CUG2016

London, UK, May 8 - 12

(X X X X X X)

rformance n VAS 4B

Florian Wende /use Institute Berlin

Martijn Marsman, Thomas Steinke

Outline

Many-core Optimizations in VASP
" From MPI to MPI + (OpenMP) Threading
" Multi-threaded FFT: MKL, FFTW (LibSci)
= 3D-FFT in VASP

How to improve FFT computation in VASP?

" FFTLIB: C++ template library to intercept FFTW calls
 Plan Reuse

d Composed FFT computation
I I

= Some performance numbers

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

Many-core Optimizations in VASP

VASP — Vienna Ab-initio Simulation Package

" Electronic structure code b-initio
= MPIl-only (latest official release)
" |mplements DFT: many FFT computations E

imulatinn

Optimization approach
" |ntroduce Threading

" QOptimize code sections for SIMD (talk at CUG2015)
" |mprove library integration/usage: FFT, BLAS/Scalapack, ...

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

Many-core processor = |ots of (lightweigth)

compute cores on a chip
= |ntel Xeon Phi KNC/KNL: 60+ cores
= Highly parallel computation LVA e
= MPI-only will not work in the
majority of cases

MPI + (OpenMP) Threading
= KNL: 4, 8, 16 MPI ranks + lots of (OpenMP) threads
= User function part: code instrumentation via OpenMP compiler directives
" Library functions: multi-threaded context or call to multi-threaded library

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

Current state of VASP™ optimization
= MPI + OpenMP: almost fully adapted code base e -initio

= SIMD: OpenMP 4 .x directives P

" Multi-threaded FFT computation
d 3D-FFT where possible: it is really fast!
imulation

d “Ball <> Cube” FFT optimization:
composed 1D+1D+1D FFT

"This VASP version is not yet officially available! Will be coming soon ©

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP
" FFTW library calls: Intel MKL can be used through its FFTW interface

= Calling scheme in VASP:

// create plan
p=fftw plan xxx(..)

// execute This happens

—

fftw execute (p) again and again

// destroy plan
fftw destroy plan(p)

—

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSc1)
T=1 T=4 T=1 T=4 T=1 T=4
Total 146.6s 78.0s 162.1s 122.5s 162.3s 121.9s
3D-FFT 23.4s 10.7s 38.2s 43.3s 38.6s 41.9s
+ planner 1.0s 1.0s 10.0s 32.9s 9.8s 31.1s
+ execute 22.4s 9.7s 28.28 10.4s 28.8s 10.8s

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSci)
T=1 T=4 T=1 T=4 T=1 T=4
Total 146.6s 78.0s 162.1s 122.5s 162.3s 121.9s
3D-FFT 23.4s 10.7s 38.2s 13 38.6s 41.9

+ planner 1.0s 1.0s 10.0s 9.8s
+ execute 22.4s 9.7s 28.2s 28.8s

A lot of time is spent in the planner phase!

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP

* FFTW provides different planner schemes: ESTIMATE, MEASURE, ...
ESTIMATE — cheap
MEASURE — expensive: kind of online-autotuning on different FFT algorithms

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

80
70 | == FFTW3, ESTIMATE]
gx FFTW3 (rev. 3.3.4, LibSci), ESTIMATE R
_ 60 r < FFTW3, MEASURE y
2 0 - zza FFTW3 (rev. 3.3.4, LibSci), MEASURE [N -
&40 - MKL 11.3.2 _ -
o5 30 F . -
Grid: 64x64x64 N
20 _ %a H _
10 | N l
Ol o AN [BR
1 2 4 8 12

Number of Threads

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP

* FFTW provides different planner schemes: ESTIMATE, MEASURE, ...

ESTIMATE — cheap
MEASURE — expensive: kind of online-autotuning on different FFT algorithms

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

80

70 | == FFTW3, ESTIMATE]

gz FFTW3 (rev. 3.3.4, LibSci), ESTIMATE -

_ 60 r < FFTW3, MEASURE y
2 0 - zza FFTW3 (rev. 3.3.4, LibSci), MEASURE [N -
840 MKL 11.3.2 \ - :
05 30 - -
O Grid: 64x64x64 S "

10 | .

