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Outline

Many-core Optimizations in VASP
" From MPI to MPI + (OpenMP) Threading
" Multi-threaded FFT: MKL, FFTW (LibSci)
= 3D-FFT in VASP

How to improve FFT computation in VASP?

" FFTLIB: C++ template library to intercept FFTW calls
 Plan Reuse

d Composed FFT computation
I I

= Some performance numbers
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Many-core Optimizations in VASP

VASP — Vienna Ab-initio Simulation Package

" Electronic structure code b-initio
= MPIl-only (latest official release)
" |mplements DFT: many FFT computations E

imulatinn

Optimization approach
" |ntroduce Threading

" QOptimize code sections for SIMD (talk at CUG2015)
" |mprove library integration/usage: FFT, BLAS/Scalapack, ...
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Many-core Optimizations in VASP

Many-core processor = |ots of (lightweigth)

compute cores on a chip
= |ntel Xeon Phi KNC/KNL: 60+ cores
= Highly parallel computation LVA e
= MPI-only will not work in the
majority of cases

MPI + (OpenMP) Threading
= KNL: 4, 8, 16 MPI ranks + lots of (OpenMP) threads
= User function part: code instrumentation via OpenMP compiler directives
" Library functions: multi-threaded context or call to multi-threaded library
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Many-core Optimizations in VASP

Current state of VASP™ optimization
= MPI + OpenMP: almost fully adapted code base e -initio

= SIMD: OpenMP 4 .x directives P

" Multi-threaded FFT computation
d 3D-FFT where possible: it is really fast!
imulation

d “Ball <> Cube” FFT optimization:
composed 1D+1D+1D FFT

"This VASP version is not yet officially available! Will be coming soon ©
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Many-core Optimizations in VASP

3D-FFT in VASP
" FFTW library calls: Intel MKL can be used through its FFTW interface

= Calling scheme in VASP:

// create plan
p=fftw plan xxx(..)

// execute This happens

—

fftw execute (p) again and again

// destroy plan
fftw destroy plan(p)

—
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Many-core Optimizations in VASP

3D-FFT in VASP

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSc1)
T=1 T=4 T=1 T=4 T=1 T=4
Total 146.6s  78.0s 162.1s 122.5s 162.3s 121.9s
3D-FFT 23.4s 10.7s 38.2s 43.3s 38.6s 41.9s
+ planner 1.0s 1.0s 10.0s 32.9s 9.8s 31.1s
+ execute 22.4s 9.7s 28.28 10.4s 28.8s 10.8s
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Many-core Optimizations in VASP

3D-FFT in VASP

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSci)
T=1 T=4 T=1 T=4 T=1 T=4
Total 146.6s 78.0s 162.1s 122.5s 162.3s 121.9s
3D-FFT 23.4s  10.7s 38.2s 13 38.6s 41.9

+ planner 1.0s 1.0s 10.0s 9.8s
+ execute 22.4s 9.7s 28.2s 28.8s

A lot of time is spent in the planner phase!
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Many-core Optimizations in VASP

3D-FFT in VASP

* FFTW provides different planner schemes: ESTIMATE, MEASURE, ...
ESTIMATE — cheap
MEASURE — expensive: kind of online-autotuning on different FFT algorithms

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE
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Many-core Optimizations in VASP

3D-FFT in VASP

* FFTW provides different planner schemes: ESTIMATE, MEASURE, ...

ESTIMATE — cheap
MEASURE — expensive: kind of online-autotuning on different FFT algorithms

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE
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Scaling with the Number of Threads o
number of threads Approx. 2x gain with MEASURE
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Many-core Optimizations in VASP

3D-FFT in VASP
= Costs for planning with MEASURE and using the
FFTW Wisdom feature for faster plan creation

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE

- Grid: 64x64x64 FFTW3 — R

2 i FFTW3 (rev. 3.3.4, LibSci) ==X first call 7
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Many-core Optimizations in VASP

3D-FFT in VASP
= Costs for planning with MEASURE and with
FFTW Wisdom feature for faster plan creation

Planner Scheme: FFTW_MEA! Pd02 benchmark setup has approx.

_ - Grid: 64x64x64 | 45,000 planner call invocations:
- i FETW3 (rev 504 seconds just for plan creation!
S 1.0
g le-2 :
=S le4 B
m B —

le-6 | i

Number of Threads
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Many-core Optimizations in VASP

3D-FFT in VASP X Phi
= Costs for planning with MEASURE and with con |
FFTW Wisdom feature for faster plan creation (KNC) Data

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE
FFTW3 (rev. 3.3.4)

Grid: 64x64x64 }ﬁrst call

2 3 MKL 11.3.2 1
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Many-core Optimizations in VASP

3D-FFT in VASP

" Costs for plan creation seems to become dominant with increasing number
of threads to be used for the computation

Can we do better?
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How to Improve FFT Computation in VASP?



How to Improve FFT Computation in VASP?

