
HPCC Results

Nathan Wichmann
Benchmark Engineer

May 04 2

Outline

• What is HPCC?
• Results
• Comparing current machines
• Conclusions

May 04 3

HPCChallenge Project Goals
• To examine the performance of HPC

architectures using kernels with more
challenging memory access patterns than
HPL (Linpack).

• To augment the Top500 list

• To provide benchmarks that bound the
performance of many real applications as a
function of memory access characteristics.

http://icl.cs.utk.edu/hpcc/

May 04 4

HPC Challenge Benchmark

• HPCC is a recently introduced (Nov’03) benchmark
consisting of the following six main tests:
– HPL the Linpack TPP benchmark which measures the floating

point rate of execution for solving a linear system of equations.
– PTRANS (parallel matrix transpose), exercises the

communications where pairs of processors communicate with
each other simultaneously.

– STREAM, a simple synthetic benchmark program that measures
sustainable memory bandwidth (in GB/s) and the corresponding
computation rate for simple vector kernel.

– RandomAccess, measures the rate of random integer updates
of memory.

– beff (MPI bandwidth & latency test), a set of tests to measure the
latency and bandwidth of a number of simultaneous
communication patterns.

http://icl.cs.utk.edu/hpcc/

May 04 5

HPL - LINPACK

• HPL
– Global test which utilizes the entire machine
– Emphasizes

• Peak Processor speed, Number of processors

• Optimized input parameters but made no code
changes

May 04 6

HPL Results

Machine Name- # CPUS HPL- Tflops
Cray X1- 252 2.36
Cray X1- 124 1.18
Cray T3E- 1024 0.05
HP DEC Alpha- 484 0.62
IBM Power4- 504 0.90
Linux Networx- 256 1.03

May 04 7

PTRANS

• PTRANS
– Global test which utilizes the entire machine
– Emphasizes

• Network bandwidth and latency

• Performance is very chaotic
– Varies dramatically depending on block size, cpu

count, and problem size
– Uses BLACs software that cannot be easily optimized

• Optimization Plans
– Cray plans to rewrite PTRANS to directly use Co-Array

Fortran or UPC
– Expecting a significant speed increase

May 04 8

PTRANS Results

Machine Name- # CPUS GB/s
Cray X1- 252 96.1
Cray X1- 124 39.4
Cray T3E- 1024 10.3
HP DEC Alpha- 484 3.74
IBM Power4- 504 5.00
Linux Networx- 256 3.11

May 04 9

STREAM

• Examine effects of Single CPU vs. Star CPU runs
• Cumulative STREAM TRIAD

– Take *STREAM TRIAD number and multiply by the number
of CPUs to calculate aggregate bandwidth

– Emphasizes
• Per CPU bandwidth under loaded conditions
• Number of processors

• Optimizations
– Needed to make sure arrays were aligned on cache

boundaries

May 04 10

STREAM Results

Machine Name- #
CPUS

Single CPU
GB/s

Star CPU
GB/s

24.0 21.7
21.7
0.51
1.38
1.71
0.77

24.0
0.51
1.66
1.99
1.64

Aggregate
GB/s

Cray X1- 252 5478
Cray X1- 124 2697
Cray T3E- 1024 529
HP DEC Alpha- 484 672
IBM Power4- 504 864
Linux Networx- 256 198

May 04 11

Global Random Access

• Randomly generates indexes into a Global Table
– MPI version does a local sort, an ALL to ALL, and a local

gather/scatter
• Emphasizes

– Local Gather/Scatter, Global Network bandwidth
• MPI Optimizations

– Modified distribution of Table to eliminate if test
– Vectorized by sorting into different bucket for each element
– Replaced integer divide with cast and float point divide

• UPC optimization
– Wrote version is UPC (VERY EASY)
– Replaced integer divide with cast and float point divide

May 04 12

GUPS Results

Machine Name- # CPUS GUPs GUPs-UPC
Cray X1- 252 1.10

1.52
0.25
1.31
1.06
0.45
0.18
0.31

3.5
Cray X1- 124
Cray T3E- 1024

Cray X1- 32
HP DEC Alpha- 484
IBM Power4- 504

Cray X1- 60

Linux Networx- 256

May 04 13

Random Ring Latency
• Your “neighbor” is a random CPU in the machine
• Take per CPU Random Ring latency number and

produce a “small message per CPU bandwidth”
• Multiply that by the number of CPUs to calculate

aggregate short message bandwidth
• Emphasizes

– Scalar performance, Network Latency, # of processors
• Latency was by far the most difficult metric to

interpret when comparing machines
– Numbers vary by almost a factor if 50!!
– How much better is 10 µsecs vs 20 µsecs vs 100 µsecs?

