1 MPI software in a
way which does not require significant dependence on X1
MPI  specific  internal  data  structures.   One  internal  data
structure, the communicator data structure, did have to be
extended to include a pointer to a new data structure used by
the optimized collective routines.  This had to be done to
avoid the use of communicator attribute functions, which are
slow on  the  X1.  The new  collopt data  structure  contains
state information, a synchronization flag array, and a scratch
buffer  for  short  message  optimizations.  The  state
information  includes  a  phase  variable,  counters,  and  any
incomplete polling requirements arising from previous non-
blocking collectives like MPI_Bcast and MPI_Reduce.  The
state information and the double buffering method reduce
synchronization  requirements  for  the  short  message
algorithms from two or more barriers to at most one.  

CUG 2004 Proceedings 2



For user derived communicators, the collopt structure is
only allocated and initialized when a collective operation is
invoked using the derived communicator . At job startup the
collopt structure  for  the  MPI_COMM_WORLD
communicator is optimized. For multiple program, multiple
data (MPMD) MPI jobs, communicators are created which
span  each  individual  application.   In  creating  these
application  wide  communicators,  the  ranks  within
applications  are  ordered  based  on  the  value  returned  by
shmem_my_pe.   A  collopt data  structure  is  allocated  and
initialized  for  each  application  communicator.  When
possible, the data buffer and flag array are allocated out of
the  symmetric  heap,  thereby  allowing  for  constant  stride
vector  operations  in  some cases.  The  collopt structure  is
freed when the application invokes  MPI_Comm_free for a
communicator.

Short Message Optimizations

Optimization  of  collectives  involving  small  message
per process (≤64 bytes) proved to be the area requiring the
most significant algorithmic changes.  Work by applications
programmers using Co-Array Fortran (CAF) indicated the
type of algorithmic changes required [14].  Generally these
CAF algorithms recognize  that  the  point-to-point  type  of
message  passing  models  one  usually  uses  for  MPI
implementations are not appropriate for the X1 architecture
for these message size.  The RTT hardware allows the X1
vector  units  to  store   elements  across  many nodes of  the
system in one operation.  The vector units  also allow for
very efficient polling over long vectors of flag variables in a
way that does not generate excessive local memory traffic,
even  when  using  non-allocating  vector  loads  of  the  flag
variables.   These capabilities allow the MPI implementor to
recast many of the collectives as various combinations of
vector  polling  and  strided  vector  load/store  (or
gather/scatter) operations.  For short message transfers, the
data motion associated with a  collective operation can be
recast as loops, with an outer loop over message length, and
an inner loop over the number of ranks(or a subset thereof)
involved in the operation.

Figure 1.  Overhead for multiple vector stores followed
by a gsync and flag vector store across 128 MPI processes.

The performance of this type of strategy is illustrated in
Figure 1. The plot shows the overhead for one process to
execute differing numbers of strided vector stores (puts) of a
8 byte scalar quantity into the memories of all of the other
processes within a 128 process application team followed by
a  gsync and  a  succeeding  strided  vector  store  of  a  flag
quantity. This sequence of operations is the type required to
send  data  and  a  notification  that  data  is  ready  to  be
consumed.   The remarkable  thing to  note  here  is  that  by
using vector operations, one is able to send 80 bytes of data
to 128 other processes in under 6 usecs, a time more typical
of  the  overhead  for  a  single  point-to-point  message
exchange on most architectures.   The figure also shows the
results  when  using  non-strided  scatter  vector  stores.
Although not as fast,  the latency for the operation is  still
impressive.

Figure  2  shows  the  overhead  for  executing  a  single
strided vector store followed by a gsync and second strided
store as a function of application team size.  The important
thing  to  note  here  is  the  very  weak  dependence  of  the
latency on application team size.  It is only takes about 33%
more time to execute the operation across 240 processes as
4.

Figure 2. Overhead for a single vector store, followed
by a gsync and flag vector store as a function of number of
MPI  processes across which the store is executed.

