
CascadeCascade

Burton Smith
Cray Inc.

Burton Smith
Cray Inc.

The DARPA HPCS Program

 DARPA’s High Productivity Computer Systems
program has three central objectives:
0 Improve HPC system productivity
0 Improve HPC programmer productivity
0 Improve system robustness (reliability and security)

 Three phases are planned:
0 Phase 1 (7/02–7/03): Define a system concept

 Cray, HP, IBM, SGI, Sun
0 Phase 2 (7/03–7/06): Prepare a development plan

 Cray, IBM, Sun
0 Phase 3 (7/06–7/10): Develop a system

 Two awardees

Our approach to HPCS

 High system productivity
0 Implement very high global bandwidth
0 Use that bandwidth (the “wires”) well
0 Provide configurability to match user needs

 High human productivity and portability
0 Support a mixed UMA/NUMA programming model
0 Deliver strong compiler and runtime support
0 Pursue higher level programming languages

 System robustness
0 Virtualize all resources
0 Make all resources dynamically reconfigurable
0 Use introspection to detect bugs or intrusion

Bandwidth is expensive

 High global system bandwidth is a “good thing”
0 It determines performance for many problems
0 It also makes improved programmability possible

 Sadly, connection costs badly trail Moore’s law
0 Packages, circuit boards, wires, optical fibers…
0 Most of hardware cost is connection cost

 Cray builds systems with high global bandwidth
0 This strongly influences most of what we do

 Cray needs to stay competitive
0 We must make bandwidth cost less
0 We must use bandwidth wisely

 These ideas motivate much of Cascade’s architecture

Making bandwidth cost less

 Tune bandwidth (∴ cost) to match customer needs
 Use the cheapest link technology that fits each bill

0 Optical or electrical
 Make data rates as fast as the technology permits

0 Spending transistors in this cause is a bargain
 Design routers that use all the network links well

0 Randomized non-minimal routing, for example
 Use efficient network topologies

0 High degree routers

Network Topology

 If network link load is well balanced, node injection
bandwidth B times average distance d (in hops) is
bounded by link bandwidth β times node degree Δ

 Cost/node is proportional to β times Δ
0 Signaling rate and package pin count determine it

 Increasing the degree Δ lowers the average distance d
0 β can be lowered to maintain (or even improve) cost
0 B will increase as d decreases

 Conclusion: trading high node degree for link bandwidth
can yield better injection bandwidth, latency, and cost

Using bandwidth wisely

 Implement shared memory (UMA/NUMA hybrid)
0 Eliminate overhead to enable small messages

 Tolerate memory latency
0 CC-NUMA wastes bandwidth moving data around
0 Use vectors and multithreading instead

 Exploit temporal locality in “heavyweight” processors
0 Compiler-directed data cache
0 Architectural support for streaming

 Exploit spatial locality in “lightweight” processors
0 Threads migrate to follow the spatial locality

 Use other types of locality whenever possible
0 e.g. atomic memory operations

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

A locale building block

Heavyweight Processor
vector, streaming,

multithreaded

Compiler-directed
data cache

Network
router

To other locales

Locale
interconnect

Compiler-directed data cache

 The compiler often knows if data are safely cacheable,
i.e. are temporarily private or temporarily constant

 It can tell the hardware what data to cache and when
to flush or simply invalidate it
0 Dead values as well as constants are invalidated

 Unnecessary coherence traffic is eliminated
 Latency and network bandwidth demand are reduced
 Threads within a processor can communicate and

synchronize within cache to exploit streaming locality
 The cache becomes a much more general tool for

exploiting many forms of temporal locality

Lightweight threads in memory

 Lightweight threads in the memory can exploit spatial
locality by migrating to memory they refer to
0 Some remote references just block the thread
0 Others cause migration to the remote memory

 Memory is block-hashed to provide a compromise
between spatial locality and reference distribution

 Processor-in-memory (PIM) technology is an ideal
implementation vehicle for this idea

 Threads are spawned by sending parcels to memory
from either heavyweight or other lightweight threads
0 Spawning and migration overheads are minimal
0 In-memory operations are handled specially

 Generally, the compiler packages temporally local loops
for heavy threads and the rest for light ones

int nrows, rowp[];
val_idx_pair a[];
double b[], c[];
for (int i = 0; i<nrows; i++) {
 double sum = 0.0;
 for(int k = rowp[i]; k < rowp[i+1]; k++){
 sum += a[k].val*b[a[k].idx];
 }
 c[i]=sum;
}
The data layout:
 rowp[i] rowp[i+1]
a[k].val: . . . ai,15 ai,42 ai,53 . . .
a[k].idx: . . . 15 42 53 . . .

