

1

Performance on Trinity (a Cray XC40) with Acceptance-Applications and

Benchmarks

Nathan Wichmann, Cindy Nuss, Pierre Carrier,

Ryan Olson, Sarah Anderson and Mike Davis

Cray Inc.,

wichmann, cnuss, pcarrier, ryan, saraha,

u3186@cray.com

Randal Baker, Erik W. Draeger, Stefan Domino,

Anthony Agelastos, Mahesh Rajan

rsb@lanl.gov, draeger1@llnl.gov,

spdomin@sandia.gov, amagela@sandia.gov,

mrajan@sandia.gov

Abstract—Trinity is NNSA’s first ASC Advanced Technology

System (ATS) targeted to support the largest, most demanding

nuclear weapon simulations. Trinity Phase-1 (the focus of this

paper) has 9436 dual-socket Haswell nodes while Phase-2 will have

close to 9500 KNL nodes. This paper documents the performance of

applications and benchmarks used for Trinity acceptance. It

discusses the early experiences of the Tri-Lab (LANL, SNL and

LLNL) and Cray teams to meet the challenges for optimal

performance on this new architecture by taking advantage of the

large number of cores on the node, wider SIMD/vector units and

the Cray Aries network. Application performance comparisons to

our previous generation large Cray capability systems show

excellent scalability. The overall architecture is facilitating easy

migration of our production simulations to this 11 PFLOPS system,

while improved work flow through the use of Burst-Buffer nodes is

still under investigation.

Keywords-component; Cray XC40, AVX2, MPI, OpenMP,

performance optimization

I. INTRODUCTION

Trinity is architected to meet the capability simulation needs
of NNSA’s ASC program. It is anticipated that due to its
improvements in compute, memory and storage capabilities, it
will enable larger model geometries and support higher fidelity
physics, while meeting programmatic time-to-solution needs.
Acceptance of the Phase-1 of the Trinity procurement was
concluded in December of 2015. Phase-2 of the Trinity
procurement is currently in progress, as volume shipments of
Intel’s KNL processors facilitate installation and acceptance in
July 2016. Trinity architecture introduces new challenges to the
code developers and analysts. These include the transition from
multi-core to many-core, deeper memory hierarchies and wider
SIMD/vector units. Additionally, we will have for the first time
on a large production capability system, high-speed solid-state
storage Burst-Buffer nodes, which promise to improve check
point/restart reading and writing efficiencies and enable improved
work flow through optimal movement of data in an analysis
cycle. An overview of the Trinity and NERSC-8 procurement
considerations can be found at Reference [1].

II. TRINITY ARCHITECTURE

The Trinity architecture is shown in Figure 1. The Phase-1
Haswell partition has 9,436 nodes with dual-socket Intel Xeon
ES-2698 v3 running at 2.3GHz. Each processor has 16 cores and
4 memory channels connected to four 16GB DDR4 DIMMS
clocked at 2.133GHz. The processors are set up to support

Intel® Hyper-Threads and Intel® Turbo Boost and the operating
clock frequency varies with the thermal load.

Figure 1. Trinity Architecture Diagram

Assuming a nominal 2.3GHz operation, the peak node double
precision performance is: 32cores*16FLOPs/cycle*2.3GHz =
1,177.6 GFLOPS/node. Each core is capable of 16 DP FLOPs
per cycle from the two 256 bit AVX2 units with FMA. Trinity is
listed at 8,101 TFLOPS on top500.org and 182.6 TFLOPS on
hpcg-benchmark.org.

III. ACCEPTANCE TESTS PERFORMANCE RESULTS

A. ASC Capability Improvement (CI) Application Performance

ACES management recognized the importance of good

application performance at scale and made it a key Trinity

acceptance requirement by specifying a set of metrics to quantify

and measure the performance. A key figure used to gauge

performance at near full scale is the Capability Improvement

(CI) metric, which is computed as an average improvement in

performance over Cielo (Cray XE6) [2], of three ASC

applications: PARTISN (from LANL), Nalu (from SNL) and

Qbox (from LLNL). The baseline performance data was

collected on our previous generation ASC ACES platform Cielo,

mailto:wichmann,%20cnuss,%20pcarrier,%20ryan,%20saraha,%20u3186@cray.com
mailto:wichmann,%20cnuss,%20pcarrier,%20ryan,%20saraha,%20u3186@cray.com
mailto:rsb@lanl.gov
mailto:draeger1@llnl.gov
mailto:spdomin@sandia.gov
mailto:amagela@sandia.gov
mailto:mrajan@sandia.gov

