
LIOProf: Exposing Lustre File System Behavior for I/O Middleware

Cong Xu ∗, Suren Byna†, Vishwanath Venkatesan∗, Robert Sisneros‡,
Omkar Kulkarni∗, Mohamad Chaarawi§, and Kalyana Chadalavada∗

∗Intel Corporation Email: {cong.xu,vishwanath.venkatesan,omkar.kulkarni,kalyana.chadalavada}@intel.com
†Lawrence Berkeley National Laboratory Email: sbyna@lbl.gov

‡National Center for Supercomputing Applications Email: sisneros@illinois.edu
§The HDF Group Email: chaarawi@hdfgroup.org

Abstract—As parallel I/O subsystem in large-scale supercom-
puters is becoming complex due to multiple levels of software
libraries, hardware layers, and various I/O patterns, detecting
performance bottlenecks is a critical requirement. While there
exist a few tools to characterize application I/O, robust analysis
of file system behavior and associating file-system feedback with
application I/O patterns are largely missing. Toward filling
this void, we introduce Lustre IO Profiler, called LIOProf,
for monitoring the I/O behavior and for characterizing the
I/O activity statistics in the Lustre file system. In this paper,
we use LIOProf for uncovering pitfalls of both MPI-IO’s
collective read operation over Lustre file system and iden-
tifying HDF5 overhead. Based on LIOProf characterization,
we have implemented a Lustre-specific MPI-IO collective read
algorithm, enabled HDF5 collective metadata operations and
applied HDF5 datasets optimization. Our evaluation results on
two Cray systems (Cori at NERSC and Blue Waters at NCSA)
demonstrate the efficiency of our optimization efforts.

I. INTRODUCTION

Rapidly increasing demands from scientific applica-
tions for computational power keeps pushing the High-
Performance Computing (HPC) infrastructure towards ex-
ascale. While the computing power of HPC systems keeps
climbing, the I/O systems have not been able to catch up
with the pace of advancement. Worse yet, it is often found
that existing applications can only achieve a fraction of the
potential I/O performance on large scale platforms [15].
The complexity of I/O systems poses significant challenges
in investigating the root cause of performance loss. Potential
factors that may prevent the I/O systems from achieving the
peak bandwidth include poor I/O access patterns, load im-
balance either among the MPI processes or in the underlying
file system or both, lock contention, etc.

To cope with such challenges, profiling tools are designed
to facilitate the process of I/O characterization in I/O soft-
ware stacks, generating invaluable statistics for I/O activity
analysis and bottleneck detection. I/O operations issued by
applications traverse through multiple I/O software layers,
including high-level I/O libraries such as HDF5 [12] and
Parallel NetCDF [5], MPI-IO middleware, and parallel file
system such as Lustre [1]. Multiple application-level I/O

instrument tools, such as Darshan [3] and mpiP [14], have
been developed to record the I/O operations occurred in
high-level I/O libraries and MPI-IO middleware layers, while
Lustre Monitoring Tool (LMT) [6] is designed to monitor
Lustre server system status in real time.

However, legacy Lustre profiling tools do not provide
detailed I/O tracing information for users to conduct sys-
tematic analysis. For instance, LMT monitors storage server
status, such as CPU utilization, memory usage, and disk
I/O bandwidth, but does not provide file system statistics
[13]. Among these file system statistics, server-side client
statistics, which measure the I/O traffic from each client
to the server, provide crucial information for I/O behavior
analysis. With this information users are able to get a clear
view of I/O requests issued by a specific client within a
period of time. Consequently, the workloads on both Lustre
servers and clients can be monitored and any load imbalance
issues can be easily detected in the system. In addition, so
far, the information provided by existing profiling tools is
not sufficient to uncover the internal causes of performance
degradation, such as disk seeks due to serving multiple
client requests concurrently, lock contentions that result from
accessing the same portion of the file, and so on.

To address this issue, we propose a tool, called LIOProf,
for tracking the I/O activities carried out on Lustre file
system server, including server-side client I/O statistics,
server disk bandwidth being shared between distinct clients,
number of lock contentions incurred by a specific client,
I/O workload distribution, etc. The goal of LIOProf is to
provide as much detailed file system I/O activity as possible
to users, helping them investigate the internal causes of any
performance degradation on Lustre servers. LIOProf is built
based on Lustre RPC Tracing, Lustre I/O kits, as well as
system profiling tools.

