
Optimizing MPI Collectives for X1

Howard Pritchard, Jeff Nicholson, and Jim Schwarzmeier, Cray Inc.

ABSTRACT: Traditionally MPI collective operations have been based on point-to-point
messages, with possible optimizations for system topologies and communication protocols.
The Cray X1 scatter/gather hardware and shared memory mapping features allow for
significantly different approaches to MPI collectives leading to substantial performance
gains over standard methods, especially for short message lengths and higher process
counts. This paper describes some of the algorithms used, implementation features, and
relevant performance data.
KEYWORDS: MPI, MPI collectives, CAF, POP, CAM

1. Introduction

Almost all message passing applications make use of
collective communications at one or more steps in their
operation. In some cases, the performance of these
collective communication steps can be an important factor
in the overall scalability of a parallel application [1]. The
importance of collective communication operations for
message passing style applications is reflected in the
voluminous amount of literature on the subject.

The MPI standard [2] defines a number of frequently
used collective operations including broadcasts, global
reductions, and all-to-all communication patterns. Since its
adoption as a de facto standard for message passing parallel
applications, a number of computer vendors and research
groups have optimized these operations for specific
computer architectures and interconnects.

Efforts at optimization of collective communication
operations for some of the first MPI implementations
focused largely on mapping point to point send/recv
approaches efficiently to various mesh, hypercube, and torus
topologies [3]. As these types of systems were supplanted
by clusters of workstations and SMPs, more effort was
directed toward optimization of MPI for these topologies[4-
6]. On these types of systems, efficient MPI collective
implementations typically divide operations into an on-host,
shared memory based component, and a point-to-point
based approach using a proprietary RDMA or TCP protocol
for the inter-host component of the collective.

Some of the most recently reported investigations into
collective communications optimizations have focused on
various OS-bypass networks for clusters of commodity one
to four way SMP servers. These include Quadric's MPI
implementation [7] and MPI over Infiniband [8]. Some of
the largest computer systems have specialized hardware

which MPI can use for certain types of collective operations.
The Earth Simulator(ES) MPI uses hardware support for its
barrier implementation [9]. For other collective operations,
the ES MPI is optimized along similar principles as those
used for clusters of SMPs. The MPI for IBM BlueGene/L
will make use of dedicated networks for global sums and
barriers [10].

In this paper we describe ongoing work to improve the
performance of MPI collective operations on the CRAY X1
and follow-on systems. Earlier work on shared memory
optimizations for MPI collectives for X1 has been
previously described [11].

The rest of this paper is organized as follows: In
Section 2, we give some background on aspects of the X1
hardware and parallel job structure of importance to an MPI
implementation. In Section 3 we describe briefly some of
the initial optimization work done on X1 MPI, then proceed
to describe how these optimizations have been enhanced by
adopting algorithms that more efficiently utilize the vector
processor units and network bandwidth. In Section 4 we
describe algorithms for specific collective operations and
present micro-benchmark results for these operations. In
Section 5, results using a real applications are presented.
Conclusions and future work are described in Section 6.

2. Background

X1 Hardware and OS Essentials

The distributed, shared memory architecture of the
CRAY X1 has a number of features important to the
implementation of efficient MPI collective operations.

The X1 is organized as a group of nodes, with each
node containing 16 memory controllers (M-chip) coupled
via a set of vector caches to four multistreaming processors

CUG 2004 Proceedings 1

(MSPs). Each MSP consists of four tightly coupled
subprocessors (SSPs). Each M-chip on a node is connected
by two 1.6 GB/sec ports to an external network. This
network connects the memory controller with the
corresponding memory controller on each of the other nodes
of the system. Pages of memory are striped across the
sixteen controllers in 32 byte (cacheline size) chunks. Each
M-chip contains remote translation table (RTT) hardware to
efficiently translate incoming virtual memory addresses to
physical addresses. The RTT eliminates the need for
extensive page tables for processes which make many
remote memory accesses [12].

MPI applications can be built to run one MPI process on
each MSP (MSP mode), or to run one MPI process on each
SSP (SSP mode).

As with most distributed shared memory architectures,
memory on remote nodes is accessed via loads and stores
generated by the processor. There is no need for OS-bypass
or system calls to move data between nodes. Unlike most
other contemporary cache-coherent, distributed shared
memory architectures, only local memory references are
cacheable. As will be shown in the next section, this type of
cache coherency matches closely the requirements for
efficient shared memory collective communication
operations. In addition, vector load/store operations can be
given a non-cacheline allocating attribute even for local,
cacheable memory. This makes it easier for the X1 MPI
implementation to avoid cache pollution problems that
occur with shared memory MPI implementations on some
cache coherent shared memory systems.