2

using more than 2/3 of its compute partition. The CI metric is

defined as:

CI Metric = problem-size-increase * run-time-speedup

The target performance for the CI metric is 8X over the baseline

Cielo performance, but split into 4X for the Phase-1 Haswell

partition (the focus of this paper) and 4X for the Phase-2 KNL

partition. Such a metric was also used in the acceptance

benchmarks of our previous generation ASC ACES capability

platform, Cielo [2][3]. Table 1 provides side-by-side

comparison of a few performance related architectural

parameters of Cielo and Trinity.

Table 1. Cielo, Trinity Architectural Parameters

System Cielo Trinity

Total Nodes 8,894 9,436

Total Cores 142,304 301,952

Processor AMD MagnyCours Intel Haswell

Processor ISA SSE4a AVX2

Clock Speed(GHz) 2.40 2.30

Cores/node 16 32

Memory-per-

core(GB)

2 4

Memory DDR3 1,333 MHz DDR4 2,133 MHz

Peak node

GFLOPS

153.6 1,177.6

Channels/socket 4 4

Processor Cache

L1(KB)

L2(KB)

L3(MB)

8 x 64

8 x 512

10

16 x 32

16 x 256

40

Interconnect

Topology

Gemini

3D Torus

18x12x24

Aries

Dragonfly

The following sections describe the three applications picked

for the CI benchmark, their performance characteristics and

specific efforts that were undertaken to meet the target

performance set for Phase-1. These applications are

representative of the production simulations planned for Trinity

and should suggest possible approaches for tuning other

production applications.

1) SIERRA/Nalu:

The SIERRA/Nalu is a low Mach CFD code that solves a wide

variety of variable density acoustically incompressible flows

spanning from laminar to turbulent flow regimes. SIERRA

Mechanics [4] simulation code suite is the principal mechanics

code used by SNL in support of the U.S. Stockpile Stewardship

program. Open source versions of Nalu (version 1.0.0) along

with the Trilinos solver (version 12.0.0) were used for this

benchmark. Nalu is fairly representative of implicit codes that

have been developed as part of Sandia mechanics simulation

code, SIERRA. Open source Nalu can be downloaded from

Github [5]. This generalized unstructured code base supports

both elemental (control volume finite element) and edge (edge-

based, vertex-centered) discretizations in the context of an

approximate pressure projection algorithm (equal order

interpolation using residual based pressure stabilization). The

generalized unstructured algorithm is second order accurate in

space and time. A variety of turbulence models are supported,

however, all are classified under the class of modeling known as

Large Eddy Simulation (LES). The chosen coupling approach

(pressure projection, operator split) results in a set of fully

implicit sparse matrix systems. Linear solves are supported by

the Trilinos Tpetra interface.

Nalu’s code base has been demonstrated to be 64-bit

compliant and represents the path towards advanced

architectures and can support mesh and degree-of-freedom

counts well above the 2.14 billion count. The calculations are

computationally intensive and require good cache usage. In

typical applications, hundreds of thousands of time steps must be

used. Communication patterns include both point-to-point

exchanges typical of sparse graphs, consistent with assembly of

partial sums, and collective reduction operations including

global minimums, maximums, and summations. This code base

is fairly representative of a wide range of implicit codes that

have been developed in support of the Advanced Simulation and

Computing (ASC) Integrated Codes (IC) project.

a) Problem Description:

The test problem of interest is a turbulent open jet

(Reynolds number of ~6,000) with passive mixture fraction

transport using the one equation Ksgs LES model. The problem

is discretized on an unstructured mesh with hexahedral elements.

The baseline problem R6 mesh consists of nine billion elements,

with the total degree-of-freedom count approaching 60 billion.

