
Debugging Memory Problems on
Cray XT3 Supercomputers with
TotalView Debugger

Chris Gottbrath, Ariel Burton
TotalView Technologies

Robert Moench, Luiz DeRose
Cray

What is TotalView?

• Source Code Debugger
– C, C++, Fortran 77, Fortran90,

UPC
• Complex Language

Features
– Wide Compiler and Platform

Support
– Multi-Threaded Debugging
– Parallel Debugging

• MPI, PVM, Others
– Remote Debugging
– Memory Debugging

capabilities
• Integrated into the

debugger
– Powerful and Easy GUI

• Visualization
– CLI for Scripting

Supported Compilers, Distributions and
Architectures

• Platform Support
– Linux x86, x86-64, ia64, Power
– Mac Power and Intel
– Solaris Sparc and AMD64
– AIX, Tru64, IRIX
– Cray X1, XT3, IBM BGL

• Languages / Compilers
– C/C++, Fortran, UPC, Assembly
– Many Commercial & Open Source Compilers

• Parallel Environments
– MPI (MPICH1 & 2, LAM, Open MPI, poe, MPT, Quadrics,

MVAPICH, & many others)
– UPC

Message Queue Debugging

• Message Queue
Graph

• Message Inspection
• Cycle detection

– Find deadlocks

TotalView Parallel Debugger
Architecture for Cluster Debugging

• Cluster Architecture
– Single Front End (TotalView)

• GUI and debug engine

– Debugger Agents (tvdsvr)
• Low overhead, 1 per node
• Traces multiple rank processes

– TotalView communicates
 directly with tvdsvrs
• Not using MPI
• Optimized Protocol

• Provides: Robust, Scalable, Minimal
Interaction

Interface Node

Compute Nodes

……
…

Compute Nodes

TotalView starts a
set of Lightweight
debugger servers

Interface Node

Subset Attach

• TotalView does not need
to be attached to the
entire job
– You can be attached to

different subsets at different
times through the run

• You can attach to a subset,
run till you see trouble and
then 'fan out' to look at more
processes if necessary.

– This greatly reduces
overhead

• There is a danger of missing
things

TotalView Parallel Debugger
Architecture for the Cray XT3

Compute Node

Service Node

Login Node/Front End

Application code

Library code

Catamount kernel

Kernel

tvdsvr

TotalView

Memory Debugging with TotalView

• Application runs with a component called the
Heap Interposition Agent (HIA)

• NO source code modification
• Usually engaged automatically by TotalView

– simple as starting the application under TotalView and
enabling Memory Debugging in the GUI

– sometimes more explicit steps are required

• Monitors the application's interactions with the
Heap Manager

• Integrated with the Debugger
– data displays annotated with information from the HIA
– error and event notification
– view the current state of the heap, compare with earlier state

• Low overhead

Enabling TotalView Memory
Debugging on the Cray XT3

• Cray XT3 Compute Node executables are
statically linked
– executable must be linked with the HIA:

• cc -g app.c

• cc -o app app.o -Lpath -ltvheap_xt3 -lgmalloc

• Normally a parallel job is started using the yod
launcher:

• yod -sz=256 app

• Instead, start TotalView on yod:
• totalview yod -a -sz=256 app

Integration with TotalView ---
Pointer Annotation

• Based on information from the HIA

• Shows

– Allocated

– Allocated Interior

– Deallocated

– Deallocated Interior

– Corrupted Guard
Block(s)

Memory Debugging with TotalView

• Heap Manager API Errors
• Read-before-Write --- reading uninitialized data
• Use-after-free --- dangling pointers
• Bounds Errors
• Leaks

Heap Manager API Errors

• HIA monitors calls to the Heap Manager
• Checks arguments and return values
• Updates its tables
• Checks for errors, e.g.:

– Double free()

– free() interior

– free() unknown

– realloc() errors

– Invalid alignment
– Checks guards (more later)

• Notifies TotalView

Event Filtering

• Notification can be restricted to a set of events of
interest

Read-before-Write --- Reading
Uninitialized Data

• Program reads from a newly allocated area before
initializing its contents

• Can be difficult to find because a program may
have worked in the past, or appears to fail non-
deterministically

• Trivial example:

snooker_ball_t *red = malloc (sizeof (*red));
int value = red->value;

current_score += value;

Painting

– The HIA can paint blocks on
• allocation
• deallocation

– Paint Pattern
• defaults are

unlikely values
• can be customized

– Look for pattern
– Trigger fault on

dereference
– Intended to provoke noticeable and consistent

numerical errors in arithmetic, or trigger exception
– Temporarily fix problem

Use-after-Free --- Dangling Pointers

• Application continues to use a block after it has
been released back to the Memory Manager

• Confusion over block ownership in complex
codes with many libraries

• Can be difficult to find because point failure may
depend on when block is reused

• TotalView can help:
– annotations on data displays
– painting
– tagging
– hoarding

Tagging and Hoarding

• Tagging
– tag an allocation so that when it is passed to the Heap

Manager for reuse, an event is raised
– use when you know which block is being used-after-free, but

don't know where the block is being freed

• Hoarding
– released blocks are not immediately passed to the Heap

Manager for reuse, but retained by the HIA
– allows the application to run safely for a while after the

premature deallocation

Bounds Errors

• TotalView can help find certain bounds errors by
adding guard regions to allocations
– optionally 'pre' and/or 'post' guards
– sizes and patterns can be specified
– alignment constraints are preserved

• Guards checked by the HIA when a block is
deallocated
– if a guard is found to be have been corrupted, an error is

raised

• Full guard check can be initiated at any time from
TotalView

• Choice of patterns may trigger errors earlier (ala
painting)

Bounds errors/...

Leaks

• Application deletes, or overwrites the last
reference to a block before releasing the block

• Memory can no longer be accessed by the
program, and cannot be reused by the Heap
Manager

• Confusion over block ownership in complex
codes with many libraries

• Performance loss, increase in resource usage
• TotalView can help:

– find leaks
– heap reports and analysis
– heap state comparisons

Leak Detection

• Performed by TotalView at the request of the user
• Performs analysis similar to the first phases of a

'Mark-and-Sweep' Garbage Collector
• Conservative --- will not report anything active as

a leak
• Results presented in TotalView's Heap Views:

– Heap Graphical View
– Heap Source View

Heap Graphical View

Heap Graphical View/...

Heap Source View

Heap View Filters

• Filter views so that only blocks with certain
properties are shown

Filtered Heap Graphical View

Heap Comparisons

• At any point, save the state of the heap, including:
– allocated and deallocated blocks
– leaks
– guard states
– full stack backtraces and source code snippets

• Read in at a later time
– process may have terminated

• Compare different snapshots

Heap Comparisons/...

Try it Yourself!

• Kick the Tires
– Sign up for a 15 day evaluation at http://www.totalviewtech.com

• Get more Info
– Full Documentation available on line at

http://www.totalviewtech.com
– Watch a webcast at http://www.totalviewtech.com

• Introduction to TotalView Source Code Debugger
• Introduction to Memory Debugging

– Contact us at info@totalviewtech.com

http://www.totalviewtech.com/
http://www.totalviewtech.com/
mailto:info@totalviewtech.com