These low latencies are only achieved if one keeps the
memory bank/network architecture of the machine in mind
when  laying  out  data  structures  to  support  this  type  of
operation.  Using the same strided vector store experiment,
Figure  3  compares  the  execution  time   with  and  without
padding of the data structure to accommodate the memory
bank layout.

For short messages, the collopt buffer space associated
with the MPI communicator is treated as a vector of length
equal to the number of ranks in the communicator.  Each
vector  element is  32 bytes in size to avoid memory bank
conflicts.   As  an  example,  an  alltoall  broadcast
(MPI_Allgather) of a 8 byte scalar quantity simply involves
at most two vector stores with a stride consisting of a rank
offset and a local offset:
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for(dpe=0;dpe<nranks­rank;dpe++) {

   base[4*dpe*vma_offset/8 +(rank+dpe)*4]=
scalar;

}

for(dpe=nranks­rank;dpe<nranks;dpe++) {

   base[4*dpe*vma_offset/8 +(rank­nranks+dpe)*4] =
scalar;

}

base is the address of the symmetric collopt buffer on rank
0  of  the  communicator.   The  vma_offset is  the  byte
offset between address spaces in the application team.  The
factor of 4 comes from the cacheline size (32 bytes) divided
by the sizeof(base) which is 8 in this case.  After the
vector stores, a barrier is invoked, followed by a copy of the
data  from the  collopt buffer  into  the  application  receiver
buffer (two vector operations).  Two vector operations are
used to allow all  process to concurrently execute optimal
memory  strides  across  the  buffers.   For  more  general
communicators, the vma_offset*dpe is replaced with a
table lookup since the collopt buffers are not symmetric for
these communicators.

Figure 3. Comparison of the overhead for multiple vector
store/gsync/flag stores with and without padding  to avoid
memory  bank  conflicts.   Measurements  were  made  for
vector store across 128 MPI processes.

We found that for collectives involving short message
exchanges,  strided/scatter stores(puts)  were more effective
than the corresponding vector load(get) operation.  Puts are
more effective at masking latency to remote memory.  Note
that the use of puts works well on X1 owing to its caching
policy and the large number (100s) of outstanding loads and
stores  allowable.   Remote  memory  is  not  cached,  but  is
directly  written  back  to  memory.   Were  remote  memory
cacheable, the result of a vector store  operation would be
many  exclusively  owned  cachelines  in  the  source
processor's cache, which would create severe memory hot
spot problems in  a globally cache coherent system as the
target processors attempted to change the cachelines' states
from exclusive to shared.  

The  MPI_Alltoall and  MPI_Allgather were optimized
for  short  messages  using this  two vector  store procedure.
MPI_Barrier, MPI_Bcast, MPI_Allreduce, and MPI_Reduce
were optimized using similar strategies. An internal version
of  the  barrier,  without  argument  checking and other  MPI
overhead  was  implemented  for  use  within  collectives.
Internal  versions  of  the  all-to-all  and  allgather  operations
were also implemented to allow for efficient  exchange of
pointers and other data for use with medium and long length
messages  for  MPI_Alltoall,  MPI_Allgather,
MPI_Allgatherv, and MPI_Alltoallv routines.

Medium and long message length optimizations

The  AMO  performance  bottleneck  that  sometimes
showed up for medium length data transfers was eliminated
by replacing  the  AMO synchronization  approach  with  an
efficient gather of pointers and any other data using either
the fast internal allgather or all-to-all mentioned above.  The
same approach is used for long messages.

For medium length messages, bandwidth was improved
by using vector stores rather than loads of the remote data
(put vs. get).  In addition, for MSP mode, explicit streaming
directives  were  used  to  stream  outer  loops  over  process
count when possible.

In the case of the MPI_Allreduce operation, algorithms
from MPICH2 were adopted. For the all-to-all operation, an
edgecolor algorithm was used to pair up processes.  These
algorithms will be discussed in Section 4.