Given the pressure projection scheme in the context of a

monolithic momentum solve, the maximum matrix size is ~27

billion rows (momentum) followed by a series of smaller 9

billion row systems, i.e., for the continuity system (elliptic

Pressure Poisson), mixture fraction and turbulent kinetic energy.

b) Figure of Merit (FOM)Description:

Two FOMs were used; both involve the solution of the

momentum equations. The speedups of the two metrics are

weighted to produce a single speedup factor for Nalu. The first

FOM is the average solve time per linear iteration. The second is

the average matrix assemble time per nonlinear step. Speedup is

defined as:

Speedup = Speedup-solve*0.67 + Speedup-assemble*0.33.

c) Capability Improvement Metric Run:

During a short window in December 2015, the focus was on

running Nalu at near full scale of Trinity using as many nodes as

available for the purposes of acceptance. The best performance

was measured in a run using 9420 nodes (301,440 cores or MPI

tasks) using the 9 Billion element R6 mesh. Therefore the

complexity increase used in the CI computation was 1, i.e., the

same mesh was used as for the Cielo baseline run. The

3

capability improvement as defined previously was measured at

4.009. All of that improvement accrues from the faster run time

measured for momentum equation average assemble time

(measured value was 31.8274 secs) and the moementum

equation average solve time (measured value was 83.0502 secs).

The improvement in this run time attests to the superior strong

scaling characteristics of Trinity. It is useful to compare weak

scaling of Nalu between Cielo and Trinity to supplement the

single data point used for the CI metric. Figure 2 provides a

weak scaling plot for the Assemble and Solve times.

The excellent scaling of the Nalu assembly computations

resulted in a run time performance gain of 4.26X, at 9,420 nodes

of Trinity, over the Cielo run at 8,192 nodes. This, combined

with a performance gain of 3.89X for the matrix solve, resulted

in the CI metric value of 4.009.

Figure 2. Trinity, Cielo Nalu weak scaling performance

2) PARTISN

LANL’s PARTISN particle transport code [6] provides

neutron transport solutions on orthogonal meshes in one, two,

and three dimensions. A multi-group energy treatment is used in

conjunction with the Sn angular approximation. Much effort has

been devoted to making PARTISN efficient on massively

parallel computers. The package can be used for time-dependent

calculations where even one simulation can run for weeks on

thousands of processors. The primary components of the

computation involve KBA sweeps and associated zero-

dimensional physics. The KBA sweep is a wave-front algorithm

that provides 2-D parallelism for 3-D geometries, and is tightly

coupled by dependent communications.

PARTISN relies heavily on MPI_Isend/MPI_Recv, while the

most frequent collective is MPI_Allreduce. For a 1,024 rank run,

the code executed around 6M sends, 6M recvs, and

approximately 4k Allreduces.

a) Problem Description:

The test problem used is MIC_SN (MIC with group-

dependent Sn quadrature). This problem is weak-scaled in the Y

and Z dimensions so as to maintain a constant block shape per

processor. A small set of parameters in the input file (jt, kt, yints,

zints) are scaled to set up inputs for the weak scaling study

determining the number of zones/core. These parameters are

doubled when the core count/MPI task count is quadrupled. The

number of OpenMP threads for each MPI task is also specified

in the input file. The Cielo baseline runs with 2,880 zones/core

were collected with four OpenMP threads per MPI rank. For

runs on Trinity input parameters that led to 2,880, 5,760 and

11,520 zones/core were used to generate control files for runs up

to 9,418 nodes (301,376 cores). PARTISN builds with both the

Intel and the Cray CCE compilers, with and without OpenMP

threading, were investigated for performance. Since the CCE

compiler had slightly lower (1-2%) performance than the Intel

compiler, the latter was used for the CI benchmark. A study of

the hot-spots and MPI communications was conducted. The

dominant routine, opt_sweep3d(), which actually performs the

KBA sweep that comprises the wave-front algorithm, took 85%

of the run time. As the code team had already ensured excellent

vectorization of this function, no improvements were found or

needed for the CI benchmark effort.

MPI profiling showed that MPI Isend/MPI_Recv

communications were frequent on the 2D processor mesh.

