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The Gyrokinetic Toroidal Code GTC
 Description:

• 3D Particle-in-cell code (PIC) in toroidal geometry
• Developed by Prof. Zhihong Lin (now at UC Irvine)
• Used for non-linear gyrokinetic simulations of plasma

microturbulence [Lee, 1983]
• Fully self-consistent
• Uses magnetic field line following coordinates (ψ,θ,ζ) [Boozer,

1981]
• Grid follows the magnetic field lines (twisting around the torus)
• Guiding center Hamiltonian [White and Chance, 1984]
• Non-spectral Poisson solver [Lin and Lee, 1995]
• Low numerical noise algorithm (δf method)
• Full torus (global) simulation
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Particle-in-cell (PIC) method

 Particles sample distribution function (markers).
 The particles interact via a grid, on which the

potential is calculated from deposited charges.

The PIC Steps
• “SCATTER”, or deposit,

charges on the grid (nearest
neighbors)

• Solve Poisson equation
• “GATHER” forces on each

particle from potential
• Move particles (PUSH)
• Repeat…
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Charge Deposition for charged rings:
4-point average method

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC
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Domain Decomposition:  Pre 2007
 Domain decomposition:

• each MPI process holds a toroidal section
• each particle is assigned to a processor according to its

position
 Initial memory allocation is done locally on each

processor to maximize efficiency
 Communication between domains is done with MPI calls

(runs on most parallel computers)
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2nd Level of Parallelism:
Loop-level with OpenMP

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads

Merge
threads



May 07 Slide 8

Computational Facts about GTC

 Only 5000 lines.
 Written in Fortran 95

• Latest version uses object oriented programming
 Highly portable. GTC runs on most parallel computers as

long as the MPI library is available.
 Part of the NERSC benchmark suite of codes to evaluate

new computers.
 Pre 2007 version ran using real(4) (32 bit reals)
 New version using real(8)

• PETSc solver needs 64 bit precision
• Rest of gtc only needs 32 bit precision but currently uses 64 bit
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Major component of GTC

 Pushi
• Major computational kernel  “Moves particles”
• Large body loops;  Gathers; Lots of loop level parallism

 Chargei
• Major computational kernel “Scatter”
• Gather/Scatter with potential conflicts;  Can be restructured to exploit loop

level parallelism
 Shifti

• Sorts out particles that move out of its domain and sends those to the
“next” processor.  Process repeats until all particles are where they are
suppose to be.

 Poisson Solver
• Solve Poisson Equation. Prior to 2007 the solve was redundantly executed

on each processor.  New version uses the PETSc solver to efficiently
distribute the work.

 Smooth and Field
• Smaller computational kernels
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GTC pre-2007: 1D Particle decomposition
 Each domain in the 1D domain decomposition can have more than 1 processor

associated with it.
 Each processor holds a fraction of the total number of particles in that domain.

• Required an All_reduce to collect all of the charges from all particles in a given
domain

 Each processor stores the mesh of an entire plane
• Poor cache characteristics
• Redundant work: “smoothing”, “field”, and “poisson” calculations not parallel
• Not scalable to large reactor sizes.

Processor 2
Processor 3

Processor 0
Processor 1
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GTC 2007 and beyond: 2D Particle decomp
 Each processor holds a fraction of particles - and of grid

• Radial geometric partitioning for equal area per processor
• Memory footprint scalable to LARGE reactor sizes

 Significant difference in communication
• Large All_reduce has been eliminated
• Require extra shift to move particles in the radial direction

 Domain overlap due to
• Discrete nature of grid (ie, not aligned with radial partitions)
• Gyroradius lead to deposition on larger grid

Processor 2
Processor 3Processor 0

Processor 1
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Goal:  Develop a new baseline benchmark

 GTC has change significantly in both capabilities and
performance characteristics
• Can now simulate much larger reactors
• Now uses PETSc for the solver
• Major all_reduce has been eliminated but a “shift” was added