Main issue when using FFTW: plan creation
= Recommendation on FFTW webpage: “reuse plans as long as possible”
" Plan caching mechanism in the application?
No, create a library for that purpose!

FFTLIB (will be hosted as open source library soon)
" C++ template library encapsulation FFTW and DFTI specifics
" Plan reuse: hash-map + cache
" Composed FFT
d “Ball &> Cube” FFT optimization
d Skip transpose operation(s)
d High Bandwidth Memory (preparation for Intel’s Xeon Phi KNL)
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How to Improve FFT Computation in VASP?

FFTLIB — Approach
" |ntercept FFTW calls + additional features

fftw init threads()

fftw plan dft 1d()
fftw plan many dft()

fftw cleanup threads()
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How to Improve FFT Computation in VASP?

FFTLIB — Approach

" |ntercept FFTW calls + additional features

fftw init threads()

fftw plan dft 1d()
fftw plan many dft()

fftw cleanup threads()

dlopen ()
dlsym()

template<.>
class fftlib({

extern “C” 1int
fftw init threads () {

/ /implementation using £ft1ib

}
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How to Improve FFT Computation in VASP?

FFTLIB — Plan Reuse

" Plans are stored permanently in a hash-map + cache
d First planner call goes to FFTW / MKL for each geometry
d Successive planner calls are served by FFTLIB

Planner Scheme: FFTW_MEASURE (+ FFTLIB)

- Grid: 64x64x64 | FFTW3 — R

2 3 FFTWS3 (rev. 3.3.4, LibSci) =3 ¢ firstcall 1 Remains the
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How to Improve FFT Computation in VASP?

FFTLIB — Plan Reuse

" Plans are stored permanently in a hash-map + cache Xeon Phi
d First planner call goes to FFTW / MKL for each geomet (KNC) Data
d Successive planner calls are served by FFTLIB

Planner Scheme: FFTW_MEASURE (+ FFTLIB)
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How to Improve FFT Computation in VASP?

3D-FFT in VASP with FFTLIB

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSc1) Without FETLIB:
T=1 T=4 T=1 T=4 T=1 T=4 Approx. 32
seconds (T=4)
Total 1455s 84.8s 152.6s 86.5s 153.3s 90.0s just for plan
3D-FFT 23.4s  10.0s  29.0s 11.3s  29.6s 11.7s creation with
+ planner 0.3s 0.3s 0.8s 0.8s FFTW
+ execute 22 .4s 0.7s 28.28 10.4s 28.8s 10.8s

Only the initial planner costs contribute
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How to Improve FFT Computation in VASP?

3D-FFT in VASP with FFTLIB

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSci)
T=1 T=4 T=1 T=4 T=1 T=4
- N . - o -
Total 19 00x | Joo2x | H106x L 1.a2x | T1.06x | T1.35x
3D-FFT 23.4s  10.0s 29.0s 11.3s 29.6s 11.7s
+ planner 0.3s 0.3s 0.8s 0.9s 0.8s 0.9s
+ execute 22.4s 0.7s 28.2s 10.4s 28.88 10.8s
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How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

= Composed FFT: “Ball <> Cube” FFT optimization (optional)
d Reciprocal space vector G below a certain cutoff

This is what VASP is doing right now
; 2GJ i

FFT

FFT
4G FFT 4G
(A) (B) (C) (D)
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How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

= Composed FFT: “Ball <> Cube” FFT optimization (optional)
J Reciprocal space vector G below a certain cutoff

FFT
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How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

= Composed FFT: “Ball <> Cube” FFT optimization (optional)

d Reciprocal space vector G below a certain cutoff

4 ™
FETLIB: implemented as 2D-FFT + zero layers

y in z-direction are determined automatically
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How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

» Composed FFT: “Ball << Cube” FFT optimization + skip last transpose
 Synthetic benchmark kernel: here for FFTW, but similar for MKL
 Not yet integrated into VASP

Ball<+Cube FFT vs. 3D-FFT (FFTW3)

1 I | | I I
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How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

» Composed FFT: “Ball << Cube” FFT optimization + skip last transpose
 Synthetic benchmark kernel: here for FFTW, but similar for MKL
 Not yet integrated into VASP

Ball<+Cube FFT vs. 3D-FFT (FFTW3)

100 ; . . . .
1 Reference, 3D-FFT

80 | kxx Ball<+Cube, 0% zero-layers N

=< Ball<+Cube, 25% zero-layers 1.4x
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Summary



Summary

Many-core optimization in VASP
= MPIl+ OpenMP, SIMD

" Multi-threaded library calls: 3D-FFT in this talk
1 Scaling quite acceptable
 Issue with plan creation when using FFTW: consumes a lot of time

FFTLIB: C++ template library intercepting FFTW calls
" Plan reuse via hash-map + cache: up to 1.4x for VASP application with FFTW
" Composed 3D-FFT: 1.4x with FFTW when skipping last transpose

Not shown here (but in the paper)
" High bandwidth memory usage (memkind): 10% gain for transpose
" Autotuning within FFTLIB: just an outlook
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