About 60% of the messages were 64 KB or smaller. In

applications with significant time spent in point-to-point

communications, optimal MPI rank mapping can lead to good

gains in performance. On Cray systems like Trinity, one may

experiment with a simple environment variable setting

 MPICH_RANK_ORDER_METHOD=n

to study the impact of round-robin rank placement (n=0), SMP

rank placement (n=1; default) or folded rank placement (n=2).

For PARTISN a custom rank order placement obtained with the

use of the Cray utility grid_order was very beneficial. An

example of a remap with grid_order for a run on Trinity with

301,376 MPI ranks is provided below.

grid_order -R -Z -m 301376 -n 32 -g 554x544 \

 -c 4x8 >MPICH_RANK_ORDER

The parameters specify:

-R is row-major ordering of ranks

-Z option (default) lists successive rows of cells in the

same order

-m max rank count

-c is the desired node MPI grid

-g is the global MPI grid

At run time setting the environment variable:

MPICH_RANK_REORDER_METHOD=3

uses the MPICH_RANK_ORDER file to map MPI ranks to

cores and nodes to ensure most of the communication exchanges

are within a node, thereby lowering the overall MPI

communication time. The utility grid_order does not take

system topology into account: it simply “repacks” MPI ranks so

that Cartesian mesh communication neighbors are more often on

a node. An experiment with PARTISN using grid_order on a

4

run using 16,384 PEs showed a 42% improvement in the MPI

time and an 18% improvement in overall run time. Figure 3

shows the speedup resulting from the use of grid_order at

various scales for PARTISN on Trinity.

Figure 3. Performance gain with grid_order for PARTISN

b) Figure of Merit (FOM) Description:

For PARTISN the FOM used is the Solver Iteration Time.

Ideally this should stay constant for weak scaling. When the

baseline performance data was measured on Cielo, optimal

scaling and performance were observed with 4 MPI tasks per

node and 4 OpenMP threads per MPI task. The results of an

investigation to find the optimal MPI Task/OpenMP thread

mapping on Trinity, with 2,880 zones/core (labeled “1X”) is

shown in Figure 4. One thread/MPI rank gave the best

performance on Trinity.

Figure 4. PARTISN MPI task and threading performance

A number of runs on Trinity were attempted to obtain the best

possible performance for calculation of the CI metric. Figure 5

compares the scaling plots against the baseline Cielo

measurements. For the all the runs on Trinity in this figure one

OpenMP thread per MPI task was used. 2,880 zones/core and

11,520 zones/core are the two input cases shown. The label

‘asis’ refers to default MPI grid mapping and the label ‘grid’

refers to a run with grid_order mapping as previously described.

Figure 5. Weak scaling for Cielo and Trinity, with two

problem sizes comparing default and grid_order rank

reordering

c) Capability Improvement Metric Run:

For the CI computation, a run on Trinity using 9,418 nodes

(301,376 cores) and an input of 11,520 zones/core, produces a

FOM solver iteration time of 397.71 secs. The baseline Cielo

run was on 8,192 nodes (131,072 cores) with an input of 2,880

zones/core, and produced a solver iteration time of 209.4 secs.

This results in a complexity scale factor of 9.19 and a run time

ratio of 0.526, which yields a CI value for PARTISN of 4.83.

3) Qbox

Qbox is a first-principles molecular dynamics code used to

compute the properties of materials at the atomistic scale [7].

The main algorithm uses a Born-Oppenheimer description of

atomic cores and electrons, with valence electrons treated

quantum mechanically using Density Functional Theory and a

plane wave basis. Nonlocal pseudopotentials are used to describe

the core electrons and nuclei, and derived to match all-electron

single atom calculations outside of a given cutoff radius. The

computational profile consists primarily of parallel dense linear

algebra and parallel 3D complex-to-complex Fast Fourier

Transforms. Efficient single-node kernels have been found to be

necessary to achieve good peak performance. The

communication patterns are complex, with nonlocal

communication occurring both within the parallel linear algebra

library (ScaLAPACK) and in sub-communicator collectives

within Qbox, which are primarily MPI_Allreduce and

MPI_Alltoallv operations. Threading is currently implemented

as a mix of OpenMP and threaded single-node linear algebra

kernels supplied by the hardware/compiler vendor. All results

presented here were carried out using the qb@LL-r205 branch of

the Qbox code.

