
CUG 2004 Proceedings 1

Solution of Out-of-Core Lower-Upper Decomposition for Complex
Valued Matrices

Marianne Spurrier and Joe Swartz, Lockheed Martin Corp.
and Bruce Black, Cray Inc.

ABSTRACT: Matrix decomposition and solution software is readily available for problems that fit into local
memory. These software packages are highly optimized for the memory available, the caches, and CPUs
involved. However, most real world problems, in particular the problems that are typically solved utilizing
high performance computers, do not fit into local memory. Lockheed Martin, under government contract, is
developing matrix decomposition and solution software that is usable for all sizes of matrix problems. The only
mathematical assumption being made in the overall algorithm is that the matrix is non-singular. This paper
explores algorithms based on two methods for storing the matrix on the disk: slabs of rows or columns (slab
algorithm) and sub-matrix blocks (block algorithm.) The algorithm dynamically calculates slab or block sizes
to maximize the amount of matrix in local memory to maximize computational time on the problem and
minimize disk I/O time. The algorithms also utilizes asynchronous disk I/O and utilizes the higher inter-
processor bandwidth by “cascading” slabs or blocks from the CPU currently working to the next CPU(s) that
will use them for the next step. This approach eliminates a large amount of disk I/O that increases the average
I/O rates that are seen in the programs. The computational cores of both algorithms are BLAS routines. The
code development is being facilitated by the MOS Cray X1 located at the Army High Performance Computing
Research Centre in Minneapolis, MN. The results are two software packages that correctly decompose the
matrix into lower and upper triangular forms (stored in the same file) and solve the decompositions against sets
of solution vectors.

1. Introduction
The solution of the system of linear equations

bAx = (1)

can be found by inverting the matrix A and multiplying it by
b. Another approach that is less computationally expensive
for a dense matrix is the lower-upper decomposition (LUD).
The LUD solves equation (1) by decomposing the matrix A
into a lower triangular matrix, L, and an upper triangular
matrix, U, such that

.bLUxAx == (2)

Substituting y = Ux yields the triangular system

.bLy = (3)

Equation (3) can easily be solved for y and then the other
triangular system, Ux=y, can be solved for x.

The decomposition of A into L and U poses an
interesting I/O problem when the matrix becomes too large

to fit in memory. Two out-of-core LUD storage algorithms
have been developed for use on the X1. The first algorithm
stores the matrix on disk in contiguous slabs and the second
stores the matrix as contiguous blocks as shown below.

Figure 1

The key to an efficient algorithm is to use asynchronous I/O
(AIO) to overlap the I/O with the computations, thus
minimizing the amount of time lost to waiting for I/O to
complete.

2. Slab Algorithm
The slab LUD and solve algorithms, both I/O and

computational, are based on the work done by the
benchmark group in the Cray Research, Inc., first completed
around 1988 to support a government customer. The
computational sections of the slab LUD and solve utilize the

1 2 3 4

41

2 5

7

3

8

6 9

CUG 2004 Proceedings 2

BLAS matrix computations library. Subsequent versions of
the slab algorithms were maintained by CRI until about
1998 when the Lockheed Martin Program, CSCF, started
maintaining the code for internal use.

The code utilizes a triple buffer system with
asynchronous disk I/O to overlap the disk I/O with
computations. This algorithm approach was I/O bound until
the C90 and SV1 systems were produced. The current
version of this algorithm running on the SV1, utilizing 16
CPUs and 512 megawords of memory, for most sized
complex valued matrices (up to approximately 120,000
unknowns) is almost perfectly balanced between I/O and
computations. If real valued matrices were solved, the
algorithm would be I/O bound due to the lack of
computations needed to solve the problem.

Using this approach, most of the disk I/O is done via
reads and each slab is written to disk only once when all of
the computational work directly on it is done. The total
number of slab reads required where N is the number of
slabs in the matrix is:

2/)1)(2(
1

1

−−=∑
−

=

NNi
N

i

and the total number is slab writes is N. The average I/O
speed is that of the disk farm.