The X1 provides additional hardware support for shared
memory communication protocols including atomic
memory operations (AMO's) and memory fencing
instructions (gsync).

In order to effectively use the X1 RTT hardware and
vector processors, parallel applications are organized as
application teams. The virtual memory layout of processes
within an application team differs substantially from that of
a standard UNIX process. Although each process has
private data, heap, and stack segments, these segments are
cross mapped into the address space of the other processes
within the team at regularly spaced intervals. In addition to
these segments, the processes also share a symmetric heap
segment analogous to that supported on older CRAY MPP
platforms. This virtual memory structure allows for very
efficient strided vector load/store operations across
processes in the team.

The application team virtual memory layout also greatly
simplifies the design of MPI for X1. There is no need for
shared memory buffers and the resulting buffer management
code, except for performance reasons. There is also no need
to worry about whether or not a target virtual memory
region in another process has been prepared for access by a
DMA device. Processes merely need to exchange memory

pointers to access data from other processes. These features
are used extensively in the optimization of MPI collectives.

3. Improving the Performance of MPI
Collectives on X1

The X1 MPI is derived from the SGI/CRAY MPI
version for SGI Origin clusters and CRAY PVP systems.
This implementation used cluster topology aware point-to-
point algorithms for several MPI collective operations,
retaining older MPICH algorithms for the remainder. As a
first step to improving the performance on X1, the cluster
awareness was removed, and explicit point-to-point MPI
send/recvs were replaced with analogous shared memory
constructs involving pointer exchanges and AMO's for
synchronization. This eliminated the substantial amount of
scalar overhead associated with MPI send/receive
operations. Significant improvements in performance were
observed on smaller system configurations. Unfortunately
some of these changes led to severe memory bank/network
contention problems on larger system configurations. The
use of AMOs for large scale synchronization also led to
scalability issues on larger systems. For certain operations,
the aggregate bandwidth for long messages was also
relatively low.

Analysis of these performance problems indicated that
several strategies needed to be pursued, depending primarily
on the amount of data each process exchanged with every
other process in a collective operation. It is not atypical for
MPI collectives to use different point-to-point algorithms for
different size message lengths. For example, MPICH2 uses
three different strategies for MPI_Alltoall depending on the
message size [13].

To maximize the reusability of this optimization work
in the event that it is found to be useful in other software,
the algorithmic improvements described in the next several
sections are being introduced into the X1 MPI software in a
way which does not require significant dependence on X1
MPI specific internal data structures. One internal data
structure, the communicator data structure, did have to be
extended to include a pointer to a new data structure used by
the optimized collective routines. This had to be done to
avoid the use of communicator attribute functions, which are
slow on the X1. The new collopt data structure contains
state information, a synchronization flag array, and a scratch
buffer for short message optimizations. The state
information includes a phase variable, counters, and any
incomplete polling requirements arising from previous non-
blocking collectives like MPI_Bcast and MPI_Reduce. The
state information and the double buffering method reduce
synchronization requirements for the short message
algorithms from two or more barriers to at most one.

CUG 2004 Proceedings 2

For user derived communicators, the collopt structure is
only allocated and initialized when a collective operation is
invoked using the derived communicator . At job startup the
collopt structure for the MPI_COMM_WORLD
communicator is optimized. For multiple program, multiple
data (MPMD) MPI jobs, communicators are created which
span each individual application. In creating these
application wide communicators, the ranks within
applications are ordered based on the value returned by
shmem_my_pe. A collopt data structure is allocated and
initialized for each application communicator. When
possible, the data buffer and flag array are allocated out of
the symmetric heap, thereby allowing for constant stride
vector operations in some cases. The collopt structure is
freed when the application invokes MPI_Comm_free for a
communicator.

Short Message Optimizations

Optimization of collectives involving small message
per process (≤64 bytes) proved to be the area requiring the
most significant algorithmic changes. Work by applications
programmers using Co-Array Fortran (CAF) indicated the
type of algorithmic changes required [14]. Generally these
CAF algorithms recognize that the point-to-point type of
message passing models one usually uses for MPI
implementations are not appropriate for the X1 architecture
for these message size. The RTT hardware allows the X1
vector units to store elements across many nodes of the
system in one operation. The vector units also allow for
very efficient polling over long vectors of flag variables in a
way that does not generate excessive local memory traffic,
even when using non-allocating vector loads of the flag
variables. These capabilities allow the MPI implementor to
recast many of the collectives as various combinations of
vector polling and strided vector load/store (or
gather/scatter) operations. For short message transfers, the
data motion associated with a collective operation can be
recast as loops, with an outer loop over message length, and
an inner loop over the number of ranks(or a subset thereof)
involved in the operation.