Using LIOProf, we have evaluated the I/O behavior
of Lustre server under various I/O access patterns. The
synthetic workload IOR benchmark [8] has been used
to perform concurrent collective I/O accesses to a shared
file, while LIOProf generates the file system statistics. We
compiled IOR benchmark with MVAPICH [7] and Parallel



HDF5 library, and conducted two case studies using IOR
MPI-IO and HDF5 APIs, respectively.

In the first case study, we have analyzed the performance
of MVAPICH collective buffering read algorithm over Lustre
file system. Our evaluation shows that the ROMIO collective
write algorithm [10] performs well and is capable of deliv-
ering the peak bandwidth. On the contrary, the ROMIO [11]
collective read implementation can only achieve a fraction of
the Lustre peak bandwidth. Using the I/O statistics generated
by LIOProf, we have observed that each OST is serving read
requests issued by multiple Lustre clients simultaneously,
leading to large number of disk seeks. To overcome this
performance degradation, we have implemented a Lustre-
aware collective read algorithm, and prototyped this mech-
anism in the ROMIO implementation of MVAPICH. This
implementation was done as part of the Lustre ADIO [9]
component in ROMIO. On Cori, a Cray XC40 system
located at National Energy Research Scientific Computing
Center (NERSC), our implementation outperforms existing
MVAPICH by up to 134% using 4096 processes.

In the second case study, we have analyzed the overhead
introduced by HDF5 on top of MPI-IO. Parallel HDF5 uses
MPI-IO collective buffer algorithm to perform parallel I/O.
Thus to quantify the overhead introduced by HDF5, we
have compared the performance of HDF5 and MPI-IO APIs
using the IOR benchmark. Our evaluation showed that there
was a considerable performance gap between parallel HDF5
and MPI-IO cases. We have used LIOProf to identify that
metadata write operations issued by IOR with HDF5 was
the cause for degraded performance. We have addressed the
performance gap by enabling the latest implementation of
collective metadata optimizations in HDF5 and by applying
dataset creation optimization in the IOR benchmark. These
optimizations resolved the inefficiencies of the I/O access
pattern of IOR with HDF5.

In this paper, we will present the design and implementa-
tion details of LIOProf and demonstrate the use of LIOProf
in developing Lustre-aware collective buffer read algorithm
and optimizing parallel HDF5 library. To demonstrate the
effectiveness of our efforts, we have evaluated our proposed
optimizations on the Cori system at NERSC and Blue Waters
at NCSA.

II. BACKGROUND AND MOTIVATION

Parallel I/O for scientific computing has gained a lot of
traction over the last decade and I/O libraries like MPI-
IO [11], HDF5 [12] act as the perfect liaison between
a file system and an application. Optimizing such I/O
libraries has largely been done using empirical methods.
Although empirical approaches can provide insights into
the behavior of a library for an application in a specific
system configuration, developing and optimizing a generic
solution with this approach is challenging. For example,
although MPI collective I/O algorithms in theory reduce

contention and improve I/O performance by trading-off with
communication performance, few get used in leadership
scale systems. Several applications often resort custom I/O
implementations using file-per-process mode. To this end,
PLFS [2] a parallel log structure file system was created
to provide an additional level indirection by representing a
shared file with a set of non-shared files in an underlying
file system like Lustre. Although file-per-process approach
can work currently, it will be challenging to use the same
approach on exascale systems where metadata complexity
can grow to be significantly higher. It is important to improve
shared file I/O performance to a point where it could be used
at all times by default. One reason for poor performance of
collective I/O algorithms is that they treat the underlying
file system as a black-box. Feedback from the file system
on the behavior of a collective I/O algorithm can help
understanding and optimizing the performance. LIOProf is
primarily focused on achieving this.

All client server communications in Lustre [1] are coded
as RPC (remote procedure call) requests and return. All
data requests are handled by Lustre Object Storage Servers
(OSSes) where each server can have one or more storage
targets (OSTs). Performance of a shared file depends on the
distributing contiguous blocks of a file, called a stripe, across
Lustre OSTs. A file properly striped across multiple OSTs
is able to obtain closer to the achievable peak bandwidth
of underlying file system in contrast to a scenario where
there is contention at OSTs. The number of stripes a file
is striped on is called stripe count, and the size of a block
is called stripe size. Contention may occur when the stripe
sizes are chosen inappropriately leading to stripes from all
writer processes ending up in more than one OST, thereby
constricting the parallelism.