a) Problem Description:

The Qbox benchmark problem is the initial self-consistent

wavefunction convergence of a large crystalline gold system

(FCC, a0 = 7.71 a.u). This problem is computationally identical

to typical capability simulations of high-Z materials, but easier

5

to describe and generalize to arbitrary numbers of atoms. A Perl

script is used to generate input files for weak scaling study. On

Cielo, N=1,600 gold atoms were simulated with a norm-

conserving pseudopotential and 17 valence electrons per atom,

resulting in 13,600 occupied electronic orbitals. A planewave

cutoff of 130 Rydbergs was used, and 2,784 additional

unoccupied orbitals was included (approximately 20% of the

number of occupied states) to allow finite temperature smearing

of the occupation at the Fermi level. The computational

complexity of the calculation scales as O(N3) where N is the

number of electronic orbitals. The number of atoms was

increased accordingly to generate scaled problems for Trinity

capability improvement metric simulations. For example, 2,880

gold atoms would require approximately six times more

computations than the Cielo benchmark problem with 1,600

atoms.

b) Figure of Merit (FOM) Description:

The run time metric for this benchmark is the maximum

total wall time, to run a single self-consistent iteration, with

three non-self-consistent inner iterations (corresponding to an

input command of ‘run 0 1 3’). Qbox prints formatted XML

tags for the timing of each part of the code at the end of the run,

with the self-consistent iteration time marked as follows:

<timing where="run" name=" iteration" min="1234.5 " max="1234.5 "/>

The FOM is the timing in the max field.

Qbox CI performance was investigated extensively so

as to improve the performance metric on Trinity. The primary

factors impacting the CI metric at various scales were: input

parameter nrowmax, hybrid coarse/fine-grain parallelism; i.e.

number of OpenMP threads per MPI task, optimal MPI task

mapping, and the number of atoms on input. Early

investigations also showed that the Cray CCE compiler was

slightly faster (by a few percent) than the Intel compiler. Use of

craype-hugePages at 8MB also led to 5% performance gain

(tested on small problem size) over the default 4KB page size.

Cray Libsci OpenMP parallel linear algebra functions found

heavy use in Qbox. The importance of the Cray Libsci usage

strongly depends on the size of the problem and the number of

nodes available for that run; typically, a problem with 2,400 gold

atoms running on 2,048 nodes would spend about half the total

time inside the ScaLAPACK BI_Srecv/BI_Ssend routines, with

an extra 10% in the BLAS routine ZGEMM, and a few percent

in MPI_Alltoallv and FFTW3. Larger problems will see an

increase in the time spent in the ScaLAPACK routines. However

more time will be spent inside ZGEMM and MPI_Alltoallv as

the problem size gets smaller and smaller.

The nrowmax variable is used to determine the shape of

the rectangular process grid used by Qbox. This process grid is

the one used by the ScaLAPACK library. When Qbox starts, the

ntasks, MPI tasks are assigned to processes arranged in a

rectangular array of dimensions nprow * npcol. The default

value of nrowmax is 32. The plane-wave basis is divided among

nprow blocks, and the electronic states are divided among npcol

blocks. At the program start up a simple algorithm coded in

Qbox determines the values of nprow and npcol. Note that Cray

Perftools includes an MPI Grid Detection algorithm that

determines the shape of the numerical grid and offers optimum

grid orderings, as further discussed below. Values 512, 1,024,

2,048 and 4,096 for nrowmax were investigated for their

performance impact. At lower scales (< 512 nodes) nowmax of

512 was optimal. However as the problem size (number of

atoms) and the number of nodes were increased it was found that

up to 2,000 nodes the optimal nrowmax was 1,024 and at very

large scales it was 2,048. This is the result of balancing the

communication traffic across different ScaLAPACK functions

and parallel FFTs, and is consistent with previous studies.

Performance investigation varying the number of

OpenMP threads per MPI task showed variation based on scale.

For less than 880 atoms, 2 OpenMP threads/task was optimal.