Sparse matrix-vector product

Lightweight threads on SparseMV

 There are three memory references for every two flops
0 Two memory references are local and one isn’t
0 There are 2 flops per “global” memory reference
0 (Dense) inner product is the same if one or both

vectors is unit stride
 The thread context required for this loop comprises:

0 The program counter (the “method”)
0 Exception flags, etc. (perhaps packed with the PC)
0 The pointer to the vector of value-index pairs a[]
0 A limit for loop control, set to &rowp[i+1]
0 Two pointers to the vectors of doubles b[]and c[]
0 The double accumulator sum
0 A few temporaries, e.g. for b[a[k].idx]

Productive programming

 Matlab lets scientists be productive programmers
0 Execution performance is marginal at best
0 Manual translation to Fortran is the typical fix

 We are developing Chapel, a programming language
aimed at both programmability and performance

 Its key features:
0 Interprocedural polymorphic type inference
0 Locality abstraction via first-class domains
0 Explicit parallel operations over domains
0 Implicit parallelism packaging and optimization
0 Automatic thread and memory management
0 Open-source implementation

 We will also support mixed-legacy-language programs
0 Fortran, C++, MPI, shmem, coarray languages

NAS CG conj_grad() in Chapel

function conj_grad(A, X): {
 const cgitmax = 25;

 var Z = 0.0;
 var R = X;
 var P = R;
 var rho = sum R**2;

 for cgit in (1..cgitmax) {
 var Q = sum(dim=2) (A*P);

 var alpha = rho / sum (P*Q);
 Z += alpha*P;
 R -= alpha*Q;

 var rho0 = rho;
 rho = sum R**2;
 var beta = rho / rho0;
 P = R + beta*P;
 }
 R = sum(dim=2) (A*Z);
 var rnorm = sqrt(sum (X-R)**2);

 return (Z, rnorm);
}

Parameter types elided
(inferred from callsite)

Function return type elided
(inferred from return statement)

Built-in array reductions

Sequential iteration over
an anonymous domain

Partial array reductions

Promotion of scalar operators,
values, and functions

Support for tuples

Operate on sparse arrays
as though dense,

and independently of
implementing data

structures

Fortran+MPI = 173-288 lines (1265 tokens)
Chapel = 20 lines (150 tokens)

Global view ⇒
processors not exposed in
computation, array sizes

Separation of concerns ⇒
locale views, domain/array
distributions & alignments,
and sparse data structures
are expressed elsewhereComposable parallelism ⇒

this (parallel) function
could be called from a

parallel task (which in turn
could be called from

another…)

Local variable types elided
(inferred from initializer, uses)

Whole-array operations ⇒
data parallel implementation

A few more Cascade tasks

 Operating system
0 Scalability, robustness, utility

 System infrastructure
0 RAS system, power, cooling

 Interconnect implementation
0 Router design, network topology

 Productivity assessment
0 Metrics, modeling, prediction, applications

 Implementation technology
0 Interconnect, chip packaging, power, cooling

 Debugging
0 Correctness, performance

 Marketing
0 Costs to develop and manufacture, sales outlook

Cascade collaborators

 Cray Inc.
0 Burton Smith, David Callahan, Steve Scott, . . .

 Caltech/JPL
0 Thomas Sterling, Hans Zima, Larry Bergman, . . .

 Notre Dame
0 Peter Kogge, Jay Brockman, . . .

 Stanford
0 Bill Dally, Christos Kozyrakis, . . .

Our experience base

The Cray team has experience in these technologies:
 Latency-tolerant vector NUMA systems
 Latency-tolerant multithreaded UMA systems
 Processor-in-memory technology
 High bandwidth interconnection networks
 High-productivity compiler technology
 Whole-program, incremental compilation
 Run-time systems for fine-grain synchronization
 Scalable, highly productive operating systems
 Supercomputer system integration

Conclusions

 HPCS matches Cray business objectives well
 We and our collaborators have expertise in the

technological directions we intend to pursue
 We are confident of a successful outcome