Release strategy

In order to avoid disruption to the production version of
the X1 MPI (distributed as part of MPT 2.3), a strategy was
adopted  for  gradually  introducing  these  changes  into  the
MPI software.

An independent staging library (MPTDEV) is used for
initial development work.  This library implements only a
subset  of the MPI collectives,  invoking the corresponding
profiling  MPI  interface  function  when  necessary.  An
applications analyst or benchmarker only needs to link this
library in ahead of the standard MPI library to pick up the
optimized routines.  This simpler library is easier to analyze
from a performance perspective and easier to debug as no
changes are made to the production MPI library to which the
application  must  also  be  linked.   After  sufficient  testing
exposure,  changes  from the  staging  library  are  integrated
into the development MPI (MPT 2.4) tree.  After additional
testing by applications analysts and benchmarkers, selected
mods  are  being  pushed  back  into  the  current  MPT  2.3
production release.
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The  full  set  of  collective  optimizations  will  be
incorporated  into  the  MPT  2.4  release  scheduled  for  the
second half of 2004.  A subset of these optimizations are
being released in an upcoming MPT 2.3 update.

4. Specific MPI Collectives

MPI_Barrier
Although  explicit  barrier  operations  are  normally  not

necessary  in  MPI-1  send/recv  style  programs,  the  barrier
functionality is very important for internal use in some of
the  other  collective  optimizations.  In  addition  the  MPI-2
MPI_Win_fence operation can involve a barrier. For these
reasons,  the barrier function was the first target in the effort
to optimize MPI collectives.

Initial  investigations  showed  that  the  performance  of
AMO's  under  contention  would  require  either  fairly  deep
fan-in trees (log4), or a dissemination style barrier (log2).
The barrier algorithm used in the current MPT 2.3 release
uses the former type of tree barrier [11].  Neither of these
approaches  appeared  capable  of  achieving  a  barrier  time
under 10 microseconds  on 500 MSPs.

Given the performance improvements seen with some
CAF optimizations and results from specialized algorithms
developed by one of us which worked up to 64 processes,
two algorithms were selected for further investigation.  The
first is a vectorized form of a tree barrier described in detail
by Mellor-Crummey and Scott [15]. This MCS tree barrier
does not rely on atomic memory operations.  For the scalar
processor based systems on which the authors did most of
their measurements, small 2 or 4 way fan-in/fan-out ratios
worked best.  For the X1 hardware, it was found that a 64
way fan-in/fan-out was optimal over a wide range MPI job
sizes.  The key to its good performance on X1 is the high
rate at which a vector of local values can be polled by the
master process(es), and the efficiency of the strided vector
store operation (the release phase of this barrier algorithm)
described in Section 3. A second approach (JS tree barrier)
uses an identical fan-in procedure for the first level of the
tree, but in the second level of the tree each master process
broadcasts a release flag to every other master process in an
all-to-all broadcast pattern like that described in Section 3.
The first approach involves less code, can work for arbitrary
process  counts,  and  is  not  as  sensitive  to  whether  or  not
symmetric  arrays  can  be  used.   The  second  approach
involves fewer trips through the memory network. It would
need to be recoded as a recursive algorithm for more than
two levels for machine configurations with more than 4096
processors.

Figure  4  compares  the  performance  of  MPI_Barrier
using the  MCS tree  algorithm (MPT 2.4)  with  the  AMO
based barrier  employed in MPT 2.3.  Results for the JS tree
barrier used within the MPTDEV library are also shown.  It
can be seen that  in MSP mode, the newer algorithms are

somewhat faster than the older AMO based approach.  The
JS tree barrier performs best for most process counts.  Both
the MCS and JS tree barriers take less than 10 microseconds
on 500 MSPs.

