
Florian Wende
Martijn Marsman, Thomas Steinke

Zuse Institute Berlin

On Enhancing 3D-FFT
Performance in VASP

CUG2016
London, UK, May 8 - 12

wende@zib.de On Enhancing 3D-FFT Performance in VASP 2CUG2016, London, UK

OutlineOutline

Many-core Optimizations in VASP
 From MPI to MPI + (OpenMP) Threading
 Multi-threaded FFT: MKL, FFTW (LibSci)
 3D-FFT in VASP

How to improve FFT computation in VASP?
 FFTLIB: C++ template library to intercept FFTW calls

 Plan Reuse
 Composed FFT computation
 …

 Some performance numbers

Many-core Optimizations in VASP

Many-core Optimizations in VASPMany-core Optimizations in VASP

VASP – Vienna Ab-initio Simulation Package
 Electronic structure code
 MPI-only (latest official release)
 Implements DFT: many FFT computations

Optimization approach
 Introduce Threading
 Optimize code sections for SIMD (talk at CUG2015)
 Improve library integration/usage: FFT, BLAS/Scalapack, …

wende@zib.de On Enhancing 3D-FFT Performance in VASP 4CUG2016, London, UK

Many-core Optimizations in VASPMany-core Optimizations in VASP

Many-core processor = lots of (lightweigth)
compute cores on a chip

 Intel Xeon Phi KNC/KNL: 60+ cores
 Highly parallel computation
 MPI-only will not work in the

majority of cases

MPI + (OpenMP) Threading
 KNL: 4, 8, 16 MPI ranks + lots of (OpenMP) threads
 User function part: code instrumentation via OpenMP compiler directives
 Library functions: multi-threaded context or call to multi-threaded library

wende@zib.de On Enhancing 3D-FFT Performance in VASP 5CUG2016, London, UK

Many-core Optimizations in VASPMany-core Optimizations in VASP

Current state of VASP* optimization
 MPI + OpenMP: almost fully adapted code base
 SIMD: OpenMP 4.x directives
 Multi-threaded FFT computation

 3D-FFT where possible: it is really fast!
 “Ball ↔ Cube” FFT optimization:

composed 1D+1D+1D FFT

*This VASP version is not yet officially available! Will be coming soon 

wende@zib.de On Enhancing 3D-FFT Performance in VASP 6CUG2016, London, UK

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 FFTW library calls: Intel MKL can be used through its FFTW interface
 Calling scheme in VASP:

// create plan
p=fftw_plan_xxx(…)

// execute
fftw_execute(p)

// destroy plan
fftw_destroy_plan(p)

wende@zib.de On Enhancing 3D-FFT Performance in VASP 7CUG2016, London, UK

This happens
again and again

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

wende@zib.de On Enhancing 3D-FFT Performance in VASP 8CUG2016, London, UK

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

wende@zib.de On Enhancing 3D-FFT Performance in VASP 8CUG2016, London, UK

A lot of time is spent in the planner phase!

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 FFTW provides different planner schemes: ESTIMATE, MEASURE, …

ESTIMATE – cheap
MEASURE – expensive: kind of online-autotuning on different FFT algorithms

wende@zib.de On Enhancing 3D-FFT Performance in VASP 9CUG2016, London, UK

Number of Threads

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 FFTW provides different planner schemes: ESTIMATE, MEASURE, …

ESTIMATE – cheap
MEASURE – expensive: kind of online-autotuning on different FFT algorithms

wende@zib.de On Enhancing 3D-FFT Performance in VASP 9CUG2016, London, UK

Number of Threads
Approx. 2x gain with MEASURE

Scaling with the
number of threads

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 Costs for planning with MEASURE and using the

FFTW Wisdom feature for faster plan creation

wende@zib.de On Enhancing 3D-FFT Performance in VASP 10CUG2016, London, UK

Number of Threads

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 Costs for planning with MEASURE and with

FFTW Wisdom feature for faster plan creation

wende@zib.de On Enhancing 3D-FFT Performance in VASP 10CUG2016, London, UK

Number of Threads

PdO2 benchmark setup has approx.
45,000 planner call invocations:

20+ seconds just for plan creation!

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 Costs for planning with MEASURE and with

FFTW Wisdom feature for faster plan creation

wende@zib.de On Enhancing 3D-FFT Performance in VASP 11CUG2016, London, UK

Number of Threads

Xeon Phi
(KNC) Data

Many-core Optimizations in VASPMany-core Optimizations in VASP

3D-FFT in VASP
 Costs for plan creation seems to become dominant with increasing number

of threads to be used for the computation

Can we do better?

wende@zib.de On Enhancing 3D-FFT Performance in VASP 12CUG2016, London, UK

How to Improve FFT Computation in VASP?

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

Main issue when using FFTW: plan creation
 Recommendation on FFTW webpage: “reuse plans as long as possible”
 Plan caching mechanism in the application?