The basic slab solve algorithm also uses three buffers.
One slab contains the right hand side (RHS) columns, one
buffer is used to read in the next slab of the decomposed
matrix, and the third buffer contains the slab for the current
computation. The solve must read in the entire matrix a
total of two times for a given set of RHSs. The forward
elimination steps through the slabs from left to right and the
forward elimination is performed with the RHS slab. The
backwards substitution steps through the slabs of the matrix
from right to left and finishes the solution of the RHS.

The parallelism for both the slab LUD and solve on the
SV1 comes from the parallel BLAS routines available on
that machine. When we began this work, a parallel version
of the BLAS routines was not available so we started the
development of distributed memory slab and block LUD
and solve algorithms. A parallel version of the BLAS
libraries was recently released and we plan on evaluating
both the slab algorithms in the future.

2.1 X1 Slab LUD

For the X1 using a single MSP to decompose the
matrix, the slab LUD algorithm is done exactly like the
algorithm described in section 2.0.

For multiple MSPs on the X1, the slab LUD can either
“cascade” the slabs from MSP 0 down the line of MSPs as a

slab completes the computations that utilize a particular slab
or the slab LUD can, in fairly “lock step,” decompose M
slabs where M is the number of MSPs by having each MSP
other than MSP 0 copy the slab to their space as soon as
MSP 0 has read the slab from disk. Either approach should
significantly accelerate the decomposition process by
utilizing the higher speed inter MSP communications. The
average speed of the I/O gradually increases with the
number of MSPs since the inter-MSP I/O is 40 gigabytes
per second on board and 20 gigabytes per second off board.
By the time there are 4 MSPs working on a problem, the
total number of disk reads has been reduced by 75% and
when 8 MSPs are used, the total number of disk reads is
reduced by 87.5%. The algorithm only reads a slab one
time from disk for every N-1 slabs that it is used against in
computations where N is the number of MSPs.

The determination of the optimal algorithm will depend
on the X1’s approach to CAF copies. If computations are
blocked on an MSP when a different MSP is copying data
via a CAF Fortran 90 array construct, then the best approach
will be the “cascade” even though there will be start up and
stopping idleness in MSPs. If there is no block on the
computations as other MSPs copy data from an MSP, then
the “lock step” approach will be best by eliminating start up
and stop idles of MSPs since all of the MSPs will be starting
and ending pretty much at the same time.

2.2 X1 Slab Solve

The slab solve utilizes the same slab solve algorithm
described in section 2 for the single MSP version. The
multiple MSP version of the algorithm will utilize either the
“cascade” approach or the “lock step” approach.

2.3 Benchmark Times

The slab version of this algorithm has only been run on
one MSP at this point and in a contended environment. The
data is for single MSPs using 2.7 gigabytes for the main
buffer space on complex valued problems:

Unknowns Problems MSPs WC Hours
77,500 8 8 35
133,000 4 4 208

3. Block Algorithm
The block algorithm was originally developed using

OpenMP for a Compaq GS-80 and an SGI Origin 3800.
The algorithm was also partially based on the slab LUD
developed by CRI. Since OpenMP only allows one to use
one node of the X1, the algorithm was converted to CAF.

3.1 Block LUD

CUG 2004 Proceedings 3

3.1.1 Computational Algorithm

The block LUD first decomposes the first diagonal
block against itself (block 1 in Figure 1). Next, the blocks
to the right of (blocks 4 and 7 in Figure 1) and below
(blocks 2 and 3 in Figure 1) the first diagonal block are
decomposed against the diagonal block. All the work on this
set of blocks can be done in parallel. The decomposed
blocks to the right of and below the diagonal are then stored
in co-arrays. The remaining blocks in the matrix can then
be updated in parallel using the appropriate blocks stored in
the co-arrays. For example, block six in Figure 1 would
need blocks 3 and 4 and block 8 would need blocks 2 and 7.
Once this pass through the matrix is complete, the algorithm
decomposes the next diagonal block (block 5 in Figure 1)
against itself and continues on in the manner described
above. This process continues until the last diagonal block
is decomposed against itself. All of the computations are
done using the BLAS routines CGEMM, CTRSM, CSCAL,
CTRSV, and CGEMV.