An MPI collective I/O algorithm that does not take the
striping information of a file into account would result in
poor performance, despite using aggregation at the clients.
Unfortunately, such level of understanding is hard to achieve
from empirical data. With LIOProf, our goal is to capture
RPCs sent for data requests in Lustre and to visualize the
imbalance on OSTs, which is key to identify the right stripe
size to be used in collective algorithms. LIOProf can also
be used with other I/O libraries like HDF5. For example, it
can also help identifying the amount of padding required for
custom metadata to be stored along with files for scientific
libraries like HDF5. By providing useful insights into the
behavior of Lustre file system, LIOProf will be helpful in
bridging the gap between parallel I/O libraries, middleware,
and parallel file systems.

III. RELATED WORK

There have been several efforts to study I/O access
patterns in parallel applications on Lustre. These range
from using profiling libraries for instrumenting binaries, to
monitoring the file system itself. MpiP [14] is a light-weight

2



profiling library for MPI applications that intercepts MPI
calls using the profiling API and generates statistics such as
the call count and the time spent in calls. Profiling is useful
for locating bottlenecks by identifying functions that take
longer to execute and make up a significant portion of the
overall execution time. However, it provides no information
about how the application interacts with the file system. The
I/O characterization tool Darshan [3], on the other hand, is
an excellent tool for studying access patterns. It provides
great insights into I/O activity on the client side, which
includes plots of transfer sizes, temporal data distribution,
data rates, IOPS frequencies, and many more.

While client-side profiling reveals I/O behavior from an
application standpoint, monitoring the file servers is much
more helpful in understanding how applications interact with
the file system. The Lustre Monitoring Tool (LMT) [13]
is very handy for observing Lustre usage statistics in real
time. It is configured as a Cerebro plugin running on Lustre
servers that collects aggregate statistics and stores it in a
MySQL database, which can then be queried for displaying
the usage statistics to the end user. LMT comes packaged
with two command-line tools lstat and ltop as well as a
GUI-based tool lwatch for visualization of statistics, all
coded in Java. While LMT collects some useful samples
from the OSS server nodes, it focuses extensively on col-
lecting statistics from the Lustre Metadata Servers (MDS).
As the description of LMT [6] notes, the results collected by
the LMT may be affected by the transfer size, Lustre RPC
size and use of collective I/O wherein only a subset of the
clients interact with Lustre. The Robinhood Policy Engine
[4] for Lustre, in addition to triggering actions on the file
system in response to events, also generates highly detailed
reports and statistics.

Client-side profiling and server-side monitoring are useful
to study the corresponding I/O patterns within an appli-
cation and a file system, respectively, but are not suitable
for observing how application I/O requests correlate with
file system activities. This motivates us to create LIOProf
to correlate application I/O requests with the server-side
activity.

IV. LIOPROF

LIOProf is designed to trace I/O activities taken place in
Lustre file system. It aims to provide detailed I/O tracing
information and status of Lustre OSS servers. We have
implemented LIOProf using multiple sets of scripts without
requiring any modification to the Lustre kernel. These scripts
invoke Lustre RPC Tracing and system plug-in services, and
generate information that can be analyzed to shed light on
the I/O behavior being carried out in the file system.

In order to mitigate the overhead introduced to the Lustre
file system, LIOProf uses post analysis strategy to eliminate
any performance impact. During the run time of the job
execution, statistical metrics are tentatively stored on the

local storage of the Lustre OSS servers. The advantage
of this approach is that the traces of all the OSS servers
do not occupy network for global information exchange
and synchronization. To coordinate the data source for
characterizations, all the trace messages are marked with
the simultaneous time on the server. This can be leveraged
for the aggregation of the statistics.

LIOProf contains two main components: LIOProf Logging
Services and LIOProf Statistics Collection and Visualiza-
tion. As shown in Fig. 1, LIOProf Logging Services are
launched on Lustre OSS server nodes before the execution
of applications. These services are mainly responsible for
recording the I/O activities and the status of each OSS server
node. Once the application finishes its job, LIOProf Statistics
Collection and Visualization component collects the statis-
tical metrics from LIOProf Logging output, aggregates the
gathered data, and generates visualization plots for manual
analysis.

