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Introduction 

 Large volume sequence comparison is of great importance in the current post-

genomic and proteomic eras. Much of the importance stems from the need to assign 

function of a large number of genes or proteins identified from EST and genomic 

sequencing or proteomics projects. A necessary first step to assign a characteristic 

function of interested genes is the need to identify the expression pattern of the genes or 

proteins at a specific tissue or under a certain condition. The serial analysis of gene 

expression (SAGE) method accomplishes this task employing very large numbers of 

sequence comparisons to identify most of the expressed genes in the cells and to 

determine their expression levels quantitatively. The fact that very large numbers of 

sequences are involved in the comparison, that at least one of the comparative domains is 

short, and the need to identify both near and perfect matches make SAGE analysis an 

excellent method to benefit from a customized comparison application. 

 

The SAGE Method  

The serial analysis of gene expression (SAGE) method is a highly popular and 

comprehensive gene expression profiling method. Originally developed for studies of 

cancer and employing tags 14 nucleotides in length [Velculescu et al 1995], the SAGE 

method has found favorable application in the research of other organisms [Saha et al 

2002; Chen et al 2002]. The SAGE method involves the identification and isolation of 

characteristic marker subsequences, generally concentrated in the 3' end of the region, 
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which are associated with individual genes. The size of the SAGE sequence or tag is 

generally compact, involving between 10 and 30 nucleotides to uniquely characterize the 

specific marker. Acting as a fingerprint of expression activity, the SAGE tags provide 

qualitative insight into cellular processes as well as quantitative measurement based on 

the sampled volume of tags isolated experimentally. The SAGE method has been 

exploited in many instances as a method for genome annotation [Fizames et al 2004]. 

 

 In this particular application, the SAGE method has been applied to research 

involving rice and the rice pathogen Magnaporthe grisea that causes the rice blast disease 

and negatively impacts the productivity of this important cereal crop. Two rice species, 

the indica species [Yu 2002] (adapted to tropical climates) and the japonica species [Goff 

2002] (a variety adapted for temperate climates) were studied by looking at response of 

the species to attack by rice blast. Rice serves as an excellent prototypical cereal plant for 

study, with its relatively compact (450 million nucleotide) genome, genome synteny 

among cereals, and ease of genetic studies and transformations.  The combined 

availability of the sequenced rice genome and the availability of the sequenced 

Magnaporthe fungus provide the necessary tools to investigate host-pathogen 

interactions. In the investigation that is the subject of this paper, the RL-SAGE method 

employing tags 21 nucleotides in size [Gowda et al 2004] was employed. This RL-SAGE 

method, not only provides in-depth expression pattern of all genes, but also provides 

early insight into novel genes.  

 

Computational Demands for Rice SAGE Analysis 

The SAGE method requires use of large numbers of identifying tags to provide 

the diagnostic and quantitative power. Rapid searching is imperative to keep job 

completion time to a minimum. Analysis of the cDNA libraries regularly generates 

libraries of tens of thousands of unique tags that must be compared against the available 

genome, cDNA and expressed sequence tag (EST) sequences available publicly. The 

publicly available information was obtained from multiple sources, TIGR, KOME and 

independent rice genome projects. In excess of 55,000 EST, chromosomal and cDNA 
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rice Magnaporthe sequences and 600,000 SAGE tags were analyzed in the full research 

study, including validation in known models and analysis of experimentally derived tags 

for control, resistant and susceptible plants. 

 An important added complication in the analysis is the fact that DNA sequencing 

is not a perfected process, occasionally leading to mis-assignment of nucleotide identity 

for elements in either the laboratory isolated SAGE tags or the target genome, cDNA, and 

EST information. Consequently, the algorithm used for the SAGE analysis must be able 

to take into account these sequencing errors, providing information on candidate matches, 

even when a single or double nucleotide sequencing error would be present. 

 As mentioned previously, the number of comparisons required for an exhaustive 

analysis is significant. In the current study, in excess of 6.2 million virtual tags were 

isolated from sequence information for comparison to the 93,802 unique tags.  Standard 

BLAST techniques, the de facto standard for inexact sequence matching, are not feasible 

for comparison efforts on this order.  

 Typically, the target sequences are much longer than the SAGE tag itself, which 

qualifies widely used search techniques (e.g. BLAST) for the comparison engine in this 

effort. However, the short size of the tags, combined with the need to explicitly allow for 

multiple nucleotide errors within each tag limits the true effectiveness of BLAST as a 

solution. A significant amount of unnecessary processing would be added to impose the 

required constraints, an intolerable situation with the volume of sequence comparisons 

required. 