3.1.2 I/O and Memory Requirements

The algorithm uses a triple buffer system to hide as
much I/O as possible. The three buffers allow one buffer to
be reading in the next block, one buffer to be writing the
previous block and one buffer is available for the current
computation. The total number of read requests for this
algorithm is

6

32
)1(2

2
1

2
31

1 1

22
1

2
1

2
1

BBB
N

i

N

j
B

NNN
jiN

B B ++
=−++ ∑ ∑

−

= =

,

(4)
where BN is the total number of blocks in the matrix. Thus,
as the number of blocks increases the total amount of I/O
done increases. So, if more memory were available, a larger
block size would be beneficial because it reduces the total
number of blocks and, therefore, the total amount of I/O that
needs to be done.

The total amount of memory that the algorithm uses is

 16****)
2

6(
2
1

colsrowsCPU
CPU

B NNN
N

N
+ , (5)

where BN is the total number of blocks in the matrix ,

CPUN is the number of MSPs being used, rowsN is the

number of rows in a single block and colsN is the number
of columns in a single block. The total number of accesses
to blocks stored in co-arrays is

3

)13(2

)1(22

2
1

2
3

1

1 1

22
1

2
1

2
1

−×+

=−++× ∑ ∑
−

= =

CPUBB

N

k

N

l
CPUB

NNN

lkNN
B B

, (6)

where BN and CPUN are as defined above.

3.2 Block Solve

3.2.1 Computational Algorithm

Once the entire matrix has been decomposed into the
lower and upper triangular matrices, one can solve equation
(3) for y. To do this, the block solve algorithm reads in the
first diagonal block and does the forward elimination with
the first chunk of right hand sides (RHS) denoted by
rectangle 1 in the diagram of the RHS below.

Figure 6

Next, each of the blocks below the first diagonal block are
read in and the appropriate chunk of the right hand side
matrix gets updated. For example, block 2 in the matrix will
be used to update rectangle 2 of the RHS and block 3 of the
matrix will be used to update rectangle 3 of the RHS. All of
these updates can be done in parallel, and the right hand side
matrix is stored as a co-array so each MSP has access to it.
Following the completion of these updates, the next
diagonal block to the right is read in and the same sequence
of calculations occurs as in the previous step. This process
continues until the last diagonal block is read in and the
forward elimination is completed.

As soon as the forward elimination is complete, the
backwards substitution is performed to solve Ux=y for x.
The last diagonal block is read in and the backwards
substitution is performed with the last chunk of right hand
sides. Then all of the blocks above the last diagonal block
are read in and the appropriate chunks of the right hand side
matrix are updated. Again, all of these updates can be done
in parallel. The next diagonal block to the left is then read
in and the same process is followed as for the last diagonal
block. This cycle continues until the first diagonal block
has been read in and the backwards substitution is complete.
One now has the solution, x, to equation (1). All of the
computations are done using the BLAS routines CTRSM
and CGEMM.

1

2

3

1

2

3

Matrix RHS

5

6 9

CUG 2004 Proceedings 4

3.2.2 I/O and Memory Requirements

Unlike the block LUD, the solve algorithm only needs a
double buffer system because a write buffer is not
necessary. One buffer is used to read in the next block of A
and one is for the current computations. For the current
algorithm, the entire RHS matrix must fit in memory. An
algorithm where the RHS matrix is out of core is currently
under development. For the current algorithm with the RHS
matrix in core, the total number of read requests is

)1(2 2
1

2
1

1

2
1

+=∑
=

BB

N

m

NNm
B

, (7)

where BN is the total number of blocks in the matrix. The
total number of accesses to the RHS co-array is three times
the number in (7).

3.2.3 Comparison of I/O Requirements for Slab vs. Block
Solves

The block solve has an advantage over the slab solve in
that it does about half the I/O that the slab solve does for
moderate to large problems. For the forward elimination,
the lower triangular part of the matrix is all that is used in
the calculations. In Figure 7, the black portions of both
matrices are the pieces of the matrix that are read in and
actually needed for the calculation. The grey sections are
the parts of the matrix that are read in and not needed for the
computation. The white blocks are blocks that are not read
in and not needed. It is clear from this that the block disk
storage format does less I/O than the slab disk storage
format. The backwards substitution is similar except that
the upper triangular part of the matrix is needed instead of
the lower triangular part.