Figure 1. A high-level overview of LIOProf Components

A. LIOProf Logging Services

To gain insights into the I/O characteristics of the Lus-
tre OSS nodes, LIOProf enables Lustre RPC Tracing and
spawns plug-in status services on user specified OSS nodes.
Before the execution of the application, the LIOProf Logging
Services need to be started manually on Lustre by someone
with administrator access. At the moment, we assume that
LIOProf is to be used only by facility administrators to
identify bottlenecks of I/O access patterns on Lustre, which
in turn assumes that Lustre is exclusively used by a single
application.

Lustre RPC Tracing can be enabled by setting param-
eter debug to be rpctrace log level. The historical RPC
Tracing logs need to be cleared before the execution of
an application. A debug log buffer is used to store RPC
Tracing logs temporarily. We increase the log buffer size to
prevent the loss of the logs due to overflow. A background
debug daemon is employed to drain the logs from the debug
log buffer on the fly. This daemon is recommended to be
used when the logs are needed for an extended period
of time. In addition, users of LIOProf can also get log

3



Figure 2. Lustre RPC LOG

complaints if the logs are dropped. Once the application
finishes its execution, the logs in the buffer are forced to be
flushed out and the debug daemon is terminated.

Besides tracing Lustre RPC logs, LIOProf is able to
measure the maximum available bandwidth of the Lustre file
system and to characterize the I/O rates of the hard drives.
Obdfilter-survey benchmark is usually used to investigate
the obdfilter layer in Lustre IO stack for writing, rewriting
and reading multiple Lustre objects. To obtain the peak
performance of Lustre OSTs, LIOProf can by leveraged
by users to launch Obdfilter-survey and output the optimal
performance of Lustre system. Iostat and brw stats are
two crucial tools used by LIOProf to monitor and under-
stand the status of storage devices. Iostat is part of the
sysstat family of tools that takes a snapshot of the status
of specified device. LIOProf lets iostat capture the disk
bandwidth in a one second interval and outputs the statistics
to local storage. brw stats is one of the statistics provided
in the /prof/fs/lustre/∗, that indicates the number of
contiguous I/O accesses cumulated during a period of time.
LIOProf leverages brw stats to summarize the Lustre RPCs
information. Each service will create one independent file on
each OSS node for recording statistics.

Since LIOProf only launches a small number of logging
and status services, this will not introduce too much over-
head to the system. To quantify the overhead introduced
by LIOProf, we have conducted multiple experiments under
various I/O access patterns. During the run time of the job,
LIOProf added less than 1% overhead for the I/O operations.

B. LIOProf Statistics Collection and Visualization

LIOProf Statistics Collection and Visualization compo-
nent is designed to visualize I/O statistics of the traces
LIOProf Logging Services collected from the Lustre OSS
nodes. One can run the parsing and visualization scripts
anywhere in an offline manner as shown in Fig. 1. LIOProf
uses high-performance, parallel remote shell tool pdsh to
facilitate the collection of the I/O logs across all the OSS
nodes after the execution of the application. These Lustre
RPC Tracing logs and server status are parsed and the
generated outputs are collected and organized for gnuplot
to draw visualization and analysis of the characteristics.

Lustre RPC Tracing logs record thousands of events
occurred on Lustre OSS nodes, LIOProf only extracts some
of useful information from these logs for statistical anal-
ysis and visualization. Among these logs, RPC messages
are the most important information provided by Lustre
kernel. Fig. 2 shows the Lustre RPC log format and
an example log message. RPC log consists of message
mask, subsystem mask, cpu number, message time, message
content, etc. For instance, from the example in Fig. 2,
we can see the RPC log was handed by cpu 27 at system
time 1458939850.660586, and the log was dumped by a
ptlrpc server handle request() function. LIOProf uses
the log time to accumulate and report the number of RPC
requests issued within each time interval. In addition, this
facilitated time information can be used to synchronize the
logs among various OSS nodes.