 

Computational Implementation 

 A new application suite was developed to optimize the SAGE specific search 

processing for this research project. The core comparison engine, SAGESPY was 

developed with significant input from the Wang research group regarding the specific 

application capabilities. This core application uses as input a file of SAGE tags, a file of 

target sequences which the SAGE tags will search, and a small control file to guide the 

comparison and selection of output. Both input sequence files utilize the relatively 

compact and widely accepted FASTA format for representing sequence information. The 
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program creates output files that separate matched and unmatched tags and targets. 

Additionally, the program provides an XML file containing details of matched tags and 

targets, essentially, the intersection of the tag and target datasets. 

 The core application was developed with the CBL and PCBL libraries, primarily 

due to the availability of the cb_searchn() primitive which provided a high-speed near 

exact comparison method required for the analysis. The additional routine cb_compress() 

was employed to prepare the data for comparison with cb_searchn(). These libraries 

proved an efficient means to code and develop the application in early prototype stage. 

 The high-velocity comparison engine has been developed in Fortran and employs 

the OpenMP standard  (http://www.openmp.org) to enable parallelism on shared memory 

computer architectures. The choice of Fortran for the implementation was driven by three 

factors, 1) the natural affinity of the CBL for a Fortran application; and 2) the need for 

efficient access to multi-dimensional arrays involved in the analysis; and 3) the generally 

more effective support for OpenMP parallelism in Fortran programming environments. 

Fortran 90 support for dynamic memory allocation was additionally critical for enabling 

throughput in a batched managed environment as exists at OSC. 

 The core application is supported by Java-based applications developed to 

perform necessary preprocessing efforts to extract virtual tags for comparison, identify 

non-redundant tag sets, and to conduct post-processing analysis of the data to 

characterize locality of the matching tags in the gene and to prepare for database 

importation. 

Performance Results – Success, Bottlenecks and Breakthroughs 

 The OpenMP parallel implementation proved very effective in the Cray X1 and 

ultimately Cray SV1 SMP environment. Following the resolution of an issue in the Cray 

SV1 implementation relating to an overflow of thread stack size that eliminated all 

parallel performance improvement, both the Cray SV1 and Cray X1 systems 

demonstrated high throughput capacity. The application demonstrates extremely 

favorable scalability characteristics of 15.9 out of a theoretical maximum 16 in the latest 

version evaluated. 

http://www.openmp.org/


5 
 
 

 The high degree of parallel efficiency is only achievable with certain conditions. 

First, the application had not only been designed to read full datasets into memory before 

processing, but also to store all intermediate results during the search and comparison 

operation. The fastest I/O operation is that which is not done. By storing intermediate 

results, all I/O operations in the comparative phase are deferred, and a minimal 

contention design to access the shared area enables the results to be collected across 

threads as they are created. The impact on total memory requirements due to reading the 

entire datasets into memory were comparatively minimal. The large memory of the Cray 

systems is convenient storing intermediate results, although in the case of SAGE 

comparisons, the number of intermediate results grows only as the number of tags 

examined. 

 Second, efficient I/O to load the information into the application, and write 

information upon completion is mandatory. The earliest implementation of the 

SAGESPY program did not employ the cb_read_fasta() methods available in the PCBL 

and CBL libraries, but relied on Fortran-based I/O operations. This initial design choice 

was made to minimize the memory profile for the application and assure portability of the 

application across multiple systems. Ultimately, this approach proved to impose a 

significant performance penalty on the application when compared with the available 

CBL/PCBL method  cb_read_fasta().  

The choice to employ cb_read_fasta() proved very effective at reducing I/O 

overhead in the application. However, the choice did have an impact on the application 

portability as written in Fortran and in application memory requirements. The impact on 

portability stems from a mild inconsistency in the PCBL/CBL implementations for 

cb_read_fasta() when called from Fortran environments. As a result, portability was not 

prioritized to be maintained and execution became exclusive for Cray environments using 

the CBL libraries. Overall, the choice to use cb_read_fasta() proved an important factor 

in achieving the goal of high-velocity SAGE tag and sequence scanning. 