No, create a library for that purpose!

FFTLIB (will be hosted as open source library soon)
 C++ template library encapsulation FFTW and DFTI specifics
 Plan reuse: hash-map + cache
 Composed FFT

 “Ball ↔ Cube” FFT optimization
 Skip transpose operation(s)
 High Bandwidth Memory (preparation for Intel’s Xeon Phi KNL)

wende@zib.de On Enhancing 3D-FFT Performance in VASP 14CUG2016, London, UK

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

FFTLIB – Approach
 Intercept FFTW calls + additional features

wende@zib.de On Enhancing 3D-FFT Performance in VASP 15CUG2016, London, UK

fftw_init_threads()

…

fftw_plan_dft_1d()

fftw_plan_many_dft()

…

fftw_cleanup_threads()

FFTW / MKL

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

FFTLIB – Approach
 Intercept FFTW calls + additional features

wende@zib.de On Enhancing 3D-FFT Performance in VASP 15CUG2016, London, UK

fftw_init_threads()

…

fftw_plan_dft_1d()

fftw_plan_many_dft()

…

fftw_cleanup_threads()

FFTW / MKL

template<…>

class fftlib{

//implementation
};

extern “C” int

fftw_init_threads(){

//implementation using fftlib
}

…

dlopen()

dlsym()

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

FFTLIB – Plan Reuse
 Plans are stored permanently in a hash-map + cache

 First planner call goes to FFTW / MKL for each geometry
 Successive planner calls are served by FFTLIB

wende@zib.de On Enhancing 3D-FFT Performance in VASP 16CUG2016, London, UK

Remains the
same

0.3µs – 0.4µs
request time:

>1000x gain for FFTW

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

FFTLIB – Plan Reuse
 Plans are stored permanently in a hash-map + cache

 First planner call goes to FFTW / MKL for each geometry
 Successive planner calls are served by FFTLIB

wende@zib.de On Enhancing 3D-FFT Performance in VASP 17CUG2016, London, UK

Remains the
same

3µs – 4µs
request time:

>1000x gain for FFTW

Xeon Phi
(KNC) Data

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT in VASP with FFTLIB
 Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

wende@zib.de On Enhancing 3D-FFT Performance in VASP 18CUG2016, London, UK

Only the initial planner costs contribute

Without FFTLIB:
Approx. 32

seconds (T=4)
just for plan

creation with
FFTW

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT in VASP with FFTLIB
 Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

wende@zib.de On Enhancing 3D-FFT Performance in VASP 18CUG2016, London, UK

1.01x 0.92x 1.06x 1.42x 1.06x 1.35x

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization (optional)

 Reciprocal space vector G below a certain cutoff

wende@zib.de On Enhancing 3D-FFT Performance in VASP 19CUG2016, London, UK

This is what VASP is doing right now

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization (optional)

 Reciprocal space vector G below a certain cutoff

wende@zib.de On Enhancing 3D-FFT Performance in VASP 19CUG2016, London, UK

Transpose operation(s)
separating 1D-FFTs

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization (optional)

 Reciprocal space vector G below a certain cutoff

wende@zib.de On Enhancing 3D-FFT Performance in VASP 19CUG2016, London, UK

FFTLIB: implemented as 2D-FFT + zero layers
in z-direction are determined automatically

Transpose operation(s)
separating FFTs

?

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization + skip last transpose

 Synthetic benchmark kernel: here for FFTW, but similar for MKL
 Not yet integrated into VASP

wende@zib.de On Enhancing 3D-FFT Performance in VASP 20CUG2016, London, UK

Number of Threads

How to Improve FFT Computation in VASP?How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization + skip last transpose

 Synthetic benchmark kernel: here for FFTW, but similar for MKL
 Not yet integrated into VASP

wende@zib.de On Enhancing 3D-FFT Performance in VASP 20CUG2016, London, UK

Number of Threads

1.4x

Not “unrealistic”

Summary

SummarySummary

Many-core optimization in VASP
 MPI + OpenMP, SIMD
 Multi-threaded library calls: 3D-FFT in this talk

 Scaling quite acceptable
 Issue with plan creation when using FFTW: consumes a lot of time

FFTLIB: C++ template library intercepting FFTW calls
 Plan reuse via hash-map + cache: up to 1.4x for VASP application with FFTW
 Composed 3D-FFT: 1.4x with FFTW when skipping last transpose

Not shown here (but in the paper)
 High bandwidth memory usage (memkind): 10% gain for transpose
 Autotuning within FFTLIB: just an outlook

wende@zib.de On Enhancing 3D-FFT Performance in VASP 22CUG2016, London, UK

Acknowledgement

Jeongnim Kim (Intel, US)

Funding:
Research Center for Many-core HPC (IPCC@ZIB)

Partners:
ZIB + VASP developer team (Georg Kresse, Martijn Marsman)
Joint research project ZIB + Cray

