
Cray Proprietary

Application
Scheduling

 Psched Explained

May 2004 Richard Lagerstrom 2

Introduction

• Definitions

• Application placement rules

• Migration and checkpoint/restart

• Prime applications

• Gang scheduling

• Load balancing

• Memory management

• Configuration flexibility

• Recovery features

May 2004 Richard Lagerstrom 3

Definitions – 1

• Node- 4 MSPs/16 SSPs and a single cache
domain of memory

• Module-
– X1: consists of one node named cache domain 0

– X1E: consists of two nodes named cache domain 0
and cache domain 1

• Node numbers are
– cache domain 0: 2 * moduleNumber

– cache domain 1: 2 * moduleNumber + 1

May 2004 Richard Lagerstrom 4

Definitions – 2

Placement reserves resources for applications
on each module and node

• The kernel CPU scheduler selects the
processors for each application. Placement
cannot choose which processors on a node
an app will be given

• By selecting which apps are eligible to
execute at the same time, placement
guarantees processor competition does not
occur

May 2004 Richard Lagerstrom 5

Application Placement

• GASID assignment

• Power-of-2 PEs per module

• Memory residency rule

• Module contiguity rule

• What does depth mean?

• Shape freezing

May 2004 Richard Lagerstrom 6

GASID Assignment

• Required by each ACX module-spanning app

• Each app uses the same GASID over all
occupied modules

• Property of the MCM – four GASIDs / module

• May be donated to a prime app. Donor is
suspended but may migrate and run.

• Is reallocated for migration and restart

May 2004 Richard Lagerstrom 7

Power-of-2 PEs Per Module

• The off-node addressing model requires that
every module allocated to an app but the last
has the same power-of-2 PE count.

• Placement will fill modules with PEs unless
the aprun –N option alters that behavior or
memory requirements or partial modules need
smaller PE counts to observe the uniform
power-of-2 rule.

May 2004 Richard Lagerstrom 8

Memory Residency Rule

• A module-spanning app is a real memory app

• A single module app is a VM app

• An off-module memory reference must not
generate an exception (page fault) if the app is
to survive so all app memory is pinned during
execution

• The gang scheduler and kernel coordinate real
memory residency for executing apps

May 2004 Richard Lagerstrom 9

Module Contiguity Rule

• An ACX app must be placed on contiguous
modules and cannot wrap

• A FLX app need not be placed on contiguous
modules and may wrap

May 2004 Richard Lagerstrom 10

What Does Depth Mean?

• Depth is the number of processors per PE
specified with the aprun –d option

• All of the processors for a PE must be in the
same cache domain (node – not module)

• Maximum depth for an MSP app is 4

• Maximum depth for an SSP app is 16

• Placement simply reserves the processors;
the app must be able to use them

May 2004 Richard Lagerstrom 11

Shape Freezing

• The shape an app (PEs per module) is
originally given cannot be changed because
the PE to module mapping is established by
startup and patched into the app

• The aprun –N option exploits this placement
restriction by making an initial launch appear
as a restart to the app allocation function

May 2004 Richard Lagerstrom 12

How Migration Works

• A target placement list is created

• The app is deselected – it stops executing

• RTT memory pages are unlocked

• The apteam placement list and GASID
assignment are changed by psched

• The app context moves to the target modules

• Psched selects the app for execution
– Memory is copied by each module in parallel from

the source to the target and locked

– When all of the memory is locked, app execution
continues

May 2004 Richard Lagerstrom 13

Checkpoint and Restart

• Psched is not involved with checkpoint

• Restart is a combination of application
recovery and posting
– Restart creates an apteam with the psched

recovery data restored from the checkpoint

– Restart makes a special posting request to psched

– Psched recovers the app information from the
apteam and reconstructs its internal representation

– Psched finds a place for the app and signals restart
to restore the app in the allocated places

– Psched now treats the app normally

May 2004 Richard Lagerstrom 14

Launching a Prime App

• Prime can be specified by a privileged user
(having psched a or p privilege) with the
aprun –f option

• Prime can be set by the administrator with
psmgr –f <apid>

• Try not to create competing prime apps

May 2004 Richard Lagerstrom 15

Placing a Prime App

• If there is a place, launch it marked as prime

• Otherwise
– Find a place for the app ignoring GASID availability

– Identify all apps that must donate their GASID.
Mark them donors, deselect them, remove their
GASID assignment and change them to FLX

– Assign the donated GASID to the prime app

– Select the app for execution and mark it prime

May 2004 Richard Lagerstrom 16

What Happens to the Donors?