Figure  5  compares  the  performance of  the  MCS tree
algorithm (MPT 2.4) with the AMO based barrier in MPT
2.3 in SSP mode.  At higher process counts, the MCS tree
barrier  results  are  much  better.   Work  is  ongoing  to
determine  an  optimal  choice  of  tree  barrier  algorithm  to
incorporate in MPT 2.4.

Figure 4.  MPI_Barrier overhead comparison for MPT
2.3 and MPT 2.4 using the MSP mode. 

Figure 5.  MPI_Barrier overhead comparison for MPT
2.3 and MPT 2.4 using the SSP mode. 

MPI_Allreduce
The  MPI_Allreduce function  in  the  MPT  2.3  MPI

library  is  implemented  as  a  reduction  followed  by  a
broadcast.  This approach does not scale very well largely
due to network hot spots in the broadcast phase.

The new approach to the allreduce operation depends
on the amount of data per process.  For scalar quantities and
short vector lengths (32 bytes or less) an algorithm adopted
from some CAF optimization  techniques  is  employed  for
predefined reduction operations.   The CAF algorithm was
modified  to  work  in  stages  to  allow  for  scaling  to  high
process counts.  The ranks in a communicator are grouped
into blocks of 64.  The first rank in each block is designated
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a master rank.  In the first stage of the reduction operation,
all processes within each block store the contents of their
source  buffer  into  a  location  in  the  collopt buffer  of  the
master  rank  for  their  group.   Each  then  does  a  gsync
followed by a scalar store of a flag value into a collopt flag
buffer of the master rank process.  The master rank does a
vector poll on the flag array waiting for the other ranks to
indicate their contributions to the sum have been stored. The
master rank then does a vector reduction operation on the
values (depending on the reduction operation specified by
the application).  If there are 64 or fewer processors in the
communicator,  the master rank then does a  strided vector
store  of  the  global  sum  across  the  other  ranks  in  the
communicator, using locations in the ranks'  collopt buffers.
It then executes a similar vector store of a flag value into the
ranks' collopt flag buffers.  The other ranks, which had been
spin waiting to see an update of their respective flags, then
copy  the  resulting  sum  from  the  collopt buffer  into  the
application receive buffer and return to the application.  If
more than 64 processes are involved in the operation, the
master ranks in each of the groups participate in a second,
inner series of operations analogous to those for the single
level case.

This  approach  yields  much  better  results  than  the
reduction/broadcast  method  used  in  the  MPT 2.3  library.
Figure 6 compares the overhead for doing a global sum on a
single  MPI_DOUBLE  quantity  using  the  current
reduce/broadcast  method  verses  the  approach  described
above.  For most process counts, the improvement is about
an order of magnitude.

Figure  6.   MPI_Allreduce  overhead  comparison  for
MPT 2.3 and MPT 2.4 using MSP mode. 

For  vector  quantities  longer  than  32  bytes  but  fewer
than 128 elements, a more familiar binary tree approach is
taken.  The  collopt  buffer in this case is organized into  n
segments, where n is the number of phases in the reduction
process.  This scales as log2 of the number of ranks in the
communicator.   Using  the  collopt buffers  rather  than  the
application  buffers  directly  reduces  the  amount  of
synchronization  required  for  these  relatively  short  vector
lengths.  In  theory,  this  method is  more efficient  than the
reduce/broadcast algorithm by a factor of 2.

For long vector length reductions a check is made to see
if the vector length divided by the number of ranks in the
communicator is less than or equal to 64 elements.  If this is
the case, a binary tree method is again used, but this time
employing  the  application  buffers  directly.  If  the  vector
length is greater,  a reduce-scatter-gather algorithm [ 3,16] is
employed.  This is the algorithm employed in MPICH2 for
longer vectors. It has significantly better scaling properties
for long messages and high process counts.

Figure  7  compares  the  overhead  for  the  allreduce
operation  for  different  vector  lengths  using   the  current
reduce/broadcast algorithm in the MPT 2.3 library  with the
new allreduce operation currently in the MPTDEV library.
The times were measured for a 128 MSP job executing an
MPI_SUM on a vector of MPI_DOUBLE's.