Figure 7

3.3 Benchmark Times

3.3.1 Block LUD with Buffered AIO

The block LUD was run with problem sizes of 36,864,
61,440 and 122,880 unknowns. Each run used buffered
AIO and used a block size of 2048x2048 complex elements.
Table 1 shows the CPU time, wall clock time and scaling
for the 36k case run that used 324 total blocks. The one
MSP run used 2.82 GB of memory and the 12 MSP run

used 7.25 GB. The addition of an MSP adds about 400 MB
to the total memory size of the single MSP run. Table 2
shows the CPU time, wall clock time and scaling for the 61k
case that used 900 total blocks. The single MSP runs used
4.43 GB of memory and the 12 MSP run used 8.86 GB.
Table 3 shows the CPU time, wall clock time and scaling
for the 122k case that used 3600 total blocks. The single
MSP run used 8.46 GB of memory and the 12 MSP run
used 12.88 GB. One can see that the parallel scaling
becomes much better as the problem size, and hence, the
number of blocks, increases. We believe that the scaling
drops off after 10 MSPs for the 122k case because we have
reached a point where there is so much I/O that more MSPs
will not improve the run time. We would need to increase
the block size, thereby reducing the total amount of I/O, in
order to improve the runtime on more than 10 MSPs (see
section 3.3.3). Having more bandwidth will just push this
point out to a higher number of MSPs. This point will be
reached for any combination of problem size and block size
eventually provided you have enough MSPs on your
machine.

 The 36k and 61k cases were run with CrayPat to see
what the average FLOP rate was. For a single MSP run, the
FLOP rate was about 10.9 GFLOPS for the 36k case and
about 11 GFLOPS for the 61k case! This translates to 87%
of the theoretical peak FLOP rate for a single MSP! The
fact that the FLOP rate is so high shows that for a single
MSP, the I/O is all effectively hidden and the algorithm is
not I/O bound.

MSPs CPU (hrs) Wall (hrs) Scaling
1 3.33 3.43 1.00
2 3.38 1.75 1.96
3 3.45 1.19 2.87
4 3.49 0.94 3.65
5 3.56 0.76 4.52
6 3.65 0.65 5.25
7 3.73 0.58 5.95
8 3.72 0.51 6.79
12 4.03 0.38 8.97

Table 1: Buffered AIO - 36,864 unknowns (324 total
blocks)

MSPs CPU (hrs) Wall (hrs) Scaling
1 15.36 15.82 1.00
2 15.49 7.94 1.99
3 15.57 5.34 2.96
4 15.69 4.04 3.92
5 15.81 3.29 4.82
6 15.92 2.78 5.70
7 16.07 2.42 6.54
8 16.07 2.10 7.55
12 16.59 1.54 10.27

CUG 2004 Proceedings 5

Table 2: Buffered AIO - 61,440 unknowns (900 total
blocks)

MSPs CPU (hrs) Wall (hrs) Scaling
1 122.44 128.16 1.00
10 124.87 12.93 9.91
11 125.86 13.58 9.44
12 125.52 13.24 9.68

Table 3: Buffered AIO - 122,880 unknowns (3600 total
blocks)

3.3.2 Comparison of Buffered C I/O, Buffered AIO, and
Direct AIO

We had to spend some of our development time to
determine what kind of I/O would be best suited for the
block algorithm. Early on in the development we used
direct Fortran I/O. There were a few bugs to work through,
such as sync_file didn’t work and if the I/O size was too
small it looked like only one MSP was doing any I/O.
Eventually it worked pretty well and we moved on to try
using C I/O. We found that for the small cases we were
testing that there was not too much difference in the run
times so we continued development with C I/O because the
AIO routines we eventually wanted to use were C routines.
Once the AIO bugs were all fixed, we modified the code to
overlap I/O with the computations and we began doing
some timing tests.

For the 36k case, we ran the code using buffered C I/O,
buffered AIO and direct AIO to compare the different I/O
methods. Table 4 shows the difference in the wall clock
time depending on whether buffered C I/O or buffered AIO
is used. We again used blocks with 2048x2048 complex
elements in them. For the 36k case, one can see that
running a code that overlaps the I/O with computations is
about 20% faster.

