Porting and Optimizing Performance of
Global Arrays Toolkit on the Cray X1

Vinod Tipparaju, Manojkumar Krishnan, Bruce
Palmer, Jarek Nieplocha

Computational Sciences and Mathematics Department
Pacific Northwest National Laboratory
Richland, WA 99352

Batlelle

Outline

» Overview
» Global Array programming model

» GA Core capabilities

» X1 architecture, - a nice fit for GA model

» | atency/Bandwidth numbers and application
performance

Pacific Northwest National Laboratory

Baﬁ€||e U.5. Department of Energy 2

Overview

» X1 for us represents a shared memory architecture

— Pro?rammlng models supported by Cray present it to
applications as a distributed memory or'a GAS system

» With GA, the programmer can view distributed data
structure as a single object and access it as if it resided in
shared memory.

> ThIS approach helps to raise the level of abstraction and
gram composmon as compared to the programmmg
els with a fragmented memary view (e.g., MPI,
rray Fortran, SHMEM, and UPC).

» |n addition to other appllcatlon areas, GA is a widely used
programming model in computational chemistry.

» | will describe how the GA toolkit is implemented on the
Cray X1, and how.the performance of its basic
communication primitives were optimized

Pacific Northwest National Laboratory

Bane“e U.5. Department of [:1{*'51';-' 3

Distributed Data:

processor itself.

»Data locality is explicit but
data access is complicated.

»Distributed computing is
typically implemented with
message passing (e.g. MPI)

»There is a potential to utilize
extra processing capaibility on
the nic to assist in moving
data

Batielle

Distributed Data vs Shared Memory

» Data is explicitly associated with each processor, accessing data
requires specifying the location of the data on the processor and the

(0xf5670,P0)

=

(0xf32674,P5
O

\

Pacific Northwest National Laboratory
U.S. Department of Energy 4

Distributed Data vs Shared Memory (Cont).

Shared Memory:

» Data is an a globally accessible address space, any processor can access data
by specifying its location using a global index

» Data is mapped out in a natural
manner (usually corresponding
to the original problem) and
access is easy.

» Information on data locality can
be obscured and leads to loss
of performance.

Pacific Northwest National Laboratory

Battelle U.5. Department of Energy 5

Global Arrays

Distributed dense arrays that can be accessed in a shared
memory-like style

Physically distributed data

single, shared data structure/
global indexing

Y e.g., access A(4,3) rather than
buf(7) on task 2

GIObal Address Space Pacific Northwest National Laboratory
Ba"e“e U.5. Department of Energy 6

Global Arrays (cont.)

» Shared memory model in context of distributed dense
arrays

» Level of abstraction that makes it simpler than message-
passing to program in with out loss in performance

» Complete environment for parallel code development
» Compatible with MPI
—

Data locality control similar to distributed
memory/message passing model

» Extensible
» Scalable

Pacific Northwest National Laboratory

Baﬁ€||e U.S. Department of Energy 7

Core Capabilities

» Distributed array library
e dense arrays 1-7 dimensions
o four data types: integer, real, double precision, double complex
e (global rather than per-task view of data structures
e user control over data distribution: regular and irregular
» Collective and shared-memory style operations
e (a sync, ga_scale, etc
e (@a_put, ga_get, ga_acc
e nonblocking ga_put, ga_get, ga_acc
» Interfaces to third party parallel numerical libraries
e PelGS, Scalapack, SUMMA, Tao

m example: to solve a linear system using LU factorization
call ga_1lu solve(g_a, g_b)

instead of

call pdgetrf(n,m, locA, p, q, dA, ind, info)
call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)

Pacific Northwest National Laboratory

Baﬁ€||e U.5. Department of Energy 8

]

receive send

message passing
MPI

1]

-
P

one-sided communication
SHMEM, ARMCI, MPI-2-1S

Batielle

One-sided Communication

Message Passing:
Message requires cooperation
on both sides. The processor
sending the message (P1) and
the processor receiving the
message (P0O) must both
participate.

One-sided Communication:
Once message is initiated on
sending processor (P1) the
sending processor can
continue computation.
Receiving processor (P0) is
not involved.

Pacific Northwest National Laboratory
U.5. Department of Energy 9

Message Passing:

identify size and location of data
blocks

loop over processors:
if (me = P_N) then
pack data in local message
buffer
send block of data to
message buffer on PO
else if (me = PO) then
receive block of data from
P_N in message buffer
unpack data from message
buffer to local buffer
endif
end loop

copy local data on PO to local buffer
Batielle

Remote Data Access in GA

Global Arrays:

NGA_Get(g_a, lo, hi, buffer, Id);

7

Global Array Global upper Local buffer

handle and lower and array of

indices of data strides
patch

Pacific Northwest National Laboratory
U.5. Department of Energy 10

Data Locality

What data does a processor own?