May 04 14

Ring Latency & Bandwidth Opts
• UPC Optimizations

– Replaced MPI_Sendrecvs with equivalent UPC code

• MPI version of the ring test:
MPI_Sendrecv(sndbuf_right, msglenw, MPI_LONG, right_rank,

TO_RIGHT, rcvbuf_left, msglenw, MPI_LONG, left_rank, TO_RIGHT,
MPI_COMM_WORLD, &(statuses[0]));

MPI_Sendrecv(sndbuf_left, msglenw, MPI_LONG, left_rank, TO_LEFT,
rcvbuf_right, msglenw, MPI_LONG, right_rank, TO_LEFT,
MPI_COMM_WORLD, &(statuses[1]));

• UPC version of ring test:
upc_barrier;
for(i = 0; i < msglenw; i++){

upc_recvbuf_left[i][right_rank] = sndbuf_right[i];
upc_recvbuf_right[i][left_rank] = sndbuf_left[i]; }

upc_barrier;

May 04 15

Random Ring Latency Results

Machine Name- #
CPUS

per CPU
µsec

SM Band
MB/s

22.6 89.0
47.6
677
97.0
11.0
92.0

20.8
12.1
39.9
367
22.3

UPC
µsec - MB/s

Cray X1- 252 8 – 252
Cray X1- 124 8 – 124
Cray T3E- 1024
HP DEC Alpha- 484
IBM Power4- 504
Linux Networx- 256

May 04 16

Natural Ring Bandwidth

• Your neighbor is the next MPI process
• Take per CPU Natural Ring large message

bandwidth number
• Multiply that by the number of CPUs to calculate

aggregate large message bandwidth
• May not pressure the network bandwidth as much as

most codes. Most data movement likely to be within
a node and will NOT test the network.

• Emphasizes
– Local and Network Bandwidth, Number of CPUs

May 04 17

Natural Ring Bandwidth Results

Machine Name- #
CPUS

per CPU
GB/s

LM Aggr
Band GB/s

2.60 654.3
510.7
149.2
44.1
79.3
13.7

4.12
0.15
0.091
0.16
0.054

UPC
GB/s - GB/s

Cray X1- 252 6 – 1512
Cray X1- 124
Cray T3E- 1024
HP DEC Alpha- 484
IBM Power4- 504
Linux Networx- 256

May 04 18

Methods to Compare Machines Using HPCC

• Normalize scores
– In each category take test result and divide by the

combined power of all machines
• Creates a unitless number
• Equal to a percentage of total power

• Combine all 6 unitless numbers into 1 number
– Every test equal

• A question of what tests are included, not how to weight
each test

May 04 19

HPCC: 100% HPL

Machine Name- #CPUS Tflops

Cray X1- 252 2.35

Cray X1- 124 1.18

Cray X1- 60 0.58

Linux Networx- 256 1.03

IBM Power4- 504 0.903

IBM Power4- 256 0.654

HP DEC Alpha- 484 0.618

SGI Altix- 128 0.52

Results from http://icl.cs.utk.edu/hpcc/

May 04 20

HPCC: Equal Weighting

Machine Name- # CPUS HPCC Score HPL
Order

Cray X1- 252 26.5 1
Cray X1- 124 16.4 2
Cray T3E- 1024 10.2 16

Cray X1- 32 6.43 10
HP DEC Alpha- 484 4.54 6
IBM Power4- 504 4.15 4

Cray X1- 60 9.75 7

Linux Networx- 256 3.99 3

IBM Power4 256 CPU now #12; SGI Altix 128 CPU now #14

May 04 21

Conclusions
• The Cray X1 has superior single CPU bandwidth

compared to other machines
• The Cray X1 can achieve good GUPs numbers using MPI,

but it does not scale well
• The Cray X1 has very good MPI latencies when compared

using a Random Ring test
– The T3E is outstanding
– Latency is very difficult to interpret, performance varies

significantly from machine to machine
• UPC, or Co-Array Fortran, can substantially improve

performance
– Two to Three times faster
– Much easier to code

• HPCC is a powerful new tool for examining machine
performance using more challenging kernels

	HPCC Results
	Outline
	HPCChallenge Project Goals
	HPC Challenge Benchmark
	HPL - LINPACK
	HPL Results
	PTRANS
	PTRANS Results
	STREAM
	STREAM Results
	Global Random Access
	GUPS Results
	Random Ring Latency
	Ring Latency & Bandwidth Opts
	Random Ring Latency Results
	Natural Ring Bandwidth
	Natural Ring Bandwidth Results
	Methods to Compare Machines Using HPCC
	HPCC: 100% HPL
	HPCC: Equal Weighting
	Conclusions