Figure 1. Overhead for multiple vector stores followed
by a gsync and flag vector store across 128 MPI processes.

The performance of this type of strategy is illustrated in
Figure 1. The plot shows the overhead for one process to
execute differing numbers of strided vector stores (puts) of a
8 byte scalar quantity into the memories of all of the other
processes within a 128 process application team followed by
a gsync and a succeeding strided vector store of a flag
quantity. This sequence of operations is the type required to
send data and a notification that data is ready to be
consumed. The remarkable thing to note here is that by
using vector operations, one is able to send 80 bytes of data
to 128 other processes in under 6 usecs, a time more typical
of the overhead for a single point-to-point message
exchange on most architectures. The figure also shows the
results when using non-strided scatter vector stores.
Although not as fast, the latency for the operation is still
impressive.

Figure 2 shows the overhead for executing a single
strided vector store followed by a gsync and second strided
store as a function of application team size. The important
thing to note here is the very weak dependence of the
latency on application team size. It is only takes about 33%
more time to execute the operation across 240 processes as
4.

Figure 2. Overhead for a single vector store, followed
by a gsync and flag vector store as a function of number of
MPI processes across which the store is executed.

These low latencies are only achieved if one keeps the
memory bank/network architecture of the machine in mind
when laying out data structures to support this type of
operation. Using the same strided vector store experiment,
Figure 3 compares the execution time with and without
padding of the data structure to accommodate the memory
bank layout.

For short messages, the collopt buffer space associated
with the MPI communicator is treated as a vector of length
equal to the number of ranks in the communicator. Each
vector element is 32 bytes in size to avoid memory bank
conflicts. As an example, an alltoall broadcast
(MPI_Allgather) of a 8 byte scalar quantity simply involves
at most two vector stores with a stride consisting of a rank
offset and a local offset:

CUG 2004 Proceedings 3

for(dpe=0;dpe<nranks­rank;dpe++) {

 base[4*dpe*vma_offset/8 +(rank+dpe)*4]=
scalar;

}

for(dpe=nranks­rank;dpe<nranks;dpe++) {

 base[4*dpe*vma_offset/8 +(rank­nranks+dpe)*4] =
scalar;

}

base is the address of the symmetric collopt buffer on rank
0 of the communicator. The vma_offset is the byte
offset between address spaces in the application team. The
factor of 4 comes from the cacheline size (32 bytes) divided
by the sizeof(base) which is 8 in this case. After the
vector stores, a barrier is invoked, followed by a copy of the
data from the collopt buffer into the application receiver
buffer (two vector operations). Two vector operations are
used to allow all process to concurrently execute optimal
memory strides across the buffers. For more general
communicators, the vma_offset*dpe is replaced with a
table lookup since the collopt buffers are not symmetric for
these communicators.

Figure 3. Comparison of the overhead for multiple vector
store/gsync/flag stores with and without padding to avoid
memory bank conflicts. Measurements were made for
vector store across 128 MPI processes.

We found that for collectives involving short message
exchanges, strided/scatter stores(puts) were more effective
than the corresponding vector load(get) operation. Puts are
more effective at masking latency to remote memory. Note
that the use of puts works well on X1 owing to its caching
policy and the large number (100s) of outstanding loads and
stores allowable. Remote memory is not cached, but is
directly written back to memory. Were remote memory
cacheable, the result of a vector store operation would be
many exclusively owned cachelines in the source
processor's cache, which would create severe memory hot
spot problems in a globally cache coherent system as the
target processors attempted to change the cachelines' states
from exclusive to shared.

The MPI_Alltoall and MPI_Allgather were optimized
for short messages using this two vector store procedure.
MPI_Barrier, MPI_Bcast, MPI_Allreduce, and MPI_Reduce
were optimized using similar strategies. An internal version
of the barrier, without argument checking and other MPI
overhead was implemented for use within collectives.
Internal versions of the all-to-all and allgather operations
were also implemented to allow for efficient exchange of
pointers and other data for use with medium and long length
messages for MPI_Alltoall, MPI_Allgather,
MPI_Allgatherv, and MPI_Alltoallv routines.