A new effort originating in part from the portability concerns in PCBL/CBL APIs 

is the creation of the Ohio Bioscience Library (OBL). While the CBL (and the PCBL by 

consequence) are focused on mid to low level bioinformatics application primitives, the 
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OBL is a set of extensions to the CBL/PCBL libraries which, while building on the 

foundation provided by the CBL and PCBL methods, provide a higher-level set of APIs 

and applications. These APIs and applications are suited for conducting high-

performance, high-throughput bioinformatics sequence analysis in multiple high-

performance computing architectures and environments. The ultimate goal of the OBL is 

to provide a portable set of bioinformatics APIs, frameworks and applications which can 

be readily employed for doing significant sequence analysis and comparisons in today's 

and tomorrow's high-performance computing environments. The first release of the OBL 

is planned for summer 2004, which will include the SAGESPY application.  

Despite the high-speed capabilities present in the cb_searchn() method, the large 

quantity of SAGE tags and target sequences to be compared still made for daunting run-

time requirements. Consequently, after further discussion with the Wang group, the 

efforts were focused on improving the performance for the exact comparison and search, 

the most critical need for the research application. This change in relative importance of 

comparison resulted in a significant new approach to be employed. 

Methods for doing exact string or sequence searching are well studied efforts, 

with many successful algorithms from which to choose. Individually, methods such as 

Rabin-Karp [Rabin and Karp 1981] and Knuth-Morris-Pratt [Knuth et al 1977] provide 

efficient means to complete a specific substring search. Even the cb_searchn() method 

works quite well for exact substring searches when the threshold for allowable mismatch 

is set to 0. Unfortunately, order analysis of the current implementation  indicated that 

even with a very efficient exact substring search, the computational magnitude  would 

remain O(nm) where n is the number of SAGE tags and m is the number of target 

sequences to be searched. A better approach was needed. 

A faster approach for SAGE tag association had been employed by [Blake 

Meyers, University of Delaware, personal communication] for work on Arabidopsis 

thaliana employing MPSS tag isolation from each target sequence prior to comparison. In 

this approach, candidate match tags are isolated from the target sequences before 

comparison to the actual SAGE tags. Implemented within the context of a database 

system, this general approach proved reasonably effective for tag search and comparison 
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for relatively modest quantities of SAGE tags and target sequences.  The required 

comparison effort required in the SAGE analysis of rice, was much more significant due 

to the larger genome and availability of candidate SAGE tags. 

Building on the method to isolate tags prior to comparison, a much more efficient 

exact comparison approach has been implemented SAGESPY application. The current 

fast path of execution through the application relies on minimizing the number of overall 

comparisons required to discern equality of two sequences. A highly efficient means to 

compare two similar lists is to first sort each list using common criteria, and then 

sequentially process the elements looking for similarities. Analogous to the process 

employed in the merge phase of a merge sort, this approach dramatically reduces the 

computational effort required to match the tags and targets. Assuming achieving O(n lg 

n) computational complexity measure for an efficient sort (e.g. heap sort, quick sort and 

merge sort) is reasonable, the order of computational complexity in the revised 

comparative approach becomes O(m lg m + n lg n). The enhanced tag extraction 

approach dramatically reduced the run time for the comparison in terms of computational 

order. In the case of a 64,000 set of target sequences and tags, the speedup can be as 

much as 4,000 fold. This new approach has been implemented in a generalized form in 

the SAGESPY application employing characteristic signatures for each of the tags or 

sequences involved in  the  comparative search.  

While the new algorithmic approach provides a tremendous boost for comparing 

tags for exact matches, it does have limitations. It does not address the need to handle  

inexact matches when it is necessary to determine near matches when a single or double 

nucleotide mismatch exists, nor does a general signature based  approach support the 

searching for sequence reverse complements (as would be generated with cb_revcomp()) 

in the absence of special pre-processing. The use of an integer logic-based primitive, 

Exclusive OR (XOR) holds the most promise for addressing these limitations while 

providing significant performance improvements. In contrast to generalized sequence 

signatures, the XOR operation enables an estimation of the degree of mismatch between 

two like sized entries while doing it very quickly.  



8 
 
 

In the case of SAGE tag analysis, conveniently the tags remain relatively small 

enabling a binary translation for nucleotide sequences into single word (64-bit) integer 

representations. The cb_compress() method performs this translation and in the case of 

nucleotide sequence, a SAGE tag as long as 32 nucleotides can be readily converted for 

representation in a 64-bit word unit. The equality of the sequences is readily determined 

by the XOR operation, with an exact match yielding no one bits in the result – an integer 

zero. The magnitude of mismatch is also determined by examining the popcount() of the 

answer. The popcount() operation (all non-zero bits in a word0 establishes a minimum 

bound to the number of mismatching elements between two compared sequences. 

