Chapel: Global HPCC Benchmarks
and Status Update

Brad Chamberlain
Chapel Team

CUG 2007
May 7, 2007

THEL SUFCAOOEPUTER oW AN

Chapel

Chapel: a new parallel language being developed by Cray

= Themes:

* general parallelism
= data-, task-, nested parallelism using global-view abstractions
= general parallel architectures

* locality control
= data distribution
= task placement (typically data-driven)

° narrow gap between mainstream and parallel languages
= object-oriented programming (OOP)
= type inference and generic programming

CUG 2007 : Chapel (2)

Chapel’s Setting: HPCS

= HPCS: High Productivity Computing Systems
Goal: Raise productivity by 10x for the year 2010

Productivity = Performance
+ Programmability
+ Portability
+ Robustness

= Phase Il: Cray, IBM, Sun (July 2003 — June 2006)

Evaluation of the entire system architecture’s impact on productivity...
= processors, memory, network, I/O, OS, runtime, compilers, tools, ...

= ...and new languages:
IBM: X10 Sun: Fortress Cray: Chapel

= Phase llI: Cray, IBM (July 2006 — 2010)

Implement the systems and technologies resulting from phase Il

CUG 2007 : Chapel (3)

Chapel and Productivity

= Chapel’s Productivity Goals:
vastly improve programmability over current languages/models
= writing parallel codes
= reading, modifying, maintaining, tuning them

support performance at least as good as MPI
= competitive with MPI on generic clusters
= petter than MPI on more productive architectures like Cray’s

improve portability compared to current languages/models
= as ubiquitous as MPI, but with fewer architectural assumptions
= more portable than OpenMP, UPC, CAF, ...

Improve code robustness via improved semantics and concepts
= eliminate common error cases altogether
= petter abstractions to help avoid other errors

CUG 2007 : Chapel (4)

Chapel Work

= Chapel Team’s Focus:
* specify Chapel syntax and semantics
* implement prototype Chapel compiler
* code studies of benchmarks, applications, and libraries in Chapel
° community outreach to inform and learn from users
° support users evaluating the language
* refine language based on these activities

code
studies

support
release

CUG 2007 : Chapel (5)

Outline

v

» HPC Challenge Benchmarks in Chapel
* STREAM Triad

* Random Access
* 1D FFT

d Project Status and User Activities

CUG 2007 : Chapel (6) @ M

HPC Challenge Overview

Motivation: Growing realization that top-500 often fails to

reflect practical/sustained performance
measured using HPL, which essentially measures peak FLOP rate
user applications often constrained by memory, network, ...

HPC Challenge (HPCC):
suite of 7 benchmarks to measure various system characteristics
annual competition based on 4 of the HPCC benchmarks
= class 1: best performance (award per benchmark)
= class 2: most productive
50% performance
50% code elegance, size, clarity

For more information:
HPCC Benchmarks: http://icl.cs.utk.edu/hpcc/
HPCC Competition: http://www.hpcchallenge.org

CUG 2007 : Chapel (7)

Code Size Summary

1800
1668 f .
1600 - Reference Version
B Framework
1406 .
1400 - B Computation
1200 1 Chapel Version
) 1000 1 M Prob. Size (common)
9 O Results and output
) 800 - M Verification
M Initialization
600 -)
M Kernel declarations
400 [0 Kernel computation
200 155
0
Reference Chapel Reference Chapel Reference Chapel
STREAM Random
. FFT
Triad Access

CUG 2007 : Chapel (8) @ M

Chapel Code Size Summary

180
160 - 155 M Problem Size
(common)
140 - [Results and output
124
120 - M@ Verification
Q) 100 - M Initialization
@)
_I -
) 80 - @ Kernel declarations
60 A O Kernel computation
40 ~
20 -
0

STREAM Triad Random Access FFT

CUG 2007 : Chapel (9) @ m

Introduction to STREAM Triad

Given: m-element vectors A, B, C
Compute: Vi € 1..m, A,=B, + a.C;
Pictorially:

CUG 2007 : Chapel (11)

Introduction to STREAM Triad

Given: m-element vectors A, B, C

Compute: Vi € 1..m, A,=B, + a.C;

Pictorially (in parallel):
|

*

alpha . .