Medium and long message length optimizations

The AMO performance bottleneck that sometimes
showed up for medium length data transfers was eliminated
by replacing the AMO synchronization approach with an
efficient gather of pointers and any other data using either
the fast internal allgather or all-to-all mentioned above. The
same approach is used for long messages.

For medium length messages, bandwidth was improved
by using vector stores rather than loads of the remote data
(put vs. get). In addition, for MSP mode, explicit streaming
directives were used to stream outer loops over process
count when possible.

In the case of the MPI_Allreduce operation, algorithms
from MPICH2 were adopted. For the all-to-all operation, an
edgecolor algorithm was used to pair up processes. These
algorithms will be discussed in Section 4.

Release strategy

In order to avoid disruption to the production version of
the X1 MPI (distributed as part of MPT 2.3), a strategy was
adopted for gradually introducing these changes into the
MPI software.

An independent staging library (MPTDEV) is used for
initial development work. This library implements only a
subset of the MPI collectives, invoking the corresponding
profiling MPI interface function when necessary. An
applications analyst or benchmarker only needs to link this
library in ahead of the standard MPI library to pick up the
optimized routines. This simpler library is easier to analyze
from a performance perspective and easier to debug as no
changes are made to the production MPI library to which the
application must also be linked. After sufficient testing
exposure, changes from the staging library are integrated
into the development MPI (MPT 2.4) tree. After additional
testing by applications analysts and benchmarkers, selected
mods are being pushed back into the current MPT 2.3
production release.

CUG 2004 Proceedings 4

The full set of collective optimizations will be
incorporated into the MPT 2.4 release scheduled for the
second half of 2004. A subset of these optimizations are
being released in an upcoming MPT 2.3 update.

4. Specific MPI Collectives

MPI_Barrier
Although explicit barrier operations are normally not

necessary in MPI-1 send/recv style programs, the barrier
functionality is very important for internal use in some of
the other collective optimizations. In addition the MPI-2
MPI_Win_fence operation can involve a barrier. For these
reasons, the barrier function was the first target in the effort
to optimize MPI collectives.

Initial investigations showed that the performance of
AMO's under contention would require either fairly deep
fan-in trees (log4), or a dissemination style barrier (log2).
The barrier algorithm used in the current MPT 2.3 release
uses the former type of tree barrier [11]. Neither of these
approaches appeared capable of achieving a barrier time
under 10 microseconds on 500 MSPs.

Given the performance improvements seen with some
CAF optimizations and results from specialized algorithms
developed by one of us which worked up to 64 processes,
two algorithms were selected for further investigation. The
first is a vectorized form of a tree barrier described in detail
by Mellor-Crummey and Scott [15]. This MCS tree barrier
does not rely on atomic memory operations. For the scalar
processor based systems on which the authors did most of
their measurements, small 2 or 4 way fan-in/fan-out ratios
worked best. For the X1 hardware, it was found that a 64
way fan-in/fan-out was optimal over a wide range MPI job
sizes. The key to its good performance on X1 is the high
rate at which a vector of local values can be polled by the
master process(es), and the efficiency of the strided vector
store operation (the release phase of this barrier algorithm)
described in Section 3. A second approach (JS tree barrier)
uses an identical fan-in procedure for the first level of the
tree, but in the second level of the tree each master process
broadcasts a release flag to every other master process in an
all-to-all broadcast pattern like that described in Section 3.
The first approach involves less code, can work for arbitrary
process counts, and is not as sensitive to whether or not
symmetric arrays can be used. The second approach
involves fewer trips through the memory network. It would
need to be recoded as a recursive algorithm for more than
two levels for machine configurations with more than 4096
processors.

Figure 4 compares the performance of MPI_Barrier
using the MCS tree algorithm (MPT 2.4) with the AMO
based barrier employed in MPT 2.3. Results for the JS tree
barrier used within the MPTDEV library are also shown. It
can be seen that in MSP mode, the newer algorithms are

somewhat faster than the older AMO based approach. The
JS tree barrier performs best for most process counts. Both
the MCS and JS tree barriers take less than 10 microseconds
on 500 MSPs.

Figure 5 compares the performance of the MCS tree
algorithm (MPT 2.4) with the AMO based barrier in MPT
2.3 in SSP mode. At higher process counts, the MCS tree
barrier results are much better. Work is ongoing to
determine an optimal choice of tree barrier algorithm to
incorporate in MPT 2.4.