The use of the XOR is functionally equivalent to a replacement for the 

cb_searchn() method when the threshold is 0 and the compared nucleotide sequence 

lengths are less than 32. In the remaining cases of limited size word comparisons, the 

XOR method provides a low-cost accelerator, providing a quick pretest to determine 

whether the compared elements have a possibility of satisfying the conditions of 

acceptable mismatch. Preliminary timings are available in Tables 1 and 2 showing 

relative performance of the XOR operation compared to the cb_searchn() primitive. 

Conveniently, the XOR implementation is not limited to accelerating near match 

comparisons, nor required to utilize the O(nm) algorithm for analysis. With the working 

constraints of exact comparison and no more than 32 nucleotides in length, the XOR 

logic functions as an equality test for the same comparative O(n lg n + m lg m) approach. 

While not appreciably faster than the use of sequence signatures to create sorted lists, the 

XOR comparison is exhaustive and eliminates the remote possibility of two different 

sequences possibly being evaluated as equal.  

A second speed enhancement tested for the application reduces the number of 

individual calls to the cb_searchn() method. Instead of making a call to cb_searchn() for 

each individual tag and target comparisons, the target sequences are combined into a long 

single sequence that is then scanned in one call to the cb_searchn() method. Even with 

the additional overhead to discount inappropriate matches that happen in the 

concatenated target sequence, the target union approach also promises significant 

performance increases. Tables 1 – 3 provide a look at comparative performance of the 
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Cray SV1 and Cray X1 for the three exhaustive approaches, one target-tag comparison 

per cb_searchn() call, one cb_searchn() call per target (target fusion), and one target-tag 

comparison using an XOR based comparison. Table 4 provides performance information 

for the complete processing of the datasets utilizing the XOR method on the Cray SV1 

and Cray X1. 
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Table 1. Relative performance of one target-tag per comparison approach. A set of 100 

tags were utilized. All SAGE tags were 21 nucleotides long. A mismatch threshold of 2 

nucleotides was used. 

 Number of 
target tags 

Individual 
SV1 time 
(seconds) 

Individual 
X1 time 

(seconds) 

Number of 
Tag Hits 

Chrom1 634952 716.42 1372.61 29 
Chrom2 566094 638.72 1235.54 30 
Chrom3 602420 679.71 1301.10 35 
Chrom4 472536 533.17 1026.72 34 
Chrom5 410074 462.69 890.75 24 
Chrom6 449616 507.30 973.52 21 
Chrom7 417020 470.52 902.95 29 
Chrom8 403882 455.70 871.40 12 
Chrom9 331252 373.75 714.06 16 
Chrom10 284020 320.46. 618.16 8 
Chrom11 364548 411.32 792.54 32 
Chrom12 360950 407.26 782.21 21 
TIGR(EST) 470924 531.35 1015.72 333 
KOME(cDNA) 475998 537.07 1026.53 262 

 

Table 2. Single target fusion search analysis. A set of 100 tags were utilized. All SAGE 

tags were 21 nucleotides long. A mismatch threshold of 2 nucleotides was used. 

 Number of 
target tags 

Target Union 
SV1 time 
(seconds) 

Target Union 
X1 time 

(seconds) 

Number of 
Tag Hits 

Chrom1 634952 33.57 27.80 29 
Chrom2 566094 30.22 25.11 30 
Chrom3 602420 32.93 27.40 35 
Chrom4 472536 25.82 21.54 34 
Chrom5 410074 21.98 18.11 24 
Chrom6 449616 23.90 19.78 21 
Chrom7 417020 22.24 18.39 29 
Chrom8 403882 21.50 17.94 12 
Chrom9 331252 17.71 15.18 16 
Chrom10 284020 15.77 13.19 8 
Chrom11 364548 20.20 16.89 32 
Chrom12 360950 20.01 16.73 21 
TIGR(EST) 470924 40.29 33.87 333 
KOME(cDNA) 475998 32.17 27.11 262 
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Table 3. Short tag XOR search analysis. A set of 100 tags were utilized. All SAGE tags 

were 21 nucleotides long. A mismatch threshold of 2 nucleotides was used. 