CUG 2007 : Chapel (12)

C)RANY

STREAM Triad: Some Declarations

const m = computeProblemSize(elemType, numVectors),

(alpha = 3.0;

Chapel Variable Declarations

{ var | const | param } <name> [: <definition>] [= <initializer>]
var = can change values
const = a run-time constant (can’t change values after initialization)
param = a compile-time constant

May omit definition or initializer, but not both
If definition omitted, type inferred from initializer
If initializer omitted, variable initialized using type’s default value

Here, m has no definition, so its type is inferred using the return type of
computeProblemSize() -- an int

Similarly, alpha is inferred to be a real floating point value

CUG 2007 : Chapel (13)

STREAM Triad: Some Declarations

config const m = computeProblemSize(elemType, numVectors),
alpha = 3.0;

Configuration Variables

Preceding a variable declaration with config allows it to be initialized
on the command-line, overriding its default initializer

config const/var = can be overridden on executable command-line
config param = can be overridden on compiler command-line

prompt> stream --m=10000 --alpha=3.14159265

CUG 2007 : Chapel (14)

STREAM Triad: Core Computation

const ProblemSpace: domain(1l) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;

CUG 2007 : Chapel (15) @ M

STREAM Triad: Core Computation

const ProblemSpace: domain(1) = [1..m];

Declare a domain

domain: a first-class index set, potentially distributed
(think of it as the size and shape of an array)

domain(1) = 1D arithmetic domain, indices are integers

[1..m] = a 1D arithmetic domain literal defining the index set:
{1, 2, ..., m}

ProblemSpace

CUG 2007 : Chapel (16)

STREAM Triad: Core Computation

const ProblemSpace: domain(1l) distributed(Block) = [1..m];

Specify the domain’s distribution

distribution: describes how to map the domain indices to locales,
and how to implement domains (and their arrays)

distributed(Block) = break the indices into numLocales
consecutive blocks

ProblemSpace

CUG 2007 : Chapel (17)

STREAM Triad: Core Computation

var A, B, C: [ProblemSpace] elemType;

Declare arrays
arrays: mappings from domains (index sets) to variables. Several flavors:
» dense and sparse rectilinear (indexed by integer tuples)
 associative arrays (indexed by value types)
» opaque arrays (indexed anonymously to represent sets & graphs)
| | | |

ProblemSpace

CUG 2007 : Chapel (18)

STREAM Triad: Core Computation

Expressing the computation

whole-array operations: support standard scalar operations on
arrays in an element-wise manner

A = B + alpha * C;

CUG 2007 : Chapel (19) @ M

STREAM Triad: complete main() routine

def main() {
printConfiguration();

const ProblemSpace: domain(1l) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);
var execTime: [1..numTrials] real;

for trial 1n 1._numTrials {
const startTime = getCurrentTime();
A =B + alpha * C;
execTime(trial) = getCurrentTime() - startTime;

}

const validAnswer = verifyResults(A, B, C);
printResults(validAnswer, execTime);

s
CUG 2007 : Chapel (20) @ M

C)RANY

Introduction to Random Access

Given: m-element table T (where m =2"and initially T; = 1)
Compute: N, random updates to the table using bitwise-xor

Pictorially:

0100
06

CUG 2007 : Chapel (22)

C)RANY

Introduction to Random Access

Given: m-element table T (where m =2"and initially T; = 1)
Compute: N, random updates to the table using bitwise-xor

Pictorially:

CUG 2007 : Chapel (23)

C)RANY

Introduction to Random Access

Given: m-element table T (where m =2"and initially T; = 1)
Compute: N, random updates to the table using bitwise-xor

Pictorially (in parallel):

Random Numbers
Not actually generated using lotto ping-pong balls!
Instead, implement a pseudo-random stream:
 kth random value can be generated at some cost
* given the kth random value, can generate the
(k+1)-st much more cheaply

CUG 2007 : Chapel (24)

C)RANY

Introduction to Random Access

Given: m-element table T (where m =2"and initially T; = 1)
Compute: N, random updates to the table using bitwise-xor

Pictorially (in parallel):

T~ . | = —
]]] I]
2 Q@ Q@ 2 Q@ Q@ 2 Q@ Q@ 2 @) Q@ 2 @) Q@

Conflicts
When a conflict occurs an update may be lost;
a certain number of these are permitted