• The donors are “under” the prime and cannot
execute
– A donor may be migrated to a place with an

available GASID and resume execution

– A donor may wait under the prime until the prime
exits and its donated GASID is returned. (The
GASID need not have the same number as the one
donated)

May 2004 Richard Lagerstrom 17

Gang Scheduling

Gang scheduling is active only when memory
and/or processors are oversubscribed

• Gang – the processors assigned to an app are
a gang

• Party – all of the gangs that can execute
together without interference are a party

• Inter-gang interference issues

• Context switching strategy

May 2004 Richard Lagerstrom 18

Inter-gang Interference

• Processors cannot be oversubscribed on a
node because application synchronization will
not be stable if the local kernel is doing CPU
scheduling for the app

• Executing applications cannot oversubscribe
memory on a node because module-spanning
apps must have shared (RTT) memory locked
during execution

May 2004 Richard Lagerstrom 19

Gang / Party Relationship

• The top placement needs two time slices, only one app runs per slice
and 3 or 5 modules are idle during a slice.

• The lower placement needs one time slice to run both apps and all modules
are used.

 0 1 2 3 4 5 6 7 Module

App A

App B

Poor placement with
2 gangs and 2 parties.

App A Good placement with
2 gangs and 1 party.

App B

May 2004 Richard Lagerstrom 20

Context Switching Strategy

• Context switching proceeds in 2 steps:
– One system call provided with a list of apids is

used to disconnect. This synchronously stops
execution and unlocks RTT memory pages

– A dedicated thread for each connecting app makes
a connect system call

• Psched will connect 16 apps in parallel. Each
node manages its own memory pages so a
great deal of parallel work speeds the
connection process

May 2004 Richard Lagerstrom 21

Load Balancing – 1

• Launch applications

• Migrate apps according to the rules

• Implement manual migration requests

• Find a place for a prime app by identifying
donors of GASIDs, memory and processors
so the prime app can be placed

Migration can take some time to complete so
psched tries constantly to satisfy the rules
assuming the resources will be needed for

new work

May 2004 Richard Lagerstrom 22

Load Balancing – 2

• Rules can be changed during operation

• Rule changes take effect on the next launch or
balance cycle

• An induced migration will have its reason for
migration logged

• If “NoPreemptiveMigration” is true, migration
will only occur
– if there is a backlog of posted apps or

– the population has changed since the last time.

• Only one launch or migration at once will be
scheduled

May 2004 Richard Lagerstrom 23

Placement Vector Ordering

An evaluation cycle begins with a list of
possible places for the application. The order
of the list is important since the first “best”

place will be chosen.

The two primary sorting rules defined in
SortRules are:

LabelScore and Distance

With sub-ordering by:

wrap and gravity

May 2004 Richard Lagerstrom 24

LabelScore

Move places matching the requested label to the
top of the list

• This rule attracts the application to places
with a matching soft label. Hard label
mismatches will never appear in the list of
possible places.

Always define this rule first

May 2004 Richard Lagerstrom 25

Distance

This rule orders the list by increasing maximum
hop count.

• Although this rule would typically improve the
performance of tightly synchronized apps, it
tends to badly fragment the application space.

• For this reason and because it appears to
place apps in seemingly arbitrary places, use
of this rule is not recommended. (Unless you
want to constantly answer the question, “Why
is my app placed where it is?”)

May 2004 Richard Lagerstrom 26

Wrap and Gravity

These rules are always used in this order

• The wrap rule favors places that do not wrap
from high to low modules.

• The gravity rule orders the placement list by
increasing distance from the gravity edge (low
or high) of the application space.

The placement list is now prepared for
presentation to

the six rules of load balancing…

May 2004 Richard Lagerstrom 27

Load Balancing – 6 Rules

• The six rules:
– Prime

– Swapping

– Parties

– Fragmentation

– Utilization

– Idle

• A rule returns “better”, “equal” or “worse”

• The order they appear in the Rules config
variable is followed for evaluation. The first
better/worse decision stops evaluation.

May 2004 Richard Lagerstrom 28

Load Balancing – Prime

Minimize the number of stacked prime apps

• This rule chooses a scenario that has the
fewest interfering prime applications.

This rule should always be present and appear
first in the list of rules to give best service to

prime applications.