 

 Number of 
target tags 

XOR SV1 time 
(seconds) 

XOR X1 time 
(seconds) 

Number of 
Tag Hits 

Chrom1 634952 1.35 0.36 29 
Chrom2 566094 1.20 0.32 30 
Chrom3 602420 1.29 0.34 35 
Chrom4 472536 1.00 0.27 34 
Chrom5 410074 0.87 0.24 24 
Chrom6 449616 0.96 0.26 21 
Chrom7 417020 0.89 0.25 29 
Chrom8 403882 0.86 0.23 12 
Chrom9 331252 0.71 0.19 16 
Chrom10 284020 0.61 0.16 8 
Chrom11 364548 0.77 0.20 32 
Chrom12 360950 0.77 0.21 21 
TIGR(EST) 470924 1.00 0.26 333 
KOME(cDNA) 475998 1.01 0.27 262 

 

Table 4. Total CPU time (in seconds) for XOR-based evaluation of sequence similarity 

using an equality threshold of two nucleotide mismatches. 93802 unique SAGE tags were 

compared against chromosomal, EST and cDNA sequences. 

 Number of Virtual 
Target Tags for 

Comparison 

XOR SV1 time 
(seconds) 

XOR X1 time 
(seconds) 

Total 
Matching Tag 

Count 
Chrom1 634952 1264.56 353.62 55286 
Chrom2 566094 1127.77 299.71 48170 
Chrom3 602420 1199.82 317.83 53976 
Chrom4 472536 941.15 259.90 38985 
Chrom5 410074 816.94 228.04 34742 
Chrom6 449616 898.57 244.27 38520 
Chrom7 417020 830.79 226.19 35660 
Chrom8 403882 804.49 219.08 33581 
Chrom9 331252 659.79 181.24 26791 
Chrom10 284020 565.75 151.00 23509 
Chrom11 364548 726.15 194.18 29217 
Chrom12 360950 719.03 199.47 29744 
TIGR (EST) 470924 938.23 258.20 100102 
KOME (cDNA) 475998 948.36 259.75 99399 
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The performance timings shown above clearly identify a significant performance 

penalty is imposed using individual invocations of cb_searchn() for each tag and target 

comparison. A factor of 40x speed improvement can be obtained by converting the 

algorithm to employ a single target union when searching for tag matches. This alteration 

can be accomplished without loss of generality in the application. 

A second and more dramatic improvement in the algorithm will be obtained when 

employing the XOR comparison instead of invoking the cb_searchn() method. In this 

case a factor of 500x speed improvement can be expected for the application. This second 

improvement imparts a loss of generality, imposing the restriction that elements to be 

compared be of equal length and less than 32 nucleotides in length. This method has been 

implemented in an API within the OBL called obl_short_searchn(). 

Both of the above efforts provide tremendous improvement in the most critical 

remaining bottleneck, identifying tags matching within one or two nucleotides. The 

dramatic improvements seen in both of the above methods serve to underscore the 

importance of continued optimization efforts. They also serve to highlight that even naïve 

brute-force parallel implementations can be improved, and optimization can provide 

performance gains exceeding those of a parallel implementation.  

 

Future Directions 

Several improvements remain in progress for SAGESPY prior to availability later 

in 2004. These include incorporating truly portable implementations using OBL API's 

derived from and relying on PCBL and CBL libraries or implementations, introducing the 

XOR comparative step to accelerate inexact tag comparisons, and final quality assurance 

validation. SAGESPY will be released in conjunction with the OBL software release. 

Contact the Ohio Supercomputer Center for advance versions of the OBL application 

library prior to general availability. 

 

Conclusions 
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The CBL (and corresponding PCBL) provide a highly efficient means and 

capable foundation from which to develop bioinformatics searching and comparison 

algorithms. A significant improvement can be obtained using the cb_read_fasta() method 

for I/O when compared to normal Fortran I/O, although presently at some expense of 

application portability. The performance of the resulting applications, while capable, can 

still take significant time when faced with genome size comparative efforts. Algorithmic 

improvements extending the original capabilities of the CBL/PCBL can provide 

tremendous improvements in overall runtime. As a result, higher level APIs are valuable 

to incorporate the algorithmic improvements to common comparative operations. These 

APIs and applications are being developed and delivered through an Ohio Bioscience 

Library coordinated through OSC. 
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