Chapel: Global HPCC Benchmarks
and Status Update

Brad Chamberlain
Chapel Team

CUG 2007
May 7, 2007

Chapel
Chapel: a new parallel language being developed by Cray

* Themes:

general parallelism
= data-, task-, nested parallelism using global-view abstractions
= general parallel architectures

locality control
= data distribution
= task placement (typically data-driven)

narrow gap between mainstream and parallel languages
= object-oriented programming (OOP)
= type inference and generic programming

CUG 2007 : Chapel (2) D M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 1

B CRAY
Chapel’s Setting: HPCS

= HPCS: High Productivity Computing Systems
* Goal: Raise productivity by 10x for the year 2010
* Productivity = Performance
+ Programmability
+ Portability
+ Robustness

= Phase Il: Cray, IBM, Sun (July 2003 — June 2006)
* Evaluation of the entire system architecture’s impact on productivity...
= processors, memory, network, I/O, OS, runtime, compilers, tools, ...
= ...and new languages:
IBM: X10 Sun: Fortress Cray: Chapel

= Phase lll: Cray, IBM (July 2006 — 2010)
* Implement the systems and technologies resulting from phase I

CUG 2007 : Chapel (3) @ M

e CRAY
Chapel and Productivity

= Chapel's Productivity Goals:
* vastly improve programmability over current languages/models
= writing parallel codes
= reading, modifying, maintaining, tuning them

* support performance at least as good as MPI
= competitive with MPI on generic clusters
= better than MPI on more productive architectures like Cray’s

* improve portability compared to current languages/models
= as ubiquitous as MPI, but with fewer architectural assumptions
= more portable than OpenMP, UPC, CAF, ...

* improve code robustness via improved semantics and concepts
= eliminate common error cases altogether
= better abstractions to help avoid other errors

CUG 2007 : Chapel (4) D M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 2

Chapel Work

= Chapel Team’s Focus:

specify Chapel syntax and semantics

implement prototype Chapel compiler

code studies of benchmarks, applications, and libraries in Chapel
community outreach to inform and learn from users

support users evaluating the language

refine language based on these activities

code
studies

support
release

CUG 2007 : Chapel (5) @ M
Outline
v

» HPC Challenge Benchmarks in Chapel
* STREAM Triad
° Random Access
* 1D FFT

0 Project Status and User Activities

CUG 2007 : Chapel (6) <D c#pé

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 3

HPC Challenge Overview

Motivation: Growing realization that top-500 often fails to

reflect practical/sustained performance
* measured using HPL, which essentially measures peak FLOP rate
* user applications often constrained by memory, network, ...

HPC Challenge (HPCC):
* suite of 7 benchmarks to measure various system characteristics
* annual competition based on 4 of the HPCC benchmarks
= class 1: best performance (award per benchmark)
= class 2: most productive
50% performance
50% code elegance, size, clarity

For more information:
* HPCC Benchmarks: http://icl.cs.utk.edu/hpcc/
* HPCC Competition: http://www.hpcchallenge.org

CUG 2007 : Chapel (7) @ M

Code Size Summary

1800
1668 . _
1600 Reference Version
B Framework
1400 - B Computation

1200 7 Chapel Version

B Prob. Size (common)

() 1000
9 O Results and output
) 800 A M Verification
M Initialization
600 .
H Kernel declarations
400 O Kernel computation
200 155
0
Reference Chapel Reference Chapel Reference Chapel
STREAM Random FET
Triad Access
CUG 2007 : Chapel (8) @ cgpé

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 4

Chapel Code Size Summary

180

160 +

140 -

120 -
O 100 A
O
-

0 80 -
60 -
40 -
20 -
0,

=AY

H Problem Size
(common)

O Results and output

M Verification

M Initialization

B Kernel declarations

O Kernel computation

STREAM Triad Random Access

CUG 2007 : Chapel (9)

G et

STREAM Triad

aD 4pes

ANy

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 5

Introduction to STREAM Triad

Given: m-element vectors A, B, C
Compute: Vi € 1.m, A;=B; + a-C;
Pictorially:

P T T ITTTTIIITTITTT]
+

*

O =8 .