Figure 4. MPI_Barrier overhead comparison for MPT
2.3 and MPT 2.4 using the MSP mode.

Figure 5. MPI_Barrier overhead comparison for MPT
2.3 and MPT 2.4 using the SSP mode.

MPI_Allreduce
The MPI_Allreduce function in the MPT 2.3 MPI

library is implemented as a reduction followed by a
broadcast. This approach does not scale very well largely
due to network hot spots in the broadcast phase.

The new approach to the allreduce operation depends
on the amount of data per process. For scalar quantities and
short vector lengths (32 bytes or less) an algorithm adopted
from some CAF optimization techniques is employed for
predefined reduction operations. The CAF algorithm was
modified to work in stages to allow for scaling to high
process counts. The ranks in a communicator are grouped
into blocks of 64. The first rank in each block is designated

CUG 2004 Proceedings 5

a master rank. In the first stage of the reduction operation,
all processes within each block store the contents of their
source buffer into a location in the collopt buffer of the
master rank for their group. Each then does a gsync
followed by a scalar store of a flag value into a collopt flag
buffer of the master rank process. The master rank does a
vector poll on the flag array waiting for the other ranks to
indicate their contributions to the sum have been stored. The
master rank then does a vector reduction operation on the
values (depending on the reduction operation specified by
the application). If there are 64 or fewer processors in the
communicator, the master rank then does a strided vector
store of the global sum across the other ranks in the
communicator, using locations in the ranks' collopt buffers.
It then executes a similar vector store of a flag value into the
ranks' collopt flag buffers. The other ranks, which had been
spin waiting to see an update of their respective flags, then
copy the resulting sum from the collopt buffer into the
application receive buffer and return to the application. If
more than 64 processes are involved in the operation, the
master ranks in each of the groups participate in a second,
inner series of operations analogous to those for the single
level case.

This approach yields much better results than the
reduction/broadcast method used in the MPT 2.3 library.
Figure 6 compares the overhead for doing a global sum on a
single MPI_DOUBLE quantity using the current
reduce/broadcast method verses the approach described
above. For most process counts, the improvement is about
an order of magnitude.

Figure 6. MPI_Allreduce overhead comparison for
MPT 2.3 and MPT 2.4 using MSP mode.

For vector quantities longer than 32 bytes but fewer
than 128 elements, a more familiar binary tree approach is
taken. The collopt buffer in this case is organized into n
segments, where n is the number of phases in the reduction
process. This scales as log2 of the number of ranks in the
communicator. Using the collopt buffers rather than the
application buffers directly reduces the amount of
synchronization required for these relatively short vector
lengths. In theory, this method is more efficient than the
reduce/broadcast algorithm by a factor of 2.

For long vector length reductions a check is made to see
if the vector length divided by the number of ranks in the
communicator is less than or equal to 64 elements. If this is
the case, a binary tree method is again used, but this time
employing the application buffers directly. If the vector
length is greater, a reduce-scatter-gather algorithm [3,16] is
employed. This is the algorithm employed in MPICH2 for
longer vectors. It has significantly better scaling properties
for long messages and high process counts.

Figure 7 compares the overhead for the allreduce
operation for different vector lengths using the current
reduce/broadcast algorithm in the MPT 2.3 library with the
new allreduce operation currently in the MPTDEV library.
The times were measured for a 128 MSP job executing an
MPI_SUM on a vector of MPI_DOUBLE's.

Figure 7. MPI_Allreduce overhead comparison for
MPT 2.3 and MPTDEV for different vector lengths. Tests
were run on 128 processors (MSP mode).

The drop in time from 5000 to 10000 elements for the
MPTDEV library results owes to the switch from the binary
tree to the reduce-scatter-gather method. The cutover criteria
will be investigated further during integration of the method
into the MPT 2.4 software.

User defined reduction operations employ the medium
length binary tree approach.

MPI_Allgather/MPI_Alltoall

The MPI_Allgather and MPI_Alltoall functions involve
a complete exchange of data between the ranks in a
communicator. For the all-to-all exchange, different data is
sent to every rank while for the allgather exchange, the same
data is sent to all ranks.

The approach taken in the MPT 2.3 library is
essentially the same as that used in the original SGI/CRAY
MPI library, but with send/recv operations replaced by
AMO based synchronization and exchange of pointers and
datatypes. For short messages, application profiles have

CUG 2004 Proceedings 6

shown that this AMO based synchronization can result in
considerable network contention.