MSPs C I/O (hrs) AIO (hrs) % Speedup
8 0.65 0.51 22
12 0.48 0.38 21

Table 4: Comparison of buffered C I/O and AIO - 36,864
unknowns (324 total blocks)

In Table 5, we show the difference between using direct
AIO and buffered AIO. In order to use any form of direct
I/O on the X1, one can only have a maximum of a 16MB
I/O transfer size. Thus, we had to reduce the size of the
blocks to be 1024x1024 complex elements, which increases
the total number of blocks for the 36k case to 1296. One
can see that for this problem, the two forms of I/O are
comparable when using one and four MSPs, but once more
MSPs are used, direct AIO is faster for a 16MB block size.
However, in Table 1 we can see that using a bigger block

size with buffered AIO produces faster runs than using
direct AIO with a smaller block size when more than 4
MSPs are used. Of course it would be best to be able to use
direct AIO with a bigger block size, but we are currently
restricted by the current limits on the X1.

MSPs Direct (hrs) Buffered (hrs)
1 3.50 3.46
4 0.93 0.93
8 0.57 0.76
12 0.52 0.66

Table 5: Comparison of direct and buffered AIO - 36,864
unknowns (1296 total blocks)

3.3.3 Comparison of Different Block Sizes

We also varied the size of the blocks used for the 36k
case and the 122k case to see what effect this has on the
total run time.

For the 36k case, we ran the code with block sizes of
1024x1024, 2048x2048 and 4096x4096 complex elements.
These sizes will be referred to as small, medium and large,
respectively. The small case used 1296 total blocks, the
medium case used 324 total blocks and the large case used
81 total blocks. Table 6 shows the differences in the
timings for these different block sizes. On more than four
MSPs, the medium block size gives the best performance.
The large block size does not do as well because there are
fewer blocks (only 81) and thus not as much parallel work
to do.

MSPs Small (hrs) Medium (hrs) Large (hrs)
1 3.46 3.43 3.50
4 0.93 0.94 1.02
8 0.76 0.51 0.64
12 0.66 0.38 0.54

Table 6: Comparison of different block sizes for 36,864
unknowns

The 122k case was run with block sizes of 2048x2048
and 4096x4096 complex elements, referred to as medium
and large, respectively. We did not run this case with the
small block size because we already know that the small
block size in inefficient. The large case was not run on 1
MSP because it required about 18 GB of memory, which is
more memory than it has available to it. The 12 MSP runs
used about 13 GB for the medium case and 35 GB for the
large case. Table 7 shows the differences in the times for
the different block sizes. One can see that using the larger
block size makes a significant difference in the wall clock
time for the 12 MSP runs. This is because by increasing the
block size we have reduced the total number of blocks and
thus the total amount of I/O being performed. This decrease

CUG 2004 Proceedings 6

in the number of blocks does not hurt the runtime on
multiple MSPs for this case because there are still enough
blocks to keep all the processors busy.

MSPs Medium (hrs) Large (hrs)
1 128.16 n/a
10 12.93 13.32
11 13.58 --
12 13.24 11.35

Table 7: Comparison of different block sizes for 122,880
unknowns

3.3.4 Block Solve

We ran the block solve for the 36,864 unknowns test
case with 900 right hand side columns. We used a block
size of 2048x2048 complex elements for the matrix and the
algorithm uses buffered AIO. Table 8 shows the times for
these runs.

MSPs CPU (min) Wall (min) Scaling
1 14.78 15.17 1.00
2 54.00 8.08 1.88
3 22.40 5.60 2.71
4 17.23 4.50 3.37
5 17.98 3.75 4.04
6 18.83 3.28 4.62
7 20.37 3.07 4.95
8 21.85 2.88 5.26
9 22.95 2.70 5.62
10 25.12 2.67 5.69
11 27.07 2.62 5.80
12 29.03 2.58 5.87

Table 8: RHS solve for 36,864 unknowns and 900 RHS
columns

The scaling for the solve is not very good, but we
expect the scaling to be better for the larger test cases
because there are more blocks to work on in parallel.
Larger test cases are currently being tested.

4. Problems Encountered
There were several problems we encountered as we

developed the LUD algorithms. Most of the problems were
software related, but there were also some hardware issues
that slowed down the development.