The MESSAGE content contains the details of the mes-
sage, including source of the RPC, RPC operation code
(RPC opc), and so on. The source of the RPC provides
useful information for tracking the RPC requests issued by
specific Lustre Client. With this information, LIOProf can
easily generate Lustre server side clients’ requests for users.
Lustre RPC operation code (RPC opc) indicates the type
of RPC message, it is defined in header file “lustre idl.h”.
LIOProf leverages RPC opc to identify the requests from
the clients, such as I/O requests and lock requests.

Once the logs have been collected and parsed, the interme-
diate results will be passed to the gnuplot script to draw the
stuff. LIOProf is able to generate multiple types of figures,
including I/O distributions across Lustre server, server-side
client I/O statistics, number of lock contentions triggered in
the system and so on.

V. RESULTS

We have deployed LIOProf on a development cluster,
called Wolf, at Intel. The Wolf cluster contains 70 nodes,
each equipped with Octadeca-Core 2.3GHz Xeon processors
(36 Cores), 64 GB memory, and six 1TB SATA disks.
These nodes are connected using Mellanox QDR ConnectX
InfiniBand. Analysis of even these early I/O characteriza-
tions revealed a seemingly addressable performance issue
with the standard MPI-IO implementation on Lustre. In

4



this section we will describe the scenario that directed
our I/O optimizations efforts and demonstrate the real and
significant performance improvements we were able to gain
on capability systems in current production, such as Cori at
NERSC and the Blue Waters system at the National Center
for Supercomputing Applications (NCSA). We extended
subsequent testing to the high-level I/O library, HDF5, to
ensure our low-level library improvements would be widely
applicable. Below we will also describe associated additional
overheads and how we addressed these.

The Cori system at the National Energy Research Scien-
tific Computing Center (NERSC) has 1630 compute nodes
and 30PB of Lustre storage. One node provides 32 CPU
cores and 128GB of memory. Cori uses the Cray Aries high-
speed interconnect with a Dragonfly topology. Blue Waters
is a Cray XE6-XK7 supercomputing system managed by
NCSA. The system has 26 PB online disk capacity and
two types of compute nodes: XE6 and XK7. There are
22,640 XE6 nodes and 4,224 XK7 nodes connected via Cray
Gemini interconnect. Our tests were run on the XE6 portion
of the machine; those nodes have two 16 core CPUs and
64GB of main memory.

We have used the IOR benchmark for our evaluations in
this paper. IOR is a flexible tool for emulating diverse I/O ac-
cess patterns using different I/O libraries, including POSIX,
MPIIO, and HDF5. IOR is widely used for investigating
I/O library configurations on Lustre file system. We have
used the MVAPICH2 framework, version 2.2b and tested on
Lustre versions 2.7 and 2.5.1, the version on Blue Waters.
We have applied our MPI-IO optimizations using the same
version of MVAPICH2 framework.

A. An Improved Collective Read Algorithm for Lustre

To investigate the MPI-IO performance over Lustre file
system, 192 processes are employed to perform concurrent
I/O in an interleaved access pattern on a shared file. Re-
garding the IOR configuration, the total size of the data is
768GB, which is twice the size of memory on Lustre clients.
To avoid lock contentions, both IOR block size and transfer
size are set to be 4MB, which equals the stripe size of the
Lustre. For the Lustre configuration, 6 Lustre clients access
4 Lustre OSTs remotely through high speed interconnect.
The stripe count is configured to be 4, thus the measured
file is distributed to all the Lustre OSTs.

In the rest of the paper, Obdfilter-survey is employed by
LIOProf to obtain the maximum available bandwidth of the
Lustre file system. The aim of our optimization efforts is to
close the performance gap between full I/O benchmarks and
Obdfilter-survey results.

Benchmarking core ROMIO algorithms of the MPI-IO
implementation on the Wolf cluster shows a significant
disparity between collective write performance with that of
collective read. In Fig. 3, we show that the MPI-IO collective
write of IOR performs close to the maximum available

bandwidth. On the contrary, the collective read performance
achieves only about half of the Obdfilter-survey bandwidth.
Understanding the relatively under-performing read was our
first use case for the collection and analysis of LIOProf I/O
statistics.

In Fig. 4, we show the I/O requests traced by LIOProf for
the read benchmark, where we observed poor performance.
From this figure, we can see that each MPI process (client)
is accessing all the OSTs and the bandwidth of the OSTs is
split across all the processes. Since each process reads from
a different region of the data in this access pattern, each OST
has to read data from different regions on the disks. In other
words, an OST has to seek data from different locations for
serving all the MPI processes. Disk seeks are notoriously
costly and result in poor overall bandwidth from each OST.
An optimization would be to limit the number of processes
accessing an OST and reduce the number of disk seeks.

