Parallel Position-Specific Iterated Smith-Waterman Algorithm

Implementation

Witold Rudnicki, Rafal Maszkowski,
Lukasz Bolikowski, Maciej Cytowski, Maciej Dobrzynski, Maria Fronczak
Interdisciplinary Center of Mathematical
and Computational Modeling,
Warsaw University

May 2006

ABSTRACT: We have implemented a parallel version of Position-Specific Iterated Smith-Waterman
algorithm using UPC. The core Smith- Waterman implementation is vectorized for Cray X1E, but it is possible
to use an FPGA core instead. The quality of results and performance are discussed.

KEYWORDS: Cray X1E, UPC, bioinformatics, Smith-Waterman, sequence alignment

1 Introduction

The aim of this paper is to briefly summarize
some technical aspects of implementing the Position-
Specific Iterated Smith-Waterman algorithm for lo-
cal sequence alignment on Cray architecture.

The project was initiated at the Interdisciplinary
Center of Modeling in 2002. At first, our goal was
to test the capabilities of the BMM unitﬂ by imple-
menting the original Smith-Waterman algoritm on
Cray SV1. At that time there was no BioLiéﬂ pack-
age, nevertheless an equivalent tool was necessary.
It turned out that the Smith-Waterman algoritm it-
self cannot substantially benefit from the BMM, but
a better understanding of the unit allowed us to de-
sign certain filters that would limit the number of
calls to the S-W routine. This work was presented
by Lukasz Bolikowski on CUG 2005 conference in
Albuquerqe.

Finally, as Cray X1 appeared at ICM, it was fea-
sible to implement the iterated version of S-W (PSI
S-W), in a fashion similar to the PSI BLASTﬂ It

was tempting to check whether such approach could
be competitive to PST BLAST in terms of speed, and
whether the alignments obtained by PSI S-W could
be substantially better than ones obtained by PSI
BLAST. We have parallelized our code with UP(ﬂ

2 Theory

2.1 Sequence alignments

The purpose of Smith-Waterman algorithm is to find
a local alignment of two sequences that is maximal
according to the chosen scoring system.

The sequences are simply strings of letters: there
are 20 letters to choose from in case of amino acids
and 4 letters in case of nucleotides. Let us explain
what a local alignment is by an example. Take two
amino acid sequences:
MDRKVTPGSTCAVFGLGGVGLSAIMGFIL
and
MKLNPGSSGHGGMGATMTSAVMGDRNN.

1Bit Matrix Multiply (BMM) is a hardware functional unit available on Cray SV1 and Cray X1 architectures that performs
fast multiplication of two 64x64 bit matrices (the adds and multiplies are modulo 2)

2Cray Bioinformatics Library (BioLib) is a set of routines for nucleotide and amino acid sequence manipulation

3Position-Specific Tterated Basic Local Alignment Search Tool (PSI BLAST) is the most popular tool for local sequence
alignment. It is a very fast heuristic, while S-W is an exact and time consuming algorithm

4Unified Parallel C - is an extension of the C programming language designed for high-performance computing on large-scale
parallel machines, including those with a common global address space (SMP and NUMA) and those with distributed memory

(eg. clusters).



The optimal local alignment for the two is:

Query: 4 KVTPGSTCAVFGLGGVG---LSAIMG 26
K+ PGS+ G GG+G SA+MG
Sbjct: 2 KLNPGSS----GHGGMGATMTSAVMG 23

The top row is a fragment of the first sequence,
the bottom row is a fragment of the second one.
Each letter of a sequence is assigned to a letter in
the other sequence, or to a gap between two consec-
utive letters in the other sequence.

A scoring system for all alignments shall be de-
fined to select the optimal alignment from the set
of all possibilities. The system used by the Smith-
Waterman algorithm is based on the probability of
various mutations, such as replacements, insertions
and deletions, in the protein sequences.

The score of an alignment is computed as fol-
lows: each aligned pair of letters is given an integer
value, and the values are summed up. Then each
gap of length [ is given a penalty G + [E, where
G and E are constants named gap opening penalty
and gap extension penalty. Finally, all the penalties
are substracted from the sum and the result is the
alignment score.

The scoring system is, thus, respresented by a
symmetric table T of scores for each pair of letters,
and a pair (G, E) of penalties. The table is 20 x 20
for amino acids and 4 x 4 for nucleotides. A frag-
ment of BLOSUMG62, a popular amino acid scoring
table, is shown below:

A R N D C Q E
A 4 1 2 2 0 -1 -1
R -1 5 0 -2 3 1 0
N 2 0 6 1 -3 0 0
D 2 2 1 6 -3 0 2
C 0 -3 3 3 9 3 4
Q -1 1 0 0 -3 5 2
E -1 0 0 2 4 2 5

Note that the diagonal elements are always posi-
tive and greater than any other one in the row. This
is natural, since alignment of a sequence A with it-
self (a perfect alignment) should have score greater
than any alignment of A with a different sequence.