4.1 Software Problems

A number of the problems we had were found when
trying to do I/O from multiple MSPs using CAF. First, with
Fortran I/O, if the I/O size was too small, it looked like only

one MSP did I/O. This was fixed using an assign statement.
Another problem was that the sync_file() call did not work.
We need to close and reopen the file from all MSPs to
ensure file coherency. Also, we had problems opening a file
in C from multiple MSPs from a CAF program. This was
resolved by setting the open and mode flags for the first
MSP to create the file for read/write access and then open
the file. All the other MSPs need to wait for this to
complete and then each MSP can open the file for read/write
access. The last problem we ran into was that the AIO
routines would not run on multiple MSPs if you went off
node. This has been fixed.

There are two other I/O issues that we have run into,
but they are not related to doing I/O from multiple MSPs.
First, is the 16 MB maximum limit for the I/O transfer size
when using direct I/O. Direct I/O gives us much better I/O
rates, but because the transfer size is so small, the overall
performance of the code is worse than using buffered I/O
with a larger transfer size as was seen in section 3.3. Being
able to use direct I/O with a much larger transfer size would
help greatly. Second, we are only getting about 50% of our
peak I/O bandwidth. Our Cray support people expected that
the more recent I/O drivers would fix this. Our I/O drivers
were updated, but the performance didn’t improve. Cray is
still looking into this problem.

We ran into a strange problem on the AHPCRC’s X1
where the code would run fine on 1, 2, 3, 4 and 6 MSPs but
not on 5, 7 or 8 MSPs. Different sized test cases showed
similar behaviour, but the number of MSPs it would work
ok on would change. We sent this to Cray and it ran fine on
the internal Cray X1. It was finally determined that the
version of MPT that was on the AHPCRC’s X1 at the time
was causing the problem. Once MPT version 2.2.0.0 was
installed, the code ran fine.

Another peculiar problem we have run into on our X1 is
that occasionally when we run our codes (sometimes the
LUD, sometimes other codes) using PBS, the job will stop
due to a BPT Trace error. No other information is provided.
Cray is currently working on this issue.

4.2 Hardware Problems

The biggest problem we had early in the development
of the LUD code was that we had a limited amount of time
in which we could log onto the AHPCRC’s X1, and the X1
was down quite a lot. While this is expected with a new
architecture, it really hindered early development because of
the limited opportunities we had to log on. Some of the
problems we ran into while the machine was available were
leaking memory (when trying to run a code, the machine
would say that resources weren’t available and it looked like
our code was trying to use 50 GB of memory even though it
was really using less than 1 GB) and the CPES server was
down a lot so we couldn’t compile code.

CUG 2004 Proceedings 7

Conclusion
The slab LUD shows every sign of working as

proficiently on the X1 as it has on the C90 and SV1
architectures. The inter-processor I/O rates provide ample
bandwidth to make up for the distributed memory aspects of
the machine. Once the CAF and F90 interactions are well
understood, the best algorithm will fall out and the software
and algorithm can be tweaked to attain maximum speeds.

The block LUD performs very well on the X1,
achieving 87% of the peak theoretical FLOP rate on a single
MSP. It also scales fairly well with the number of MSPs for
large problems. The block solve does not scale very well
with the number of MSPs. We believe the scaling will
improve for the larger test cases.

Acknowledgments
Thanks to AHPCRC for allowing us to use their X1 for

development and testing of the LUD algorithms. The CSCF
would also like to thank Bruce Black, Nathan Wichmann,
John Kaitschuck, Kelly Lippard and others from Cray for all
the help they gave us tracking down and resolving problems
and for their suggestions during the development of the
algorithms.

About the Authors
Marianne Spurrier is a Systems Engineer with

Lockheed Martin and has been working with CSCF for three
years. She can be reached via email at
marianne.spurrier@lmco.com . Joe Swartz has been the
manager of CSCF for seven years and has been actively
involved in the supercomputing community for many years.
He can be reached via email at joseph.h.swartz@lmco.com .
Bruce Black is a Sr. Systems Engineer with Cray Inc. and is
one of the several Cray employees working in support of
CSCF. He can be reached via email at bdblack@cray.com .