Figure  7.   MPI_Allreduce  overhead  comparison  for
MPT 2.3 and MPTDEV for different vector lengths.  Tests
were run on 128 processors (MSP mode).

The drop in time from 5000 to 10000 elements for the
MPTDEV library results owes to the switch from the binary
tree to the reduce-scatter-gather method. The cutover criteria
will be investigated further during integration of the method
into the MPT 2.4 software.

User defined reduction operations employ the medium
length binary tree  approach.

MPI_Allgather/MPI_Alltoall

The MPI_Allgather and MPI_Alltoall functions involve
a  complete  exchange  of  data  between  the  ranks  in  a
communicator.  For the all-to-all exchange, different data is
sent to every rank while for the allgather exchange, the same
data is sent to all ranks.

The  approach  taken  in  the  MPT  2.3  library   is
essentially the same as that used in the original SGI/CRAY
MPI  library,  but  with  send/recv  operations  replaced  by
AMO based synchronization and exchange of pointers and
datatypes.   For  short  messages,  application  profiles  have
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shown that  this AMO based synchronization can result  in
considerable network contention.

The new approach uses three algorithms depending on
the amount of data to be exchanged with the other ranks.
For messages between 0 and 64 bytes in size (depending on
the amount of buffer space allowed per communicator and
the  number  of  ranks  in  the  communicator)  each  process
executes a series of strided puts of the source data into the
collopt buffers  of  the other  processes  similar  to  the code
shown in section 3. All processes then execute an internal
barrier.  The data is then copied from the collopt buffer into
the application receive buffer.

Figure  8  compares  the  performance  of  the  MPT  2.3
implementation of  MPI_Alltoall with that in the MPT 2.4
library for a short message transfer (8 bytes) as a function of
process count.  Results are shown for an MSP mode job.

Figure 8. MPI_Alltoall short message (one MPI_LONG
per process) overhead comparison for MPT 2.3 and MPT
2.4

For  medium  length  messages,  an  internal  allgather
routine is used to collect pointers to the user receive buffers.
This  also  serves  as  an  effective  barrier  operation.   Each
process then executes an outer loop over processes and an
inner  loop  over  message  length  storing  the  appropriate
segment of the application send buffer into the output buffer
of the remote process. For the MSP mode library,  streaming
directives are used to insure that the outer loop is streamed
and the inner loop over message length is vectorized.

For very long length messages it  is more effective to
stream over the message length rather than communicator
ranks, so bcopy is employed. A put rather than get model is
still  used  as  this  allows  for  higher  aggregate  bandwidth.
Processes are paired using an edge coloring algorithm [17].

Figure  9  compares  the  performance  of  the  MPT  2.3
implementation for MPI_Alltoall with that in the MPTDEV
library for various message lengths at a fixed 48 MSP size
job.   The  message  length  here  is  the  amount  of  data
exchanged with every other processor.

Results for MPI_Allgather are similar.

Figure 9. MPI_Alltoall overhead comparison for MPT
2.3 and MPT 2.4 for different message sizes.  This test was
run on 48 processors in MSP mode.

The aggregate bandwidth with the new algorithm using
a put rather than get copy is substantially better than in the
MPT  2.3  library  -  2  GB/sec/process  compared  to  900
MB/sec/process.  Work is ongoing to see if this aggregate
bandwidth can be further improved using hand coded CAL
copy routines optimized for remote stores.

MPI_Alltoallv/MPI_Allgatherv

MPI_Alltoallv and  MPI_Allgatherv functions  are
generalizations  of  the  MPI_Alltoall and  MPI_Allgather
functions.   With  alltoallv  and  allgatherv,  each  rank  can
send/recv different amounts of data to/from other ranks.  In
addition, arbitrary offsets in terms of the receive data types
can be used to specify at which points to  receive data from
each  rank  in  the  application  receive  buffer.   For
MPI_Alltoallv, arbitrary displacements into the send buffer
in terms of the send data type can also be specified.

In the MPT 2.3 library, AMO synchronization methods
are  used  to  gather  pointers  and  data  types  in  a  manner
similar  to  that  done for  MPI_Alltoall and  MPI_Allgather.
For shorter message lengths, this synchronization approach
generates  excessive  network contention.   Longer  message
size transfers exhibit rather low bandwidths owing to a get
rather than put paradigm.

The  new  approach  uses  a  similar  algorithm  to  that
employed  in  the  current  library,  except  that  a  optimized
internal all-to-all algorithm is used to exchange pointers to
the application receive buffers and data types. Also, a put
rather than get approach is taken for moving the user data.
For the MSP version of the library streaming directives are
used  to  enable  streaming  over  target  rank,  which   is
especially helpful for medium length messages.

To measure the performance of alltoallv and allgatherv,
a test was devised where for a given median message length,
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messages sizes were adjusted randomly to be between 0 and
twice the median message length. Figure 10 compares the
performance of  the MPT 2.3 version of  MPI_Alltoallv in
MSP  mode  with  the  results  from  the  MPTDEV  staging
library.  The test was run on 48 msps.

Figure  10.  MPI_Alltoallv  overhead  comparison  for
MPT 2.3 and MPT 2.4 for different median message sizes.
This test was run on 48 processors in MSP mode.  

MPI_Bcast

The broadcast algorithm in the MPT 2.3  library uses a
simple scheme in which the root process notifies all of the
other processes in the communicator when data is ready to
be  received.   The  non-root  processes  then  copy  the  data
directly from the root's buffer into their respective receive
buffer.   This  is  an  efficient  algorithm  for  small  system
configurations, but exhibits very poor scaling behavior for
small  and  large  messages  on  larger  systems  owing  to
network contention.

The broadcast routine has been rewritten to use one of
two  algorithms  depending  on  the  message  size.   For
messages between 0 and 64 bytes in size (depending on the
amount of buffer space allowed per communicator and the
number  of  ranks  in  the  communicator)  the  root  process
executes a series of strided puts of the source data into the
collopt  buffers  of  the  other  processes  similar  to  the  code
shown  in  Section  3.   It  then  updates  a  status  flag  via  a
similar vector store. After accepting the data, the non-root
processes update a flag in the root process' data structure.
Some  state  information  is  recorded  in  the  collopt  data
structure of the root process to indicate that a vector poll of
its flags for the previous collective operation must be done
in the next collective call.

Figure  11  compares  the  overhead  for  broadcast  of  a
single MPI_DOUBLE quantity for the MPT 2.3 and MPT
2.4 versions of MPI as a function of number of MSPs.  

Figure  11.  MPI_Bcast  short  message  (one  MPI_LONG)
overhead comparison for MPT 2.3 and MPT 2.4.  The test
was run in MSP mode.

For  long  message  lengths  the  original  SGI/CRAY
point-to-point  binary  tree  was  reintroduced  for  broadcast
operations involving 32 or more ranks.  This removed the
network  bottleneck  exhibited  by  the  current  broadcast
algorithm. Figure 12 shows the overhead for broadcast of
32000  bytes  as  a  function  of  MSPs  involved  in  the
broadcast.  Even with the overhead associated with point-to-
point messages, it is much more efficient to use a binary tree
operation  as  opposed  to  the  original  algorithm.   Medium
length messages will be handled using a buffering technique
similar to that described  for medium length MPI_Allreduce
operations.

Figure  12.  MPI_Bcast  long  message  (32000  bytes)
overhead comparison for MPT 2.3 and MPTDEV.  The test
was run in MSP mode.

A  scatter/allgather is under investigation for use with long
messages.

Other Collective Operations

The remaining MPI collective operations tend to be less
commonly used than those previously discussed.  Some are
essentially specializations of other operations:  MPI_Scatter
is  a  variant  of  MPI_Bcast,  MPI_Gather(v) is  an
MPI_Allgather(v) but with only one rank receiving the data,
and  MPI_Reduce is a reduction to a root rank rather than
every rank in the communicator
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The  MPI_Reduce function  is  optimized  similarly  to
MPI_Allreduce.  The  MPI_Scatter(v) and  MPI_Gather(v)
will be optimized as specialized versions of the algorithms
described previously for  MPI_Bcast and MPI_Allgather(v).
The MPI-2 MPI_Alltoallw function will be optimized along
lines  similar  to  MPI_Alltoallv.   However,  since  the main
purpose of this routine is to allow for the use of derived data
types,  its  performance  will  be  constrained  by  the
performance of derived types in X1 MPI.  

5. Application  Results

The  scalability of MPI applications depends on many
factors,  so  improvements  to  the  performance  of  the  MPI
implementation for an architecture may not necessarily lead
to  an  improvement  in  the  performance  of  a  particular
application.  Application developers porting and optimizing
MPI applications for the X1 are encouraged to make use of
available  profiling  tools  including  PAT  and  more  MPI
specific tools to isolate performance and scaling bottlenecks.
In  this  section,  results  are  shown  for  a  couple  of  real
applications for which problems in the MPI library limited
application performance.

POP 
The POP ocean model [18] includes a barotropic solver

which  is  very  sensitive  to  the  performance  of  global
reduction operations for certain problem sizes.  The standard
benchmark problem (320x384x40 grid) scales poorly on the
X1  using  the  MPT 2.3  release.   Figure  13  compares  the
performance of the application's  MPI solver using MPT 2.3,
a pre-release MPT 2.4, and a version of the code using a
CAF  -based  solver.   The  performance  of  the  solver  is
measured in simulated years per day of computer time.  The
MPT 2.4 and CAF  versions are using essentially the same
algorithm  up to 64 processes. 

Figure 13.  Comparison of the performance of the POP
barotropic  solver  using  MPI  in  MPT  2.3,  MPT  2.4,  and
using CAF.  Times are in simulation years/compute day. 

Analysis showed that the CAF version benefits significantly
from  the  compiler's  ability  to  inline  the  CAF  global
reduction routine into the solver.

Community Atmospheric Model

The Community Atmospheric Model(CAM)  does not
show  the  same  sensitivity  to  a  particular  MPI  collective
operation  as  POP.   However,  profiling  indicated  that  it
makes frequent use of  MPI_Alltoallv and  MPI_Allgatherv
with medium length messages that were too short to stream
effectively using the MPT 2.3 software.  CAF has been used
to  eliminate  this  bottleneck.   The  MPTDEV  library  was
linked in to the pure MPI verson of the application to see if
the  improvements  to  the  MPI  algorithms  could  achieve
similar results.  Figure 14 compares the performance of the
application using MPT 2.3, MPTDEV, and CAF.   Times
are those reported by the application for the simulated years
assuming a 30 day run.   The CAF  and MPTDEV versions
yield similar results, which at the highest process counts are
about 7% better than for MPT 2.3.

 Figure 14.  Comparison of  the performance of  CAM
using MPI from MPT 2.3, MPTDEV, and CAF.  Times are
in simulation years assuming a 30 compute day run.

6. Conclusions

The  CRAY  X1  architecture  is  well  suited  to  the
implementation of efficient MPI collective communications,
although non-standard algorithms need to be employed for
short  messages  to  make  effective  use  of  the  vector
processors,  memory/interconnect  organization,  and  the
application team virtual  memory layout.   The next  major
release  of  CRAY's  MPT package (MPT 2.4)  will  feature
MPI  collective  functions  which  incorporate  optimizations
based on these short message algorithms, as well as more
efficient traditional algorithms for longer message lengths.
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