May 2004 Richard Lagerstrom 29

Load Balancing – Swapping

Minimize node memory allocation

The name was inherited from the Cray T3E and
is technically incorrect for the X1

• This rule chooses a scenario with the least
amount of node memory allocation – to
minimize memory oversubscription

May 2004 Richard Lagerstrom 30

Load Balancing - Parties

Maximize the number of concurrent applications
in execution

• An application position is picked that
minimizes the number of parties (time slices)
required to execute all of the placed
applications.

May 2004 Richard Lagerstrom 31

Load Balancing - Fragmentation

This is a complex rule that often exhibits
unexpected behavior because of its four very

different comparisons

• In this order select the first of:
– the minimum number of allocated modules

– the minimum number of fragments

– a larger unallocated span of modules

– a choice that matches gravity direction

May 2004 Richard Lagerstrom 32

Load Balancing - Utilization

Maximize the number of allocated modules

• This rule minimizes the amount of module
processor oversubscription

A porting error makes this rule ineffective

May 2004 Richard Lagerstrom 33

Load Balancing - Idle

Maximize the number of idle modules

• Useful in an environment where it is important
to leave as many empty modules as possible
for assignment to a newly posted app

• This rule may oversubscribe modules when it
might not be necessary since the the future
workload is unknown

May 2004 Richard Lagerstrom 34

Memory Management – 1

Starting with UNICOS/mp 2.4, psched will use
memory as an allocation attribute.

• A startup problem requires apps to be
relinked to run with memory management
enabled.

• For 2.4 ONLY psched can be configured to
mimic 2.3 memory management behavior.
This is done by setting
/Global/UseMemoryLimit to 0. This variable
will be disabled in release 2.5

May 2004 Richard Lagerstrom 35

Memory Management – 2

• An app without an aprun memory size (-m
option) specification will by default be given _
node memory if MSP and 1/16 node memory if
SSP

• Memory size defaults are configured with
/Global/DefaultMemoryMsp and
/Global/DefaultMemorySsp

• An explicit UNLIMITED memory specification
will mean all of the memory on a node

May 2004 Richard Lagerstrom 36

Memory Management – 3

Memory oversubscription: unlimited
Processor oversubscription: 1

Memory use is defined as what is declared
NOT what is actually allocated.

Limits prevent abuse.

• Multiple parties will be created if two or more
applications allocated to a node together use
more than the total memory. This causes time
slicing.

• Setting memory oversubscription to 1
eliminates time slicing

May 2004 Richard Lagerstrom 37

Configuration Flexibility – 1

• Region: a named set of one or more modules
having identical gates and limits. The modules
making up a region may not appear in another
region

• Domain: a named instance of load balancing
and gang scheduling with its own
configuration, gates, limits and region list. A
region may be named in only one domain.

Experience with the X1 suggests that a single
domain made up one or more regions is the

most useful and flexible configuration

May 2004 Richard Lagerstrom 38

Configuration Flexibility – 2

• Configuration variable values can be changed
dynamically and their new values will be used

• The content of a domain or region are frozen
when psched is initialized
– Gates or limits cannot be added or removed

although their values may be changed

– Regions cannot be added or removed from a
domain

– Modules cannot be added or removed from a
region

May 2004 Richard Lagerstrom 39

Configuration Flexibility – 3

• If variables are deprecated, psched will
tolerate old psmgr.config files

• Typically a callback is added so the value of a
deprecated variable cannot be changed by
psmgr

• Whenever possible new variables will be
forced to a default value so old psched.conf
files will work

The administrator should watch for changes

May 2004 Richard Lagerstrom 40

Psched Recovery – 1

• All needed application state information is
recorded in the apteam kernel structure.

• Psched recovers running app information
when it initializes.

• It is usually safe to stop psched with SIGINT
or SIGTERM and restart it for upgrade or other
purposes.

• Removing modules from the scheduling
domain will make recovery of apps allocated
to removed modules impossible.

May 2004 Richard Lagerstrom 41

Psched Recovery – 2

• Trace messages are recorded in the psched
log file when the daemon terminates. Traces
can be useful along with the remainder of the
log file to understand scheduling events.

• The trace buffer is circular so a record of
events is not retained forever. If a trace record
is desired, send psched a SIGUSR2 to cause a
dump of the current trace buffer to the log
without disrupting operation.

• We can extract traces from a core file with a
debugger.

May 2004 Richard Lagerstrom 42

End

• Questions

• Comments

• Discussion