CUG 2007 : Chapel (11) @ M

Introduction to STREAM Triad

Given: m-element vectors A, B, C

Compute: Vi € 1..m, A;=B; + a-C;

Pictorially (in parallel):
1

B
+ 1 + 1 + 1 + 1 +
C
* ! * ! * ! * ! *
1 1 1 1
1 1 1 1
- [l 'l W 0 N
1 1 1 1
1 1 1 1
A\ 4 U o W oA W AL\ o
CUG 2007 : Chapel (12) @ M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 6

STREAM Triad: Some Declarations

const m = computeProblemSize(elemType, numVectors),

(alpha = 3.0;

Chapel Variable Declarations

{var | const | param } <name> [: <definition>] [= <initializer>]
var = can change values
const = a run-time constant (can’t change values after initialization)
param = a compile-time constant

May omit definition or initializer, but not both
If definition omitted, type inferred from initializer
If initializer omitted, variable initialized using type’s default value

Here, m has no definition, so its type is inferred using the return type of
computeProblemSize() -- an int
Similarly, alpha is inferred to be a real floating point value

CUG 2007 : Chapel (13) @ M

. EmaAayr
STREAM Triad: Some Declarations

config const m = computeProblemSize(elemType, numVectors),
alpha = 3.0;

Configuration Variables

Preceding a variable declaration with config allows it to be initialized
on the command-line, overriding its default initializer

config const/var = can be overridden on executable command-line
config param = can be overridden on compiler command-line

prompt> stream --m=10000 --alpha=3.14159265

CUG 2007 : Chapel (14) @ M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 7

B CRAY
STREAM Triad: Core Computation

const ProblemSpace: domain(1l) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;

CUG 2007 : Chapel (15) @ M

e CRAY
STREAM Triad: Core Computation

const ProblemSpace: domain(1)—— = [1..m]

Declare a domain

domain: a first-class index set, potentially distributed
(think of it as the size and shape of an array)

domain(1l) = 1D arithmetic domain, indices are integers

[1..m] = a 1D arithmetic domain literal defining the index set:
{1,2,...,m}

ProbIemSpace|||||||||||||||||
1 m

CUG 2007 : Chapel (16) <D Jﬂé

Chapel: Global HPCC Benchmarks and
Status Update CUG 2007 8

B CRAY
STREAM Triad: Core Computation

const ProblemSpace: domain(1l) distributed(Block) = [1..m];

Specify the domain’s distribution

distribution: describes how to map the domain indices to locales,
and how to implement domains (and their arrays)

distributed(Block) = break the indices into numLocales
consecutive blocks

1 1 1
problemspace L [[[T T [T T 1T T{[T]
1]]] m

CUG 2007 : Chapel (17) @ M

STREAM Triad: Core Computation
var A, B, C: [ProblemSpace] elemType;
JE— |
Declare arrays
arrays: mappings from domains (index sets) to variables. Several flavors:
« dense and sparse rectilinear (indexed by integer tuples)
« associative arrays (indexed by value types)
* opague arrays (indexed anonymously to represent sets & graphs)
1 1 1 1
ProblemSpace|||!||!|||!||!|||
1 1 1 1
ALTTTTTTTTTTTTTTT]
I I I I
e LTV LT VT T T VT Tl
[[[[
cil IV TPV T T T IPThTl]
1 1 1 1
CUG 2007 : Chapel (18) @ m

Chapel: Global HPCC Benchmarks and
Status Update CUG 2007 9

STREAM Triad: Core Computation

Expressing the computation

whole-array operations: support standard scalar operations on

arrays in an element-wise manner
1 1 1 1

O @ >

[
-
| |

[|
T
[|

alpha i [] [] []
VP P 7P 77\

T

*

A = B + alpha * C;

CUG 2007 : Chapel (19) @ M

STREAM Triad: complete main() routine

def main() {
printConfiguration();

const ProblemSpace: domain(l) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);
var execTime: [1..numTrials] real;

for trial in 1._numTrials {
const startTime = getCurrentTime();
A =B + alpha * C;
execTime(trial) = getCurrentTime() - startTime;

}

const validAnswer = verifyResults(A, B, C);
printResults(validAnswer, execTime);

}

CUG 2007 : Chapel (20) <D c#pé

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 10

Random Access

DARBA

THE BUPEACOMPUTER COMPANY

Introduction to Random Access

Pictorially:

Given: m-element table T (where m=2"and initially T; = i)
Compute: N, random updates to the table using bitwise-xor

g]

0100,
1O

CUG 2007 : Chapel (22)

Chapel: Global HPCC Benchmarks and
Status Update

CUG 2007 11

Introduction to Random Access

Given: m-element table T (where m=2"and initially T; = 1)
Compute: N, random updates to the table using bitwise-xor
Pictorially:

@ @ @ = 21 = xor the value 21 into T 21 mod m)

repeat N times ;

CUG 2007 : Chapel (23) @ M

Introduction to Random Access

Given: m-element table T (where m=2"and initially T; = i)
Compute: N, random updates to the table using bitwise-xor