CUG 2007 : Chapel (25)

C)RANY

Random Access: Domains and Arrays

const TableSpace: domain(l) distributed(Block) = [0..m);
var T: [TableSpace] elemType;

const UpdateSpace: domain(l) distributed(Block) = [0..N_U);

TableSpace

T

UpdateSpace||||||||||||| HEEEEEESEEESSEEEEEEEEEEEE SN EEEEEEEEEEEEEEEE

Open Interval Domain Literal

[0..m) = a domain literal defining the index
set: {0, 1, ..., m-1}

CUG 2007 : Chapel (26)

Random Access: Random Value lterator

iterator RAStream(block) {
var val = getNthRandom(block.low);
for 1 1n block {
getNextRandom(val);
yield val;

}
}

def getNthRandom(in n) { .. }

def getNextRandom(inout x) { .. }

CUG 2007 : Chapel (27)

Random Access: Random Value lterator

iterator RAStream(block) {
var val = getNthRandom(block.low);
for 1 1n block {
getNextRandom(val);
yield val;

1 Defining an iterator

iterator: similar to a function but generates a stream of return values;
invoked using for and forall loops

yield: like a return statement but the iterator’'s execution continues
logically after returning the value

RAStream(): an iterator that generates a random value for each index in
block

e.g., to iterate over the entire stream sequentially, one could use:
for r 1n RAStream(JO..N. U)) { .. }

CUG 2007 : Chapel (28)

Random Access: Computation

[1 in TableSpace] T(i) = i;

forall block 1n UpdateSpace.subBlocks do
for r 1n RAStream(block) do
T(r & IndexMask) = r;

CUG 2007 : Chapel (29) @ M

C)RANY

Random Access: Computation

[i in TableSpace]4 i;

forall block 1n UpdateSpace.subBlocks do
for r 1n RAStream(block) do
T(r & 1ndexMask) "= r;

Initialization
Uses forall expression
to initialize table

Computing the Updates
Express table updates by invoking iterators:
subBlocks: a standard iterator that generates blocks of indices
appropriate for the target machine’s parallelism
RAStream(): our iterator for generating random values

Effectively: generate parallel chunks of work; iterate over chunks serially
performing updatesI

CUG 2007 : Chapel (30)

Random Access: Adding Determinism

[1 in TableSpace] T(i) = i;

forall block 1n UpdateSpace.subBlocks do
for r 1n RAStream(block) do

|_—-atomic T(r & IndexMask) "= r;

Ensuring Determinism (e.q., for Verification)

atomic: indicates that code executes atomically from other threads’ viewpoints

For a case like this, could be implemented using...
...Atomic Memory Operations (AMOSs)
...Full/Empty bits
...Compare-and-Swap
...Locks
More generally, atomics require transactional memory concepts (SW or HW)

CUG 2007 : Chapel (31)

- Ry
Introduction to FFT

Given: m-element vector z of complex numbers (where m = 2")
Compute: 1D Discrete Fourier Transform of z
Pictorially (using a radix-4 algorithm):

”n n o~ n

AN AA\N AN ZA\N AN AA\N 2 ZANN
SLANNAD D b [GNSICUNINAZD D2 | SN
NN\ TN\ Y gl T

RSN W Y I 0%
NLNBLNBNL

BED

- INUSDLIYNT <
P P AT A TS TS
P ~
EE IR A A ST S

T SO S USUS

““““ =

~ ~ ~ ~ - - - -
RSN WY 3 3e e
BN

-
o TN

5% DD D >3

A ,;7
S
S e
<O =
e
=
==

-

\“(
\\\\\\\\
—————————
—————
————

—
——
—
—
*

—— ——
—
e e

—

0)0)0)030)00)))3

CUG 2007 : Chapel (33)

FFT: Computation

for 1 1n [2..1og2(humElements)) by 2 {
const m = radix*span, m2 = 2*m;

forall (k,kl) 1n (Adom by m2, 0..) {
var wk2 = .., wkl = .., wk3 = . ;

forall j in [k.._k+span) do
butterfly(wkl, wk2, wk3, A[]--jJ+3*span by span]);

wkl = ..; wk3 = ..; wk2 *= 1.01;

forall j 1n [k+m._k+m+span) do
butterfly(wkl, wk2, wk3, A[]--jJ+3*span by span]);