2474	

1408	

2554	
3112	

0	

1000	

2000	

3000	

4000	

5000	

6000	

Write	 Read	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

I/O	Opera5on	

MVAPICH	
OBDFILTER-SURVEY	

Figure 3. Simple benchmark of MVAPICH collectives highlighting the
performance gap between reads and writes.

OST0	

OST2	

OST1	

OST3	

Figure 4. The distribution across all Lustre clients for each OST. This
data is available from an I/O characterization generated by LIOProf.

5



We have implemented a Lustre-aware collective read al-
gorithm where Lustre striping information is used to ensure
one process is dedicated to reading data from one OST.
This process then forwards the data to other processes
when necessary. We have prototyped this mechanism in the
ROMIO implementation of MVAPICH2. Fig. 5 shows an I/O
characterization of this implementation. As a result, OST
contentions are mitigated leading to fewer disk seeks and
therefore reduced overhead. Fig. 6 demonstrates the resulting
performance increase gained by our Lustre-aware read. As
shown in the figure, the optimized implementation is able to
deliver 2874 MB/Sec bandwidth; a performance now akin to
the collective write algorithm, near the maximum bandwidth
of the Lustre file system.

OST0	

OST2	

OST1	

OST3	

Figure 5. I/O characterization of the enhanced MVAPICH2 (with Lustre-
aware collective read) generated by LIOProf.

2474	

1408	

2496	
2874	

2554	

3112	

0	

1000	

2000	

3000	

4000	

5000	

6000	

Write	 Read	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

I/O	Opera5on	

MVAPICH	
Lustre-Aware	
OBDFILTER-SURVEY	

Figure 6. Performance improvement resulting from our Lustre-aware
collective read algorithm.

We have tested the new Lustre-aware collective buffering
read on production systems to verify the performance. On
the Cori supercomputer, we have tested IOR with different
numbers of processes from 128 to 4096 using 128 Lustre

Clients. These processes perform a collective read of 16TB
of data from 96 Lustre OSTs. From Fig. 7 we can see, the
Lustre-aware collective buffering read algorithm performs
1.34X faster than the original implementation at 4096 pro-
cesses. As shown in Fig. 8, the highest scale test was
replicated on Blue Waters where we saw a 2.70X speedup
in Lustre collective read performance. In addition to the
persistence of reduced disk seeks we observed on our test
system we believe we are also benefiting from higher read
cache utilization. The performance of our Lustre-aware read
algorithm is similar to Cray’s optimized version (see Fig. 7),
but we are unaware of implementation similarities as that
algorithm is closed source.

0	
10000	
20000	
30000	
40000	
50000	
60000	
70000	
80000	

128	 256	 1024	 4096	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

Number	of	Processes	

MVAPICH 
Cray MPI 
Lustre-Aware 

Figure 7. Performance characteristics of the original, Cray, and our Lustre-
aware read algorithms up to 4096 cores on Cori.

17494	

6926	

17853	 18690	

0	

10000	

20000	

30000	

40000	

Write	 Read	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

I/O	Opera5on	

MVAPICH	
Lustre-Aware	

Figure 8. Performance characteristics of the original and our Lustre-aware
read algorithms up to 4096 cores on Blue Waters.

B. Improving performance of IOR with HDF5

After our optimization of the collective read algorithm,
MPI-IO layer is able to deliver near optimal performance.
We then investigated the efficiency of IOR in using HDF5
with our LIOProf tool. Parallel HDF5 depends on MPI-IO

6



2456	
2934	

1819	

669	

0	

1000	

2000	

3000	

4000	

5000	

6000	

Write	 Read	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

I/O	Opera5on	

MPIIO	
HDF5	

Figure 9. Performance of IOR with MPI-IO and HDF5

to perform collective I/O operations. We have compared the
performance of IOR using MPI-IO and HDF5 on the Wolf
cluster. To simplify our analysis, we create the ideal setup in
our evaluation. 4 processes are launched on 4 Lustre clients,
perform concurrent I/O to a shared file distributed across 4
Lustre OSTs. The total size of the file is 512GB, and IOR
block size, transfer size and Lustre stripe size are configured
to be 4MB.