Pictorially (in parallel):
1 1

“~l | L s

4

% i

C
C

A\ A

Random Numbers
Not actually generated using lotto ping-pong balls!
Instead, implement a pseudo-random stream:
« kth random value can be generated at some cost
« given the kth random value, can generate the
(k+1)-st much more cheaply

CUG 2007 : Chapel (24) @ M

Chapel: Global HPCC Benchmarks and
Status Update CUG 2007 12

Introduction to Random Access

Given: m-element table T (where m=2"and initially T; = 1)
Compute: N, random updates to the table using bitwise-xor

Pictorially (in parallel):
1

CUG 2007 : Chapel (25)

It

ﬂ—\‘J\\

<
(

A\ o

Conflicts
When a conflict occurs an update may be lost;
a certain number of these are permitted

G et

Random Access: Domains and Arrays

const TableSpace: domain(l) distributed(Block) = [0..m);
var T: [TableSpace] elemType;

const UpdateSpace: domain(l) distributed(Block) = [0..N_U);

TableSpace [T]

UpdateSpace Wﬁmmm

Open Interval Domain Literal

[0..m) = a domain literal defining the index
set: {0, 1, ..., m-1}

CUG 2007 : Chapel (26)

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 13

Random Access: Random Value lterator

iterator RAStream(block) {
var val = getNthRandom(block. low);
for 1 in block {
getNextRandom(val);
yield val;
}
}

def getNthRandom(in n) { .. }

def getNextRandom(inout x) { .. }

CUG 2007 : Chapel (27) @ M

Random Access: Random Value lterator

iterator RAStream(block) {
var val = getNthRandom(block.low);
for 1 in block {

getNextRandom(val);
yield val;
} ¥ Defining an iterator

iterator: similar to a function but generates a stream of return values;
invoked using for and forall loops

yield: like a return statement but the iterator’s execution continues
logically after returning the value

RAStream(): an iterator that generates a random value for each index in
block

e.g., to iterate over the entire stream sequentially, one could use:

for r in RAStream([O..N_U)) { .. }
CUG 2007 : Chapel (28) @ M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 14

B CRAY
Random Access: Computation

[i in TableSpace] T(i) = i;

forall block in UpdateSpace.subBlocks do
for r in RAStream(block) do
T(r & indexMask) "= r;

CUG 2007 : Chapel (29) @ M

e CRAY
Random Access: Computation

Initialization

- i} } Uses forall expression
[in TableSpace] T(1) = i; to initialize table

forall block in UpdateSpace.subBlocks do
for r in RAStream(block) do
T(r & indexMask) "= r;

Computing the Updates
Express table updates by invoking iterators:
subBlocks: a standard iterator that generates blocks of indices
appropriate for the target machine’s parallelism
RAStream(): our iterator for generating random values

Effectively: generate parallel chunks of work; iterate over chunks serially

performing updatesI . .

\ A B W A .
CUG 2007 : Chapel (30) @ M

Chapel: Global HPCC Benchmarks and
Status Update CUG 2007 15

Random Access: Adding Determinism

[i in TableSpace] T(i) = i;

forall block in UpdateSpace.subBlocks do
for r in RAStream(block) do

L———atomic T(r & indexMask) "= r;

Ensuring Determinism (e.q., for Verification)

atomic: indicates that code executes atomically from other threads’ viewpoints

For a case like this, could be implemented using...
...Atomic Memory Operations (AMOSs)
...FUul/Empty bits
...Compare-and-Swap
...Locks
More generally, atomics require transactional memory concepts (SW or HW)

CUG 2007 : Chapel (31) @ M

FFT

Dhro) HpES Smasr

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 16

Introduction to FFT

Given: m-element vector z of complex numbers (where m =2")
Compute: 1D Discrete Fourier Transform of z
Pictorially (using a radix-4 algorithm):

A s

121 TANK]

CATANIT
ATNTISINY

TS
—

7
T ATV P PP PP
333 /////

S

CUG 2007 : Chapel (33) @ M

FFT: Computation

for 1 in [2..1log2(numElements)) by 2 {
const m = radix*span, m2 = 2*m;

forall (k,k1) in (Adom by m2, 0..) {
var wk2 = .., wkl = .., wk3 = ..;

forall j in [k..k+span) do
butterfly(wkl, wk2, wk3, A[j--j+3*span by span]);

wkl = ..; wk3 = ..; wk2 *= 1.0i;

forall j in [k+m._k+m+span) do
butterfly(wkl, wk2, wk3, A[]j--j+3*span by span]);

by
span *= radix;
¥
def butterfly(wkl, wk2, wk3, inout A:[1..radix]) { .. }
CUG 2007 : Chapel (34) @ m