2.2 Smith-Waterman algorithm

The Smith-Waterman is a simple dynamic program-
ming algorithm. Let A and B be the two sequences
being aligned. It starts by allocating a table S of

dimensions equal to the lengths of A and B. Then
it fills the table from upper-left to bottom-right (by
rows, columns or antidiagonals — any of these orders
is good) with value:

Si—1,j—1 +T(A;, By)
max;—1,;(S; j—1 — (G + E 1))
maxg—1,(Si—k,; — (G+ E*k))

0

S;; = max

(1)

G and FE here stands for gap penalties: G when
a gap is opened and F, when it is extended. The
intuitive meaning of a value S; ; is the score of the
best local alignment ending at A;, B;.

At each step, when a maximum value is found, it
should be recorded from which direction the result
was obtained: diagonal, top, left, or none. The ta-
ble S together with information about the directions
provide enough data to find the best local alignment.

To find the best alignment, one has to do as fol-
lows. First, find the maximum value within table
S. This is the end of the highest scoring local align-
ment. Then, backtrace from the cell in the recorded
direction. A diagonal move from S;_; ;-1 to S;;
represents an aligned letter pair A;, B;; a horizon-
tal move from S;_;; to S;; represents A; aligned
with a gap between B;_; and Bj; a vertical move
is analogous to the horizontal one; while max = 0
at S; ; means the optimal local alignment starts at

Sit1,j+1-

2.3 Database searches and PSI S-W

A typical use of a local alignment algorithm is such:
one sequence, a query, is aligned against a database
of sequences, one by one. The most significant align-
ments, and their corresponding sequences are pre-
sented to the user.

Position Specific Iterated Smith Waterman (PSI-
SW) is an extension of the original SW algo-
rithm analogous to the PSI-BLAST extension of the
BLAST algorithm. In this algorithm the single scor-
ing table is replaced by the position specific scor-
ing matrix (PSSM or profile). A set of unique 20
scores for each amino acid in the query sequence
is used. These scores are obtained in the iterative
self-consistent procedure. In the first step the scores
from the similarity matrix, such as BLOSUMG62 are
used to find the set of homologous sequences. Then
all sequences are aligned with the query and frequen-
cies of the aminoacid appearance at each position is



computed and translated into the scores in the posi-
tion specific scoring matrix. Then a new search for
the homologous sequences is performed using new
PSSM, presumably leading to finding more homolo-
gous sequences than in the search with the original
socring matrix. This procedure is repeated until no
more new sequences are found.

3 Implementation

3.1 Core S-W

The core Smith-Waterman algorithm is quite
straightforward to implement. One crucial observa-
tion is that updating the S table should be done by
antidiagonals, since all operations on a antidiagonal
are then independent of each other, which enables
vectorization.

3.2 PSIS-W

The implementation of PSI S-W algorithm was also
straightforward. It required certain changes to the
original S-W code, since the iterated version intro-
duces Position-Specific Scoring Matrices (PSSM) in-
stead of the traditional scoring tables.

3.3 Parallel UPC implementation

Application of the Smith-Waterman algorithm for
the database search is a naturally parallel task, since
one can split the task into N sub-tasks, each on the
seperate fragment of the database. We use this ap-
proach in this study.

There are two possible bottlenecks in the parallel
implementation of the algorithm. First is a possible
load inbalance due to the unbalanced database split.
We applied the following procedure to minimize this
inbalance: All proteins in the database were sorted
with respect to their lenght. Then, starting with
the shortest sequences we put each sequence one by
one into actually smallest set. Note that usually one
compares sequences to some well known databases
which can be split into N parts in advance.

Another possible bottleneck arises due to the
application of the parallel library in the implemen-
tation. The library enforces co-ordination between
processors, which may slow down the execution,
when proteins of different lengths are executed on
different CPU’s. Nevertheless we decided to use the
parallel library, because we need to collect the re-
sults from each processor after each single iteration

in order to compute a new position specific matrix.
Such a matrix is than used as a substitution matrix
in next iteration. The UPC was used, because it
is user friendly parallel library, which is also well
suited for the CrayX1E architecture.

3.4 Fast S-W step
Classical S-W algorithm consists of two main steps:

e finding the maximal score by dynamic pro-
gramming scheme

e reconstructing the path to the maximal score

To perform the second step one needs to keep adi-
tional data to remember where we came from in each
single entry of our dynamic programming matrix.
This slows down the code considerably. Also, usually
the number of statistically significant hits is signifi-
cantly smaller then number of proteins in database.
Therefore we don’t need to perform path reconstruc-
tion in most cases.

We have implemented two S-W procedures: one
which finds the maximum score and one which per-
forms full S-W algorithm including the path recon-
struction step. Each time we run the first fast pro-
cedure to check if E-value of the best alignment is
better than preset threshold. If it does, the full S-W
procedure is called. On average this implementation
is 50% faster than full S-W procedure.