NGA _Distribution(g_a, iproc, lo, hi);
Where is the data?

NGA Access(g_a, lo, hi, ptr, Id)

Use this information to organize calculation so that
maximum use IS made of locally held data

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 11

Global Array Model of Computations

Shared Object

C O Shared Object

compute/update

Pacific Northwest National Laboratory

Ba"e"e U.5. Department of Energy 12

Non-Blocking Communication

» New functionality in GA version 3.3
» Allows overlapping of data transfers and computations
e Technique for latency hiding

» Nonblocking operations initiate a communication call
and then return control to the application immediately

» operation completed locally by making a call to the wait
routine

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 13

Matrix Multiply
(a better version)

.. more scalable!

(less memory,
higher parallelism)

atomic accumulate get

dgemm

local buffers on the
processor

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 14

Ghost Cells

—>

normal global array
global array with ghost cells

Operations:
NGA_Create_ghosts - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to “local” ghost cell elements

NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells

Pacific Northwest National Laboratory

Baﬁ€||e U.5. Department of Energy 15

Batielle

Automatically update ghost
cells with appropriate data
from neighboring
processors. A multiprotocol
implementation has been
used to optimize the
update operation to match
platform characteristics.

Ghost Cell Update

Pacific Northwest National Laboratory
U.5. Department of Energy 16

Mirrored Arrays

» Create Global Arrays that are replicated between SMP
nodes but distributed within SMP nodes

» Aimed at fast nodes connected by relatively slow networks
(e.g. Beowulf clusters)

» Use memory to hide latency

» Most of the operations supported on ordinary Global Arrays
are also supported for mirrored arrays

» Global Array toolkit augmented by a merge operation that
adds all copies of mirrored arrays together

» Easy conversion between mirrored and distributed arrays

Pacific Northwest National Laboratory

Bane“e U.5. Department of Energy 17

Mirrored Arrays (cont.)

e -

Distributed Mirrored Replicated

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 18

Sparse data managment

Sparse arrays can be implemented with

e 1-dimensional global arrays
= Nonzero elements, row and/or index arrays

e Set of new operations follow Thinking Machine
= Enumerate
m Pack/unpack
= Binning (NxM mapping)
m 2-key binning/sorting functions
m Scatter_with_ OP, where OP={+,min,max}
s Segmented_scan_with_OP, where OP={+,min,max,co *

» Adopted in NWPhys/NWGrid AMR package

http://www.emsl.pnl.gov/nwgrid

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 19

Disk Resident Arrays

» Extend GA model to disk

esystem similar to Panda (U. lllinois) but higher
level APls

» Provide easy transfer of data between N-
dim arrays stored on disk and distributed

arrays stored in memory ISR Bl
» Use when
eArrays too big to store in core [l Iy
echeckpoint/restart I
eOut-of-core solvers global array

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 20

Structure of GA

L F90| | Java
Application
programming
anguage interface |EONGNUAR (NCH] (CHR [NEVERORN | 8abe
. distributed arrays layer
Global Arrays memory management, index translation
and MPI are
completely ARMCI
interoperable. | Message Passing portable 1-sided
Code can Global operations communication
contain calls put get, locks, etc
to both
ibraries. [system specific interfaces]
LAPI, GM/Myrinet, threads, VIA,..

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 21

Application Areas

Visualization and image electronic structure glass flow
analysis simulation
e N
!
* '
0& oy

T
—
—
—
—
—
—
—
—
—
—
—
B L
—
=
\EA\

thermal flow material sciences
simulation

molecular dynamics

Others: financial security forecasting, astrophysics, geosciences Pacific Northwest National Laboratory
Battelle U.5. Department of Energy 22

Interoperability and Interfaces

» anguage interfaces to Fortran, C, C++,

Python

» Interoperability with MPI and MPI libararies
e e.g., PETSC, CUMULVS

» Explicit interfaces to other systems that

expand functionality of GA

e ScaLAPACK-scalable linear algebra software

e Peigs-parallel eigensolvers

e TAO-advanced optimization package

Pacific Northwest National Laboratory

Bane“e U.5. Department of Energy 23

GA on X1

» GA uses ARMCI for communication

» At ARMCI level, all data movements on X1 are
done as loads and stores

» Atter initial port, Latency was terrible
(24Microseconds)

» Code is mostly in C and has many small loops
Inside macros

» Explicit pragmas are needed for each of these
small loops that loop over dimensions so that they
are not vectorized