Ol o AN [BR N\

1 2 4 8& 12

Scaling with the Number of Threads o
number of threads Approx. 2x gain with MEASURE

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP
= Costs for planning with MEASURE and using the
FFTW Wisdom feature for faster plan creation

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE

- Grid: 64x64x64 FFTW3 — R

2 i FFTW3 (rev. 3.3.4, LibSci) ==X first call 7
2% - MKL 11.3.2 -
o costs per successive call :
o 1.0 _
g le-2 :
= le-4 -
A i
le-6 i

1 2 4 8 12

Number of Threads

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP
= Costs for planning with MEASURE and with
FFTW Wisdom feature for faster plan creation

Planner Scheme: FFTW_MEA! Pd02 benchmark setup has approx.

_ - Grid: 64x64x64 | 45,000 planner call invocations:
- i FETW3 (rev 504 seconds just for plan creation!
S 1.0
g le-2 :
=S le4 B
m B —

le-6 | i

Number of Threads

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP X Phi
= Costs for planning with MEASURE and with con |
FFTW Wisdom feature for faster plan creation (KNC) Data

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE
FFTW3 (rev. 3.3.4)

Grid: 64x64x64 }ﬁrst call

2 3 MKL 11.3.2 1
bz F COSts per successiyeT .
S 1.0 - :
S le2 ¢ :
E le-4 .
Q-‘ B =

le-6

Number of Threads

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Many-core Optimizations in VASP

3D-FFT in VASP

" Costs for plan creation seems to become dominant with increasing number
of threads to be used for the computation

Can we do better?

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

How to Improve FFT Computation in VASP?

Main issue when using FFTW: plan creation
= Recommendation on FFTW webpage: “reuse plans as long as possible”
" Plan caching mechanism in the application?
No, create a library for that purpose!

FFTLIB (will be hosted as open source library soon)
" C++ template library encapsulation FFTW and DFTI specifics
" Plan reuse: hash-map + cache
" Composed FFT
d “Ball &> Cube” FFT optimization
d Skip transpose operation(s)
d High Bandwidth Memory (preparation for Intel’s Xeon Phi KNL)

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

FFTLIB — Approach
" |ntercept FFTW calls + additional features

fftw init threads()

fftw plan dft 1d()
fftw plan many dft()

fftw cleanup threads()

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

FFTLIB — Approach

" |ntercept FFTW calls + additional features

fftw init threads()

fftw plan dft 1d()
fftw plan many dft()

fftw cleanup threads()

dlopen ()
dlsym()

template<.>
class fftlib({

extern “C” 1int
fftw init threads () {

/ /implementation using £ft1ib

}

wende@zib.de On Enhancing 3D-FFT Performance in VASP

/ /implementation

b

CUG2016, London, UK

How to Improve FFT Computation in VASP?

FFTLIB — Plan Reuse

" Plans are stored permanently in a hash-map + cache
d First planner call goes to FFTW / MKL for each geometry
d Successive planner calls are served by FFTLIB

Planner Scheme: FFTW_MEASURE (+ FFTLIB)

- Grid: 64x64x64 | FFTW3 — R

2 3 FFTWS3 (rev. 3.3.4, LibSci) =3 ¢ firstcall 1 Remains the
z 3 MKL 11.3.2 -

é 10 [costs per successive call HER 1 / same

Q le-2 | k/:
S led | !

gy 1 0.3us—0.4us
" MM

request time:

Number of Threads >1000x gain for FFTW

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

FFTLIB — Plan Reuse

" Plans are stored permanently in a hash-map + cache Xeon Phi
d First planner call goes to FFTW / MKL for each geomet (KNC) Data
d Successive planner calls are served by FFTLIB

Planner Scheme: FFTW_MEASURE (+ FFTLIB)

- Gﬂ&; 64x64x6l4 | FFTW3 (rev. I3.3.4) — }ﬁrst Calﬂ i
2) MKL 11.3.2 &= 1 Remains the
@ L costs per successive call .
S 10f M ¥ N] B B 3 // >aMme
g le2 [a
=) |
S le4 - l
2 N N N I N BN Y 3us —4us

cof M BB WS MW BN BR mE) "
1 2 4 8 16 32 56 reque§t time:
Number of Threads >1000x galn for FFTW

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT in VASP with FFTLIB

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSc1) Without FETLIB:
T=1 T=4 T=1 T=4 T=1 T=4 Approx. 32
seconds (T=4)
Total 1455s 84.8s 152.6s 86.5s 153.3s 90.0s just for plan
3D-FFT 23.4s 10.0s 29.0s 11.3s 29.6s 11.7s creation with
+ planner 0.3s 0.3s 0.8s 0.8s FFTW
+ execute 22 .4s 0.7s 28.28 10.4s 28.8s 10.8s

Only the initial planner costs contribute

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT in VASP with FFTLIB

" Program performance (PdO2: Paladiumdioxid on Paladium surface)