3.5 FPGA implementation

The fast S-W step can be even faster if we use a
special architecture. The work towards implemen-
tation of the Smith-Waterman algorithm are under
way in our laboratory. Preliminary tests showed
that FPGA implementation can be up to 100 times
faster then a standard PC implementation, compa-
rable in speed with BLAST. This opens very inter-
esting option for implementation of the PSI-SW for
Cray XD1 architecture.

3.6 Statistics, user interface

The tool output is similar to the reports generated
by BLAST for at least two important reasons: the
reports are easy to read, and is familiar for most
potential users.

An important step in selecting the alignments
that are to be reported to the user is to assess their



statistical significance. The tool assesses the signifi-
cance using Karlin-Altschul-Dembo theory, the same
that is used by BLAST ([4], [5]).

4 Performance

4.1 Quality of results

We have performed the test using the SCOP classifi-
cation of the protein domains. We checked sensitiv-
ity of the searches, for all proteins from PDB with
similarity lower than 98%. We compared results of
PSI BLAST and PSI S-W algorithms.

The preliminary results suggest, that for identi-
cal parameters for the PSI procedure, the PSI SW
has slightly higher sensitivity, but lower specificity.
The testing procedure is under way and results will
be reported elsewhere.

4.2 Speed of execution

We have tested the scaling of our parallel implemen-
tation. The results are shown in Figure 1:

PSISmith-Waterman URC scaling (SSP)
i f R

16 | T

Fig.1 Scaling of PSI S-W parallel UPC
implementation on Cray X1E.

5 Conclusions

The Smith-Waterman algorithm has been imple-
mented on X1 architecture, independently from the
implementation included in Cray BioLib, with sim-
ilar performance. The parallel UPC version of the
program has been implemented, and reasonable par-
allel scaling has been achieved. The performance of
the code on the vector architecture is significantly
higher than on the PC, neverthless it is still at least
order of magnitude slower than that of PSI-BLAST

- the standard tool used for homology searches. Im-
plementation of SW core algorithm to the FPGA
architecture is underway in our laboratory, which
might have performance comparable to current im-
plementations of BLAST.

Sensitivity and specificity of the PSI S-W has
been compared with PSI BLAST, with PSI S-W dis-
playing slightly higher sensitivity and PST BLAST
displaying higher specificity, for the same set of PSI
parameters.

About the authors

The project was led by Dr.Witold Rudnicki,
Deputy Director, HPC Division, ICM. His scien-
tific research focuses on bioinformatics and HPC.
He can be reached at: ICM Warsaw Univer-
sity, Pawinskiego 5A blok D, 02-106 Warsaw,
Poland, e-mail: rudnicki@icm.edu.pl. Lukasz Bo-
likowski, Maciej Cytowski, Maria Fronczak and
Rafal Maszkowski are Software Developers at ICM.
Maciej Dobrzynski was a student of Dr. Rudnicki in
an early stage of the project.

A large portion of work was done by Witold
Rudnicki and Rafal Maszkowski, who initiated the
project. Witold was responsible for the theoretical
design, while Rafal implemented the core S-W.

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers,
E.W. and Lipman D.J. (1990) Basic local align-
ment search tool, J. Mol. Biol., 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schaffer, A.A.,
Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.
(1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.
Nucleic Acids Res. 25, 3389-402.

[3] Henikoff, S. and Henikoff, J.G. (1992) Amino
acid substitution matrices from protein blocks,
Proc. Natl. Acad. Sci. USA, 89, 10915-10919.

[4] Karlin, S., Altschul, S.F. (1990) Method for
assessing the statistical significance of molecu-
lar sequence features by using general scoring

schemes, Proceedings of the National Academy
of Science, USA 87, 2264-2268.



[5] Karlin, S., and Dembo, A. (1992) Limit distribu-
tions of maximal segmental score among markov-
dependent partial sums, Advances in Applied
Probability 24, 113-140.

[6] Pearson, W.R. and Lipman, D.J. (1988) Im-
proved tools for biological sequence comparison,
P. Natl Acad. Sci. USA, 85, 2444-2448.

[7]

Wootton, J. C. and S. Federhen (1993). Statistics
of local complexity in amino acid sequences and
sequence databases. Computers in Chemistry 17,
149-163.

Wootton, J. C. and S. Federhen (1996). Analy-
sis of compositionally biased regions in sequence
databases. Methods in Enzymology 266, 554-571.



	Introduction
	Theory
	Sequence alignments
	Smith-Waterman algorithm
	Database searches and PSI S-W

	Implementation
	Core S-W
	PSI S-W
	Parallel UPC implementation
	Fast S-W step
	FPGA implementation
	Statistics, user interface

	Performance
	Quality of results
	Speed of execution

	Conclusions