For 2,400 atoms and above and at larger number of nodes 8

OpenMP threads/task gave the best performance. Runs on

Trinity with a 5,600 atom Qbox simulation showed 2X

performance gain for 8 OpenMP threads/task when compared to

2. The need for ASC applications to improve fine-grained node

parallelism is illustrated by this application. The benefit in

performance comes from the high parallel efficiency linear

algebra OpenMP kernels and from reduced MPI inter-node

communication overhead.

Figure 6 compares the weak scaling performance of

Qbox measured on Cielo and Trinity. The 1600 gold atoms

baseline data collected on Cielo and repeated on Trinity using

the same number of 98,304 processing elements showed a nice

performance gain of 5.3X on Trinity. The improved weak

scaling on Trinity seen in Figure 6 is a consequence of the

tuning steps outlined previously.

 Figure 6. Qbox weak scaling performance; 1600 atoms

c) Capability Improvement Metric Run:

 The number of nodes and memory per node on Trinity

(4X that of Cielo) permitted runs of Qbox with up to 8,800

atoms. Figure 7 shows the capability scaling characteristics

of Qbox on 9,418 nodes of Trinity using 8 OpenMP threads

per rank for the various models (except for the 4,000 gold

atoms model that used 2 OpenMP threads).

6

Figure 7. Qbox capability scaling performance, without

MPI grid ordering, and hyperthreading.

The FOM, self-consistent iteration time, increases from 426 secs

to 9,776 secs as the input complexity is varied from 2,880 atoms

to 8,800 atoms. As mentioned previously the computation

complexity grows as the cube of the number of atoms. The run

used for the final CI computation for Qbox is the same 8,800

atoms case as shown in Figure 7 with additional improvement in

performance obtained through MPICH_RANK_REORDER

using the Cray grid_order utility:

grid_order -R -P -c 4,2 -g 68,1108 > MPICH_RANK_ORDER

The parameters specify:

-R is row-major ordering of ranks

-P is a Peano space filling curve (optimal for FFT-style

communication)

-c is the desired node MPI grid

-g is the global MPI grid

This reduced the FOM Iteration Time from 9,776 secs to 7,974

secs. The problem size/complexity factor for the CI

computation with the 8,800 atoms run on Trinity and 1,600

atoms run on Cielo is 166.375 and the run time ratio (with the

Cielo baseline Iteration Time of 1,663 secs) is 0.208 giving a

final CI value of 34.7. The grid_order definition shown above

includes hyperthreading: there are 8 MPI ranks (i.e., defining the

grid_order flags: “-c 4,2”) and 8 OpenMP threads per rank, for a

total of 64 cores per node. The grid order flags “-g 68,1108” are

thus matched to the optimized Qbox parameter nrowmax. The

positive effect of MPI grid ordering is shown in Table 2.

Hyperthreading also benefitted performance.

Table 2. Qbox FOM using MPI Grid ordering

“grid_order -R -P -c 2,2 -g 34,1108” (without hyperthreading)
“grid_order -R -P -c 4,2 -g 68,1108” (with hyperthreading)

 2400 gold atoms 8800 gold atoms

Without grid order 456 9776

With grid order 315 8834

With grid order and
hyperthreading

--- 7974

4) Phase-1 CI performance summary:

Figure 8 summarizes the measured CI performance for each of

the Tri-Lab applications and the average of the three

applications. The achieved average CI performance of 14.517

exceeds the target of 4.0 set for Phase-1.

Figure 8. Trinity Capability Improvement performance

B. SSP Results

The System Sustained Performance (SSP) benchmark
developed by NERSC [8] is useful as a way of measuring,
reporting, and projecting the performance of a given system using
a set of benchmark programs that represent a workload. SSP is
computed as a geometric mean of the performance of eight Tri-
Lab and NERSC benchmarks [8]: miniFE, miniGhost, AMG,
UMT, SNAP, miniDFT, GTC and MILC. A second performance
goal for Trinity Phase-1 was a target SSP of 400. This is roughly
8X throughput improvement in performance over the reference
baseline measured on NERSC’s Hopper (a Cray XE6). Table 3
shows the baseline SSP performance and calculations on Hopper.