24 MPI ranks on 4 Cray XC-40 compute nodes (Haswell), T=1,4 threads per rank
MKL 11.3.2, FFTW (from GitHub and Cray LibSci)

Setup: PdO2
MKL 11.3.2 FFTW FFTW (LibSci)
T=1 T=4 T=1 T=4 T=1 T=4
- N . - o -
Total 19 00x | Joo2x | H106x L 1.a2x | T1.06x | T1.35x
3D-FFT 23.4s 10.0s 29.0s 11.3s 29.6s 11.7s
+ planner 0.3s 0.3s 0.8s 0.9s 0.8s 0.9s
+ execute 22.4s 0.7s 28.2s 10.4s 28.88 10.8s

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

= Composed FFT: “Ball <> Cube” FFT optimization (optional)
d Reciprocal space vector G below a certain cutoff

This is what VASP is doing right now
; 2GJ i

FFT

FFT
4G FFT 4G
(A) (B) (C) (D)

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

= Composed FFT: “Ball <> Cube” FFT optimization (optional)
J Reciprocal space vector G below a certain cutoff

FFT

X
ZI 4G
STy -1 LT
- B R '
] .}‘ — 1
A S . o .
Y o - s ~ h
e PN o ' |- ’
o ' - -
- o~ P [+ A 7
~ \ o -
4"' . O -
A .
“ .
FFT
-~
4G

(A) (B) Transpose operation(s) ——— o
separating 1D-FFTs

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

= Composed FFT: “Ball <> Cube” FFT optimization (optional)

d Reciprocal space vector G below a certain cutoff

4 ™
FETLIB: implemented as 2D-FFT + zero layers

y in z-direction are determined automatically

T 4
o > e
. .
- PN L
— — - A
£ < A L
- B 0 L
7 e o - -
. Py
;
‘\ ’
o) B
) .
X

gy
I
.
.
-’
i
-
-
P
-
-
I3
-

FFT
) Rrc o 0 | Iy v G
g e .
FFT
ke ~w ?
(A) (B) Transpose operation(s)

separating FFTs

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

» Composed FFT: “Ball << Cube” FFT optimization + skip last transpose
 Synthetic benchmark kernel: here for FFTW, but similar for MKL
 Not yet integrated into VASP

Ball<+Cube FFT vs. 3D-FFT (FFTW3)

1 I | | I I

U 1 Reference, 3D-FFT

80 | kxx Ball<+Cube, 0% zero-layers a
==Y Ball«»Cube, 25% zero-layers

60 | =2 Ball«+>Cube, 50% zero-layers -

22 | Grid: 64x64x64 ; %E _
o L_OxRl Nl H@E | .
1 2 4

8 12

GFlops/s
SN

Number of Threads

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

How to Improve FFT Computation in VASP?

3D-FFT with FFTLIB

» Composed FFT: “Ball << Cube” FFT optimization + skip last transpose
 Synthetic benchmark kernel: here for FFTW, but similar for MKL
 Not yet integrated into VASP

Ball<+Cube FFT vs. 3D-FFT (FFTW3)

100 ;
1 Reference, 3D-FFT

80 | kxx Ball<+Cube, 0% zero-layers N

=< Ball<+Cube, 25% zero-layers 1.4x

‘é 60 r—zA Ball<>Cube, 50% zero-layers 1 -
o “ . e - <
E 40 L Not “unrealistic 7 |
O Grid: 64x64x64
20 | _ o
0 | | Rlll :I | f' |§|l @I]]
1 2 4 8 12

Number of Threads

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Summary

Summary

Many-core optimization in VASP
= MPIl+ OpenMP, SIMD

" Multi-threaded library calls: 3D-FFT in this talk
1 Scaling quite acceptable
 Issue with plan creation when using FFTW: consumes a lot of time

FFTLIB: C++ template library intercepting FFTW calls
" Plan reuse via hash-map + cache: up to 1.4x for VASP application with FFTW
" Composed 3D-FFT: 1.4x with FFTW when skipping last transpose

Not shown here (but in the paper)
" High bandwidth memory usage (memkind): 10% gain for transpose
" Autotuning within FFTLIB: just an outlook

wende@zib.de On Enhancing 3D-FFT Performance in VASP CUG2016, London, UK

Acknowledgement

Jeongnim Kim (Intel, US)

Funding:
Research Center for Many-core HPC (IPCC@ZIB)
Partners:

ZIB + VASP developer team (Georg Kresse, Martijn Marsman)
Joint research project ZIB + Cray