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 17

FFT: Com pu tatio Sequential loop to express
phases of computation

for™ in [2..1log2(numElements)) by 2 {
const m = radix*span, m2 = 2*m;

forall (k,k1) in (Adom by m2, 0..) {
|/ var wk2 = .., wkl = .., wk3 =

Nested forall loops to express
| a phase’s parallel butterflies
-Jt3*span by spanl);

forall j in [k..k+span) do
butterfly(wkl, wk2, wk3, A[]-

o L — || Support for complex and
wkl = .; wk3 = .; wk2 *= 1.0i; imaginary types simplifies math

forall j in [k+m._k+m+span) do
butterfly(wkl, wk2, wk3, A[j--j+3*span by span]);

3 *= radix- Generic arguments allow butterfly() to be
span 7= radmx; called with complex, real, or imaginary
h twiddle factors

def butterfly(wkl, wk2, wk3, inout A:[1..radix]) { .. }

CUG 2007 : Chapel (35)

G et

HPCC Status, Next Steps

HPCC Status:

¢ all codes compile and run today
* current compiler only targets a single node

¢ serial performance approaching hand-coded C on a daily basis
* CUG paper...

...contains full source listings
...covers codes in more detail

...describes performance advantages and challenges in Chapel

What's Next?

* demonstrate performance for these codes
= continue optimizing serial performance

= add compiler support for targeting multiple nodes
¢ finish implementing HPL

CUG 2007 : Chapel (36)

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 18

B CRAY
HPCC Summary

= Chapel supports HPCC codes attractively
* clear, concise, general
* parallelism expressed in architecturally-neutral way
* benefit from Chapel's global-view parallelism
¢ utilizes generic programming and modern SW Engineering principles
* should serve as an excellent reference for future HPCC competitors

= Note that HPCC benchmarks are relatively simple
all data structures are 1D vectors

locality very data driven

minimal task- & nested parallelism

little need for OOP, abstraction

...HPCC designed to stress systems, not languages
* would like to see similar competitions emerge for richer computations

CUG 2007 : Chapel (37) @ M

B CcRrAayr |
Outline

v

v"HPC Challenge Benchmarks in Chapel
v'STREAM Triad
v"Random Access
v'1D FFT

> Project Status and User Activities

CUG 2007 : Chapel (38) <D M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 19

B CRAY
Project Status, Next Steps

= Chapel specification:
* revised draft language specification available on Chapel website
¢ editing to add additional examples & rationale; improve clarity

= Compiler implementation:
* improving serial performance
* starting on parallel implementation
* adding missing serial features

= Code studies:
* NAS Parallel Benchmarks: CG (well underway), IS, FT, MG
* Linear Algebra routines: block LU, block Cholesky, matrix mult.
* Other applications of interest: Fast Multipole Method, SSCA2, ...

= Release:
* made a preliminary release to government team December 2006

* initial response from those users has been positive, encouraging
* next release due Summer 2007

CUG 2007 : Chapel (39) @ M

. EmaAayr
Notable User Studies

= Two main efforts to date, both at ORNL:
* Robert Harrison, Wael Elwasif, David Bernholdt, Aniruddha Shet
= Fock matrix computations using producer-consumer parallelism
= coupled model idioms (e.g., for use in CCSM)
* Richard Barrett, Stephen Poole, Philip Roth
= stencil idioms: 2D, 3D, sparse
= sweep3D & wavefront-style computations

* In both cases...
...great technical discussions and feedback
...valuable sanity-check for language and implementation
...studies comparing with Fortress, X10 forthcoming

CUG 2007 : Chapel (40) <D M

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 20

. CRrRAay
Chapel Contributors

= Current:

Brad Chamberlain
Steven Deitz
Mary Beth Hribar
David Iten

= Alumni:
* David Callahan
* Hans Zima (CalTech/JPL)
¢ John Plevyak
° Wayne Wong
* Shannon Hoffswell
Roxana Diaconescu (CalTech)
Mark James (JPL)
Mackale Joyner (2005 intern, Rice University)
Robert Bocchino (2006 intern, UIUC)

CUG 2007 : Chapel (41) <D M

B Ccrmayr |
For More Information...

BOF today at 4pm

chapel_info@cray.com
bradc@cray.com

http://chapel.cs.washington.edu

Your feedback desired!

CUG 2007 : Chapel (42) @ m

Chapel: Global HPCC Benchmarks and

Status Update

CUG 2007 21