 Want a new baseline benchmark which can:
• Run on a large variation of machines
• Can be use to project performance to larger machines and

problems
• Act as a comparison across generations of machines
• Can be used to determine the effectiveness of multi-core

processors
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New weak scaling benchmark
Scales the problem in both reactor size and # of

particles
Runs on 64 to 16384 processors with a step size of 4x
Assumes a constant decomposition of 64 slices in

direction of the torus
Reaches a reactor size the size of ITER at 16384



May 07 Slide 14

Data Collected
Scaling data from 64 to 16384 processors on XT3/XT4

jaguar at ORNL, compare to old GTC
Examine differences of running on either only the XT4

or XT3, or “whatever you get”
Examine the scaling of each component
Examine the data of dual core vs single core
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GTC DEVICE WEAK SCALING
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Old GTC code does not scale well
when increasing the device size

Scaling of new code is ok
but is not as flat as we like
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GTC DEVICE WEAK SCALING
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Component Times
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Time in Shifter is 
climbing dramatically.  Why?

Pushi and Chargei remain 
the dominate routines
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Phases of SHIFT
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All the time is in a barrier 
inserted at the beginning of shifti.

Excellent indication of load imbalance



May 07 Slide 19

Plot of Max, Average, and Min time per PE in Pushi
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Component Times with Barrier in Pushi
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Really our problem is in the pusher

Shifti remains small as PE count increases
NOT a communication problem
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Instrument PUSHI using pat_region_begin

 Wanted to collect more data on pushi, so we
instrumented the program using Craypat regions

    include “pat_apif.h”
    call PAT_region_begin( 10, "pushi" ,istat )
    call pushi(…)
    call PAT_region_end( 10,istat )

Compile with craypat module loaded
Relink using pat_build
Ran the program
Ran pat_report on resulting .xf file.
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PUSHI Times

270

280

290

300

310

320

330

0 200 400 600 800 1000 1200

NPES

T
im

e

15-20% variation in time spent in pushi



May 07 Slide 23

PUSHI Flops
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There does not appear to be a correlation 
between time and either FLOPs or cache hit rate
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PUSHI TLB Misses
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Significant difference in TLB misses 
between different PEs
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Time vs TLB Misses
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Why is the happening?
What can we do to fix it?

We don’t know…
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How can we improve the effectiveness of the TLBs?

 If we use 32 bit floats, will we have fewer TLB misses?

 Can we find the memory access pattern that is causing
the TLB misses?
• If we find it, can we change it?

 Will the AMD quad core perform better?
• Even if it does, we are not really willing to wait.
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Multi Core vs Single Core

 Number of cores per socket are increasing
• How does this effect GTC performance?
• Will the profile change in the future?
• Do we need to be worrying about different parts of the code?

 Designed a experiment were we ran a fixed problem size
on 512 sockets using only a single core per socket, then
ran the same problem using 1024 cores on 512 sockets
• Effectively Strong Scaling from Single Core to Dual Core
• Askes the question: How much faster will I get my science done

given more cores?
• Includes effects of algorithm scaling
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Component Times using 512 XT4 sockets
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Other components are 
not going much faster

Lower is better
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Relative DC vs SC performance for all components
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Future Work
 Explain and eliminate load imbalance inside of Pushi

• Are TLBs really the problem?  How do we fix it?

 Can we switch back to using 32 bit precision for all of
some of the code?

 Examine PETSc solver for potential performance
improvements

 Examine Shifti in more detail

 Reexamine the use of OMP inside of GTC

 Perform a weak scaling study where only the mesh and
the number of particles are increased, but the device
size does not change

 Try to project “how God would simulate ITER”
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Conclusions
 New version of GTC provides a substantial increase in

both capabilities and performance
• Can run larger problems than the older version
• New solver allows new science to be studied
• Performance substantially better than the older version for large

devices

 Scaling is good to 16K cores but more study is needed
• Scaling should improve if we can eliminate load imbalance

 GTC can effectively use dual core Opterons
• Main computational kernels see almost perfect speed up
• Shifter and other kernels may become more important as the

number of cores increases