}

span *= radix;

}

def butterfly(wkl, wk2, wk3, inout A:[1l..radix]) { .. }

CUG 2007 : Chapel (34)

FFT: Com pu tation Sequential loop to express

phases of computation
for™1 1n [2..1og2(humElements)) by 2 {
const m = radix*span, m2 = 2*m;

__—TFTorall (k,k1) in (Adom by m2, 0..) {
var wk2 = .., wkl = .., wk3 = . ;

Nested forall loops to express

forall j in [k..k+span) do a phase’s parallel butterflies
butterfly(wkl, wk2, wk3, A[]--jJ+3*span by span]);

. L — || Support for complex and
Wkl =5 wk3 = .5 wk2 == 1.01; imaginary types simplifies math

forall j 1n [k+m._k+m+span) do
butterfly(wkl, wk2, wk3, A[]--jJ+3*span by span]);

¥ *= radix- Generic arguments allow butterfly() to be
span == radix, called with complex, real, or imaginary
¥ twiddle factors

def butterfly(wkl, wk2, wk3, inout A:[1l..radix]) { .. }

CUG 2007 : Chapel (35)

HPCC Status, Next Steps

HPCC Status:

¢ all codes compile and run today
* current compiler only targets a single node
* serial performance approaching hand-coded C on a daily basis
* CUG paper...
...contains full source listings
...covers codes in more detall
...describes performance advantages and challenges in Chapel

What's Next?
* demonstrate performance for these codes
= continue optimizing serial performance
= add compiler support for targeting multiple nodes
* finish implementing HPL

CUG 2007 : Chapel (36)

HPCC Summary

= Chapel supports HPCC codes attractively
clear, concise, general
parallelism expressed in architecturally-neutral way
benefit from Chapel’s global-view parallelism
utilizes generic programming and modern SW Engineering principles
should serve as an excellent reference for future HPCC competitors

= Note that HPCC benchmarks are relatively simple
all data structures are 1D vectors
locality very data driven
minimal task- & nested parallelism
little need for OOP, abstraction

...HPCC designed to stress systems, not languages
would like to see similar competitions emerge for richer computations

CUG 2007 : Chapel (37)

Outline

v

v"HPC Challenge Benchmarks in Chapel
v'"STREAM Triad
v"Random Access
v 1D FFT

» Project Status and User Activities

CUG 2007 : Chapel (38) @ M

Project Status, Next Steps

= Chapel specification:
revised draft language specification available on Chapel website
editing to add additional examples & rationale; improve clarity

= Compiler implementation:
Improving serial performance
starting on parallel implementation
adding missing serial features

= Code studies:

NAS Parallel Benchmarks: CG (well underway), 1S, FT, MG
Linear Algebra routines: block LU, block Cholesky, matrix mult.
Other applications of interest: Fast Multipole Method, SSCAZ2, ...

= Release:
made a preliminary release to government team December 2006
Initial response from those users has been positive, encouraging
next release due Summer 2007

CUG 2007 : Chapel (39)

Notable User Studies

= Two main efforts to date, both at ORNL.:
* Robert Harrison, Wael Elwasif, David Bernholdt, Aniruddha Shet
= Fock matrix computations using producer-consumer parallelism
= coupled model idioms (e.g., for use in CCSM)
* Richard Barrett, Stephen Poole, Philip Roth
= stencil idioms: 2D, 3D, sparse
= sweep3D & wavefront-style computations

" |n both cases...
...great technical discussions and feedback
...valuable sanity-check for language and implementation
...Studies comparing with Fortress, X10 forthcoming

CUG 2007 : Chapel (40)

Chapel Contributors

= Current:
* Brad Chamberlain
* Steven Deitz
* Mary Beth Hribar
* David Iten

= Alumni:

David Callahan

Hans Zima (CalTech/JPL)

John Plevyak

Wayne Wong

Shannon Hoffswell

Roxana Diaconescu (CalTech)

Mark James (JPL)

Mackale Joyner (2005 intern, Rice University)
Robert Bocchino (2006 intern, UIUC)

CUG 2007 : Chapel (41)

For More Information...

BOF today at 4pm

chapel info@cray.com
bradc@cray.com

http://chapel.cs.washington.edu

Your feedback desired!

CUG 2007 : Chapel (42) @ m