The new approach uses three algorithms depending on
the amount of data to be exchanged with the other ranks.
For messages between 0 and 64 bytes in size (depending on
the amount of buffer space allowed per communicator and
the number of ranks in the communicator) each process
executes a series of strided puts of the source data into the
collopt buffers of the other processes similar to the code
shown in section 3. All processes then execute an internal
barrier. The data is then copied from the collopt buffer into
the application receive buffer.

Figure 8 compares the performance of the MPT 2.3
implementation of MPI_Alltoall with that in the MPT 2.4
library for a short message transfer (8 bytes) as a function of
process count. Results are shown for an MSP mode job.

Figure 8. MPI_Alltoall short message (one MPI_LONG
per process) overhead comparison for MPT 2.3 and MPT
2.4

For medium length messages, an internal allgather
routine is used to collect pointers to the user receive buffers.
This also serves as an effective barrier operation. Each
process then executes an outer loop over processes and an
inner loop over message length storing the appropriate
segment of the application send buffer into the output buffer
of the remote process. For the MSP mode library, streaming
directives are used to insure that the outer loop is streamed
and the inner loop over message length is vectorized.

For very long length messages it is more effective to
stream over the message length rather than communicator
ranks, so bcopy is employed. A put rather than get model is
still used as this allows for higher aggregate bandwidth.
Processes are paired using an edge coloring algorithm [17].

Figure 9 compares the performance of the MPT 2.3
implementation for MPI_Alltoall with that in the MPTDEV
library for various message lengths at a fixed 48 MSP size
job. The message length here is the amount of data
exchanged with every other processor.

Results for MPI_Allgather are similar.

Figure 9. MPI_Alltoall overhead comparison for MPT
2.3 and MPT 2.4 for different message sizes. This test was
run on 48 processors in MSP mode.

The aggregate bandwidth with the new algorithm using
a put rather than get copy is substantially better than in the
MPT 2.3 library - 2 GB/sec/process compared to 900
MB/sec/process. Work is ongoing to see if this aggregate
bandwidth can be further improved using hand coded CAL
copy routines optimized for remote stores.

MPI_Alltoallv/MPI_Allgatherv

MPI_Alltoallv and MPI_Allgatherv functions are
generalizations of the MPI_Alltoall and MPI_Allgather
functions. With alltoallv and allgatherv, each rank can
send/recv different amounts of data to/from other ranks. In
addition, arbitrary offsets in terms of the receive data types
can be used to specify at which points to receive data from
each rank in the application receive buffer. For
MPI_Alltoallv, arbitrary displacements into the send buffer
in terms of the send data type can also be specified.

In the MPT 2.3 library, AMO synchronization methods
are used to gather pointers and data types in a manner
similar to that done for MPI_Alltoall and MPI_Allgather.
For shorter message lengths, this synchronization approach
generates excessive network contention. Longer message
size transfers exhibit rather low bandwidths owing to a get
rather than put paradigm.

The new approach uses a similar algorithm to that
employed in the current library, except that a optimized
internal all-to-all algorithm is used to exchange pointers to
the application receive buffers and data types. Also, a put
rather than get approach is taken for moving the user data.
For the MSP version of the library streaming directives are
used to enable streaming over target rank, which is
especially helpful for medium length messages.

To measure the performance of alltoallv and allgatherv,
a test was devised where for a given median message length,

CUG 2004 Proceedings 7

messages sizes were adjusted randomly to be between 0 and
twice the median message length. Figure 10 compares the
performance of the MPT 2.3 version of MPI_Alltoallv in
MSP mode with the results from the MPTDEV staging
library. The test was run on 48 msps.

Figure 10. MPI_Alltoallv overhead comparison for
MPT 2.3 and MPT 2.4 for different median message sizes.
This test was run on 48 processors in MSP mode.

MPI_Bcast

The broadcast algorithm in the MPT 2.3 library uses a
simple scheme in which the root process notifies all of the
other processes in the communicator when data is ready to
be received. The non-root processes then copy the data
directly from the root's buffer into their respective receive
buffer. This is an efficient algorithm for small system
configurations, but exhibits very poor scaling behavior for
small and large messages on larger systems owing to
network contention.

The broadcast routine has been rewritten to use one of
two algorithms depending on the message size. For
messages between 0 and 64 bytes in size (depending on the
amount of buffer space allowed per communicator and the
number of ranks in the communicator) the root process
executes a series of strided puts of the source data into the
collopt buffers of the other processes similar to the code
shown in Section 3. It then updates a status flag via a
similar vector store. After accepting the data, the non-root
processes update a flag in the root process' data structure.
Some state information is recorded in the collopt data
structure of the root process to indicate that a vector poll of
its flags for the previous collective operation must be done
in the next collective call.