Table 3. SSP baseline performance on Hopper

Hopper Nodes 6384

Hopper SSP

Application Name MPI Tasks Threads Nodes Used Reference Tflops Time (seconds) Pi

miniFE 49152 1 2048 1065.151 92.4299 0.0056

miniGhost 49152 1 2048 3350.20032 95.97 0.0170

AMG 49152 1 2048 1364.51 151.187 0.0044

UMT 49152 1 2048 18409.4 1514.28 0.0059

SNAP 49152 1 2048 4729.66 1013.1 0.0023

miniDFT 10000 1 417 9180.11 906.24 0.0243

GTC 19200 1 800 19911.348 2286.822 0.0109

MILC 24576 1 1024 15036.5 1124.802 0.0131

Geom. Mean= 0.0082

SSP= 52.1212

The Reference Tflops in Table 3, measured on Hopper is to be
used for the calculation of SSP on Trinity. The other specified
factor in the SSP runs on Trinity is the input problem size for
each of the benchmarks, provided with the benchmark tar file and
labelled “large” [8]. However the benchmark dos not specify the

7

number of MPI tasks, the threads per task, nor the number of
nodes used, which is a potential shortcoming. The SSP
performance measured on Trinity is shown in Table 4. The last
column (pi), a measure of throughput per node
(Teraflops/second-per-node) is measured by dividing the
reference TFLOPS by the product of the run time and number of
nodes used. The geometric mean of the eight benchmarks is
calculated as shown and the SSP metric is obtained as a product
of this number and the number of nodes on Trinity, 9436.
NERSC and ACES are improving the usefulness of this metric to
better capture the true intent to gauge architectural improvement
of proposed future systems by eliminating few shortcomings such
as lower incentive to achieve good strong scaling and difficulty in
measuring accurate FLOP counts. The achieved performance on
Trinity was 500 and it exceeded the target of 400 set for phase-1.

 Table 4. SSP performance on Trinity

Trinity Nodes 9436

Trinity SSP

pi: Rate(TF/s

per Node)

Application Name

MPI

Tasks Threads

Nodes

Used

Reference

Tflops

Time

(seconds) Pi

miniFE 49152 1 1536 1065.151 49.5116 0.0140

miniGhost 49152 1 1536 3350.20032 1.77E+01 0.1229

AMG 49152 1 1536 1364.51 66.233779 0.0134

UMT 49184 1 1537 18409.4 454.057 0.0264

SNAP 12288 2 768 4729.66 1.77E+02 0.0348

miniDFT 2016 1 63 9180.11 377.77 0.3857

GTC 19200 1 300 19911.348 868.439 0.0764

MILC 12288 1 384 15036.5 393.597 0.0995

Geom. Mean= 0.0530

SSP= 500.0177

C. Extra-Large mini app performance

An additional requirement for Trinity in the SOW, was to

measure and document the scaling and performance of five of the

eight mini-apps used in the SSP benchmark (miniFE, miniGhost,

AMG, UMT and SNAP) using approriate scaled inputs, at near

full scale of 9436 nodes. These were added to the acceptance

tests to help identify any potential hurdles to applications scaling

to the full size of Trinity. All the benchmarks completed

successfully.

D. Micro-benhcmark results

As part of this effort to gather performance characteristics of
Trinity, a number of micro-benchmarks [9] were run. Benchmark
performance data from Pynamic, Ziatest, OMB, SMB, mdtest,
IOR, PSNAP and mpimemu have been very useful in providing a
deeper understanding of the system and factors affecting
performance of applications. This section provides a short
summary of a few of the benchmarks run during Trinity
acceptance.

1) HPCG
The HPCG benchmark was run on Trinity in the fall of 2015.

The Intel version 2.4 of the benchmark was used, and no changes
were made to the code. The runs were scaled up to 9,419 nodes,

using 2 MPI ranks per node and 16 OpenMP threads per rank.
Local domain dimensions of 80x160x160 were set using the
HPCG command line options --nx, --ny, --nz, and the execution
time was set to 4,000 seconds using the HPCG command line
option --t. To ensure optimal placement of ranks and threads on
the cores, the environment variable KMP_AFFINITY was set to
‘compact’ and the aprun option ