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Many-core Optimizations in VASP
 From MPI to MPI + (OpenMP) Threading
 Multi-threaded FFT: MKL, FFTW (LibSci)
 3D-FFT in VASP

How to improve FFT computation in VASP?
 FFTLIB: C++ template library to intercept FFTW calls

 Plan Reuse
 Composed FFT computation
 …

 Some performance numbers
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VASP – Vienna Ab-initio Simulation Package
 Electronic structure code
 MPI-only (latest official release)
 Implements DFT: many FFT computations

Optimization approach
 Introduce Threading
 Optimize code sections for SIMD (talk at CUG2015)
 Improve library integration/usage: FFT, BLAS/Scalapack, …
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Many-core processor = lots of (lightweigth) 
compute cores on a chip

 Intel Xeon Phi KNC/KNL: 60+ cores
 Highly parallel computation
 MPI-only will not work in the

majority of cases

MPI + (OpenMP) Threading
 KNL: 4, 8, 16 MPI ranks + lots of (OpenMP) threads
 User function part: code instrumentation via OpenMP compiler directives
 Library functions: multi-threaded context or call to multi-threaded library
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Current state of VASP* optimization
 MPI + OpenMP: almost fully adapted code base
 SIMD: OpenMP 4.x directives
 Multi-threaded FFT computation

 3D-FFT where possible: it is really fast!
 “Ball ↔ Cube” FFT optimization: 

composed 1D+1D+1D FFT

*This VASP version is not yet officially available! Will be coming soon 
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3D-FFT in VASP
 FFTW library calls: Intel MKL can be used through its FFTW interface
 Calling scheme in VASP:

// create plan
p=fftw_plan_xxx(…)

// execute
fftw_execute(p)

// destroy plan
fftw_destroy_plan(p)
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This happens 
again and again
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3D-FFT in VASP
 Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)
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A lot of time is spent in the planner phase!
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3D-FFT in VASP
 FFTW provides different planner schemes: ESTIMATE, MEASURE, …

ESTIMATE – cheap
MEASURE – expensive: kind of online-autotuning on different FFT algorithms
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Number of Threads
Approx. 2x gain with MEASURE

Scaling with the 
number of threads
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3D-FFT in VASP
 Costs for planning with MEASURE and using the

FFTW Wisdom feature for faster plan creation
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Number of Threads

PdO2 benchmark setup has approx. 
45,000 planner call invocations: 

20+ seconds just for plan creation! 
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Number of Threads

Xeon Phi 
(KNC) Data
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3D-FFT in VASP
 Costs for plan creation seems to become dominant with increasing number

of threads to be used for the computation

Can we do better?
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Main issue when using FFTW: plan creation
 Recommendation on FFTW webpage: “reuse plans as long as possible”
 Plan caching mechanism in the application?

No, create a library for that purpose!

FFTLIB (will be hosted as open source library soon)
 C++ template library encapsulation FFTW and DFTI specifics
 Plan reuse: hash-map + cache
 Composed FFT

 “Ball ↔ Cube” FFT optimization 
 Skip transpose operation(s)
 High Bandwidth Memory (preparation for Intel’s Xeon Phi KNL)
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FFTLIB – Approach
 Intercept FFTW calls + additional features
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fftw_init_threads()

…

fftw_plan_dft_1d()

fftw_plan_many_dft()

…

fftw_cleanup_threads()

FFTW / MKL
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FFTLIB – Approach
 Intercept FFTW calls + additional features
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fftw_init_threads()

…

fftw_plan_dft_1d()

fftw_plan_many_dft()

…

fftw_cleanup_threads()

FFTW / MKL

template<…>

class fftlib{

//implementation 
}; 

extern “C” int

fftw_init_threads(){

//implementation using fftlib
}

… 

dlopen()

dlsym()
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FFTLIB – Plan Reuse
 Plans are stored permanently in a hash-map + cache

 First planner call goes to FFTW / MKL for each geometry
 Successive planner calls are served by FFTLIB
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Remains the 
same

0.3µs – 0.4µs
request time:

>1000x gain for FFTW
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Remains the 
same

3µs – 4µs
request time:

>1000x gain for FFTW

Xeon Phi 
(KNC) Data
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3D-FFT in VASP with FFTLIB
 Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)
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Only the initial planner costs contribute

Without FFTLIB:
Approx. 32 

seconds (T=4) 
just for plan 

creation with 
FFTW
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1.01x 0.92x 1.06x 1.42x 1.06x 1.35x
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3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization (optional)

 Reciprocal space vector G below a certain cutoff
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This is what VASP is doing right now
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Transpose operation(s) 
separating 1D-FFTs
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3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization (optional)

 Reciprocal space vector G below a certain cutoff
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FFTLIB: implemented as 2D-FFT + zero layers 
in z-direction are determined automatically 

Transpose operation(s) 
separating FFTs

?
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3D-FFT with FFTLIB
 Composed FFT: “Ball ↔ Cube” FFT optimization + skip last transpose

 Synthetic benchmark kernel: here for FFTW, but similar for MKL 
 Not yet integrated into VASP
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Number of Threads

1.4x

Not “unrealistic”



Summary



SummarySummary

Many-core optimization in VASP
 MPI + OpenMP, SIMD
 Multi-threaded library calls: 3D-FFT in this talk

 Scaling quite acceptable
 Issue with plan creation when using FFTW: consumes a lot of time

FFTLIB: C++ template library intercepting FFTW calls
 Plan reuse via hash-map + cache: up to 1.4x for VASP application with FFTW
 Composed 3D-FFT: 1.4x with FFTW when skipping last transpose

Not shown here (but in the paper)
 High bandwidth memory usage (memkind): 10% gain for transpose
 Autotuning within FFTLIB: just an outlook
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