Figure 11 compares the overhead for broadcast of a
single MPI_DOUBLE quantity for the MPT 2.3 and MPT
2.4 versions of MPI as a function of number of MSPs.

Figure 11. MPI_Bcast short message (one MPI_LONG)
overhead comparison for MPT 2.3 and MPT 2.4. The test
was run in MSP mode.

For long message lengths the original SGI/CRAY
point-to-point binary tree was reintroduced for broadcast
operations involving 32 or more ranks. This removed the
network bottleneck exhibited by the current broadcast
algorithm. Figure 12 shows the overhead for broadcast of
32000 bytes as a function of MSPs involved in the
broadcast. Even with the overhead associated with point-to-
point messages, it is much more efficient to use a binary tree
operation as opposed to the original algorithm. Medium
length messages will be handled using a buffering technique
similar to that described for medium length MPI_Allreduce
operations.

Figure 12. MPI_Bcast long message (32000 bytes)
overhead comparison for MPT 2.3 and MPTDEV. The test
was run in MSP mode.

A scatter/allgather is under investigation for use with long
messages.

Other Collective Operations

The remaining MPI collective operations tend to be less
commonly used than those previously discussed. Some are
essentially specializations of other operations: MPI_Scatter
is a variant of MPI_Bcast, MPI_Gather(v) is an
MPI_Allgather(v) but with only one rank receiving the data,
and MPI_Reduce is a reduction to a root rank rather than
every rank in the communicator

CUG 2004 Proceedings 8

The MPI_Reduce function is optimized similarly to
MPI_Allreduce. The MPI_Scatter(v) and MPI_Gather(v)
will be optimized as specialized versions of the algorithms
described previously for MPI_Bcast and MPI_Allgather(v).
The MPI-2 MPI_Alltoallw function will be optimized along
lines similar to MPI_Alltoallv. However, since the main
purpose of this routine is to allow for the use of derived data
types, its performance will be constrained by the
performance of derived types in X1 MPI.

5. Application Results

The scalability of MPI applications depends on many
factors, so improvements to the performance of the MPI
implementation for an architecture may not necessarily lead
to an improvement in the performance of a particular
application. Application developers porting and optimizing
MPI applications for the X1 are encouraged to make use of
available profiling tools including PAT and more MPI
specific tools to isolate performance and scaling bottlenecks.
In this section, results are shown for a couple of real
applications for which problems in the MPI library limited
application performance.

POP
The POP ocean model [18] includes a barotropic solver

which is very sensitive to the performance of global
reduction operations for certain problem sizes. The standard
benchmark problem (320x384x40 grid) scales poorly on the
X1 using the MPT 2.3 release. Figure 13 compares the
performance of the application's MPI solver using MPT 2.3,
a pre-release MPT 2.4, and a version of the code using a
CAF -based solver. The performance of the solver is
measured in simulated years per day of computer time. The
MPT 2.4 and CAF versions are using essentially the same
algorithm up to 64 processes.

Figure 13. Comparison of the performance of the POP
barotropic solver using MPI in MPT 2.3, MPT 2.4, and
using CAF. Times are in simulation years/compute day.

Analysis showed that the CAF version benefits significantly
from the compiler's ability to inline the CAF global
reduction routine into the solver.

Community Atmospheric Model

The Community Atmospheric Model(CAM) does not
show the same sensitivity to a particular MPI collective
operation as POP. However, profiling indicated that it
makes frequent use of MPI_Alltoallv and MPI_Allgatherv
with medium length messages that were too short to stream
effectively using the MPT 2.3 software. CAF has been used
to eliminate this bottleneck. The MPTDEV library was
linked in to the pure MPI verson of the application to see if
the improvements to the MPI algorithms could achieve
similar results. Figure 14 compares the performance of the
application using MPT 2.3, MPTDEV, and CAF. Times
are those reported by the application for the simulated years
assuming a 30 day run. The CAF and MPTDEV versions
yield similar results, which at the highest process counts are
about 7% better than for MPT 2.3.

 Figure 14. Comparison of the performance of CAM
using MPI from MPT 2.3, MPTDEV, and CAF. Times are
in simulation years assuming a 30 compute day run.