In Fig. 9, we compare the performance of IOR with MPI-
IO API and that with HDF5 API. As shown in the figure,
the IOR benchmark using MPI-IO significantly outperforms
HDF5, nearly doubling HDF5 for collective reads.

OST0	

OST2	

OST1	

OST3	

Figure 10. MPI-IO I/O characterization

To find out the cause of the performance difference, we
have used LIOProf to characterize the I/O activities on
Lustre OSS nodes. Fig. 10 shows the number of RPC Read
Requests issued by Lustre Clients on each OST in the MPI-
IO case. As shown in the figure, each OST serves one
Lustre Client and is able to deliver high I/O bandwidth
consistently. The default Lustre RPC size of 1MB is used

in this evaluation and each OST is able to deliver 778MB/s
bandwidth on average.

OST0	

OST2	

OST1	

OST3	

Figure 11. Original HDF5 I/O characterization

In Fig. 11, we show the number of I/O requests issued
on Lustre OSSs in HDF5 case. Both OST0 and OST1
handle I/O requests from multiple Lustre Clients, and the
aggregate bandwidth is about 300MB/s. In the IOR bench-
mark, parallel HDF5 uses the MPI-IO collective buffering
algorithm while it adopts MPI-IO independent I/O method
for metadata operations. The blue filled curves in OST1 sub-
figure shows the I/O requests for reading HDF5 datasets
and the green filled curves represents the HDF5 metadata
requests. The statistics provided by LIOProf allow us to
pinpoint HDF5 metadata I/O accesses as the primary factor
in the observed reduction in I/O bandwidth.

The HDF Group has recently implemented a (currently
unreleased) collective metadata I/O feature. This implemen-
tation uses MPI collective operations to perform collective
metadata I/O accesses. On metadata reads, one process is
selected to read metadata and that process broadcasts it to
all other processes, leading to fewer small I/O accesses.
Collective metadata write efficiency is also improved by
calling collective write function for each dataset. We have
modified the IOR benchmark to test these prerelease collec-
tive metadata operations, H5Pset coll metadata write() and
H5Pset all coll metadata ops().

Fig. 12 shows the performance of HDF5 with collective
metadata optimization. As observed in the figure, both write
and read performance of HDF5-Coll Meta cases have been
improved when compared with the original HDF5 cases.
In the collective metadata read operation only one process
is selected to read metadata with other processes receiving
their metadata from the chosen process without touching the
storage. LIOProf indeed reveals, as shown in Fig. 13, the
number of I/O requests have been significantly cut down.

However, there is still a noticeable performance gap

7



2456	
2934	

1819	

669	

2053	
1557	

0	

1000	

2000	

3000	

4000	

5000	

6000	

Write	 Read	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

I/O	Opera5on	

MPIIO	
HDF5	
HDF5-Coll_Meta	

Figure 12. Overall Performance of HDF5 with collective metadata

OST0	

OST2	

OST1	

OST3	

Figure 13. HDF5 with collective metadata I/O characterization

between MPI-IO case and HDF5-Coll Meta case. Fig. 13
reveals the collective metadata I/O accesses still hinder
HDF5 from achieving performance levels of the MPI-IO
API. Upon examination of the IOR benchmark code with
HDF5 we found that IOR creates thousands of datasets for
the performance measurement, and the program needs to
access HDF5 metadata for each dataset before accessing
the actual data. To address this issue, we modified the IOR
source code to obtain and then cache metadata information
in the beginning of the program to mitigate the negative
impact of metadata operations on the I/O bandwidth.

After enabling collective metadata and applying dataset
metadata caching optimizations, we further increase the I/O
bandwidth of the IOR benchmark with HDF5, especially for
the read operation. As shown in Fig. 14, the read bandwidth
of HDF5-Coll Meta-DataSet Opt case performs 65.1% and
284.3% better than HDF5-Coll Meta and original HDF5
cases, respectively. Fig. 15 characterizes the I/O activities
generated by the LIOProf monitoring tool. In that figure we

2456	
2934	

1819	

669	

2053	
1557	

2125	
2571	

0	

1000	

2000	

3000	

4000	

5000	

6000	

Write	 Read	

Ba
nd

w
id
th
	(M

B/
Se
c)
	

I/O	Opera5on	

MPIIO	
HDF5	
HDF5-Coll_Meta	
HDF5-Coll_Meta&DataSet_Opt	

Figure 14. Overall Performance of HDF5 with collective metadata and
datasets optimization

OST0	

OST2	

OST1	

OST3	

Figure 15. HDF5 with collective metadata and datasets optimization I/O
characterization

can see that without the interference of metadata operations
our optimizations allow each OST to deliver high bandwidth
consistently.