Pacific Northwest National Laboratory

Bane“e U.5. Department of Energy 24

size = GA[handle].elemsize;
ndim = GA[handle].ndim;

gam_CountElems(ndim, lo, hi, &elems);
GAbytes.puttot += (double)size*elems;
GAstat.numput++;
GAstat.numput_procs += np;

size = GA[handle].elemsize;
ndim = GA[handle].ndim;

MV-> gam_CountElems(ndim, lo,
hi, &elems);

GAbytes.puttot += (double)size*elems;
GAstat.numput++;
GAstat.numput_procs += np;

Batielle

GA on X1

size = GA[handle].elemsize;
ndim = GA[handle].ndim;

gam_CountElems(ndim, lo, hi, &elems);
/*GAbytes.puttot += (double)size*elems;
GAstat.numput++;
GAstat.numput_procs += np;*/

size = GA[handle].elemsize;
ndim = GA[handle].ndim;

D-> gam_CountElems(ndim, lo, hi,
&elems);

/*GAbytes.puttot += (double)size*elems;
GAstat.numput++;
GAstat.numput_procs += np;*/

Pacific Northwest National Laboratory
U.5. Department of Energy 25

Batielle

GA on X1

Copying the data when repeatedly accessed locally

Block A
is local
and is
direcly
accessed

A A

Block B
Is remote
and is
copied
into local
mem

N2

Pacific Northwest National Laboratory
U.5. Department of Energy 26

GA on X1

» Copy of global variable’s in a few functions was
reducing latency

» Sometimes using a local copy of the pointer to a
global variable is making a difference in latency

» Entirely eliminating streaming was getting the
lateny down from 24 to 19 microseconds. Selective
“de-streaming” along with making local copies of a
few global variables reduced it to 8.4 micro
seconds

» Still looking into issues with Nwchem performance
» Cray is also looking these issues

Pacific Northwest National Laboratory

Bane“e U.5. Department of Energy 27

GA on X1

» GA is being modified to utilize memory hierarchy
(caching) to attain better performance.

» Some kernels like matmul have already been
modified to take advantage of this

» Some of the GA kernels use algorithms to avoid
memory contention in shared memory machines

Pacific Northwest National Laboratory
eroy

Ba"e“e U.S. Department of Energy 28

perimental Results - Bandwidth

100000
> .
v—u—S_—@gw
10000 —=— GA Put -
ARMCI Put /
N
1000 /
100
10
1 ‘ ‘ . . . ‘
1 10 100 1000 10000 100000 1000000 10000000
Bytes
100000
10000 —o— GA Get _ PR=N “/\\A
ARMCI Get Vat
~
1000 /

/)]
g

100

10

1 ‘ ‘ . . . ‘
10 100 1000 10000 100000 1000000 10000000

Batielle

Bytes

Experimental Results - Latency

2.00E-05

1.80E-05

160E-05

—e— ARMCI Put
—u— GA Put
MPI

140E-05
120E-05 -

1.00E-05

8.00E-06

6.00E-06

o n}

4.00E-06 -

2.00E-06 -

0.00E+00

10 100 1000 10000 100000

2.00E-05

—o— ARMCI Get
180E-05

—8— GA Get
160E-05

MPI
140E-05
120E-05
100E-05 T
.___u_u——.—l—r'\/
8.00E-06 -
6.00E-06 -
4.00E-06 /
2.00E-06 ¢ ¢
0.00E+00 : : : :
1 10 100 1000 10000 100000
Baitelle

Pacific Northwest National Laboratory
U.5. Department of Energy 30

Lennard-Jones Simulation (MD)

» Molecular Dynamics (MD)
Simulation:

e Simulates particle systems
m Solids, liquids, gases
= Biomolecules on Earth
= Motion of stars, etc.

» GA Implementation:
o Based on force decomposition U(F)Z%KEJQ_(EH
e Dynamic Load Balancing ' '

Lennard Jones Potential

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 31

Batielle

MD Performance Results

MD numbers in seconds

12000

10000

\

8000
6000
4000
2000

Seconds

—o— MPI
——GA

10

#Procs

100

Lennard Jones MD, Force Decomposition, MPI (steve Plimptons) and GA

Pacific Northwest National Laboratory

U.5. Department of Energy 32

Conclusion

» GA model fits well on X1

» Performance tuning by
e selectively removing streaming from few small loops
e exploiting locality information
e Avoiding memory contention

» Issue with global variables needs to be understood

Pacific Northwest National Laboratory

Ba"e“e U.5. Department of Energy 33