6. Conclusions

The CRAY X1 architecture is well suited to the
implementation of efficient MPI collective communications,
although non-standard algorithms need to be employed for
short messages to make effective use of the vector
processors, memory/interconnect organization, and the
application team virtual memory layout. The next major
release of CRAY's MPT package (MPT 2.4) will feature
MPI collective functions which incorporate optimizations
based on these short message algorithms, as well as more
efficient traditional algorithms for longer message lengths.

Acknowledgements

The authors wish to thank Steve Scott for help with the
barrier algorithm and John Levesque for help with some
CAF kernels. Mark Pagel assisted in providing timing data
for the POP application.

CUG 2004 Proceedings 9

About the Authors

Howard Pritchard is a software engineer in the MPT
group with Cray Inc. He can be reached at
howardp@cray.com. Jeff Nicholson is a software engineer
in the Programming Environment group at Ciray. He can be
reached at jmn@cray.com. Jim Schwarzmeier works on
performance optimization and as an interface between the
hardware and software organizations. He can be reached at
jads@cray.com.

References

[1] J. S. Vetter and F. Mueller. Communication
characteristics of large scale scientific applications for
contemporary cluster architectures. Int't Parallel and
Distributed Processing Symposium (IPDPS'02), April 2002.

[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra. MPI – The Complete Reference, vol. 1, The MPI
Core, MIT Press, 2nd edition, 1998.

[3] M. Barnett, L. Shuler, S. Gupta, D. Payne, R. van de
Geijn, and J. Watts. Building a high-performance collective
communication library. Proceedings of Supercomputing
1994, pp. 107-116.

[4] S. Sistare, R. van de Vaart, and E. Low. Optimization
of MPI collectives on clusters of large-scale SMP's.
Proceedings of Supercomputing 1999.

[5] S. Sistare and C. Jackson. Ultra-high perfomance
communication with MPI and the Sunfire link interconnect.
Proceedings of Supercomputing 2002.

[6] K. Feind. SGI message passing status and plans. CUG
Summit 2001.

[7] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie.
Hardware and software-based collective communication on
the quadrics network. Proceedings of the 2001 IEEE
International Symposium on Network Computing and
Applications (NCA 2001) Cambridge, Massachusetts,
October 8-10,2001.
http://www.c3.lanl.gov/~fabrizio/papers/nca01.pdf

[8] R. Gupta, P. Balaji, D. Panda, and J. Nieplocha.
Efficient collective operations using remote memory
operations on VIA-based clusters. Int'l Parallel and
Distributed Processing Symposium (IPDPS'03), April 2003.

[9] M. Golebiewski, H. Ritzdorf, J. Traeff, and F.
Zimmermann. The MPI/SX implementation of MPI for
NEC's SX-6 and other NEC platforms. NEC Research and
Develop., Vol. 44(1), pp. 69-73, January 2003.

[10] G. Almasi, et al. MPI on BlueGene/L: designing an
efficient general purpose messaging solution for a large
cellular system. Proceedings of the 10th European
PVM/MPI Users' Group Conference, Venice, Italy,
September 2003.

[11] J. Nicholson and T. Goozen. Cray X1 MPI
implementation. CUG Summit 2003 Proceedings.

[12] J. Schwarzmeier. Cray X1 architecture and hardware
overview. CUG Summit Proceedings 2003.

[13] W. Gropp and E. Lusk. MPICH2: A high performance
portable implementation of MPI, Clusterworld 2004.
 http://www.clusterworld.com/CWCE2004/William_Gropp_
presentation.pdf

[14] J. Levesque. The Cray X1: balanced supercomputers.
CUG Summit 2003.

[15] J. H. Mellor-Crummey, and M. L. Scott. Algorithms
for scalable synchronization on shared memory
multiprocessors. ACM Trans. Computer Systems. Vol. 9
(1), pp. 21-65. 1991.

[16] R. Rabenseifner. A new optimized MPI reduce
algorithm. High-Performance Computing-Center, Univ. of
Stuttgart, Nov. 1997.
http://www.hlrs.de/mpi/myreduce.html.

[17] A. T. C. Tam and C. Wang. Efficient scheduling of
complete exchange on clusters. The ISCA 13th
International Conference on Parallel and Distributed
Computing Systems (PDCS-2000), August 2000.

[18] R. D. Smith, J. K. Dukowicz, and R. C. Malone.
Parallel ocean general circulation modeling. Physica D, 60,
pp. 38-61, 1992.

CUG 2004 Proceedings 10