VI. CONCLUSION

Despite several advances in parallel file systems and
parallel I/O software layers, it is still complex to obtain peak
capacity on the parallel file systems. Client-side profiling
tools, such as Darshan, and file system monitoring tools,
such as Lustre, provide only a partial picture of the I/O per-
formance. To fill the void of correlating an application’s I/O
access pattern and its performance with file system behavior,
we introduce LIOProf in this paper. Using LIOProf, we
observed poor performance of MPI-IO two-phase (collective
buffering) read algorithm that resulted in distributed I/O
requests to all the participating Lustre OSTs. We have im-
plemented a Lustre-aware MPI-IO collective read operation
that reduced the number of disk seeks on each OST and

8



hence improved I/O performance. We have also studied
the performance of IOR benchmark with HDF5, where the
original implementation of IOR has several inefficiencies
in accessing metadata. By using a new collective metadata
optimization in HDF5 and by caching the HDF5 dataset
operations in IOR, we have observed HDF5 performing
closer to our improved MPI-IO.

VII. ACKNOWLEDGMENTS

We are very thankful for the contributions of Eric Barton
and Oleg Drokin from Intel. This work is supported by the
Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. This research
used resources of the National Energy Research Scientific
Computing Center. This is also funded in part by the
Blue Waters sustained-petascale computing project, which
is supported by the National Science Foundation (awards
OCI-0725070 and ACI-1238993) and the state of Illinois.

REFERENCES

[1] Lustre 2.0 operations manual.
http://wiki.lustre.org/images/3/35/821-2076-10.pdf.

[2] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczyn-
ski, J. Nunez, M. Polte, and M. Wingate. Plfs: A checkpoint
filesystem for parallel applications. In Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pages 21:1–21:12, New York,
NY, USA, 2009. ACM.

[3] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and
K. Riley. 24/7 characterization of petascale i/o workloads. In
CLUSTER, 2009.

[4] T. Leibovici. Taking back control of hpc file systems with
robinhood policy engine. CoRR, abs/1505.01448, 2015.

[5] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zin-
gale. Parallel netcdf: A high-performance scientific i/o
interface. In Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, SC ’03, pages 39–, New York, NY, USA,
2003. ACM.

[6] C. Morrone. LMT Lustre Monitoring Tools. In Lustre User
Group Conference, 2011.

[7] D. K. Panda. MVAPICH: MPI over InfiniBand,
10GigE/iWARP and RoCE. 2015.

[8] H. Shan and J. Shalf. Using IOR to analyze the I/O per-
formance for HPC platforms. In Cray Users Group Meeting
(CUG) 2007, Seattle, Washington, USA, 2007.

[9] R. Thakur, W. Gropp, and E. Lusk. An abstract-device
interface for implementing portable parallel-i/o interfaces. In
IN PROCEEDINGS OF THE 6TH SYMPOSIUM ON THE
FRONTIERS OF MASSIVELY PARALLEL COMPUTATION,
pages 180–187. IEEE Computer Society Press, 1996.

[10] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective
i/o in romio. In Frontiers of Massively Parallel Computation,
1999. Frontiers ’99. The Seventh Symposium on the, pages
182–189, Feb 1999.

[11] R. Thakur, W. Gropp, and E. L. Lusk. On implementing mpi-
io portably and with high performance. In IOPADS, 1999.

[12] The HDF Group. Hierarchical Data Format Version 5.
https://www.hdfgroup.org/HDF5/, 2016.

[13] A. Uselton. Deploying Server-side File System Monitoring
at NERSC. In Cray User Group Conference, 2009.

[14] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable
MPI Profiling. In CLUSTER, 2014.

[15] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka.
Topology-aware data movement and staging for i/o acceler-
ation on blue gene/p supercomputing systems. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages
19:1–19:11, New York, NY, USA, 2011. ACM.

9


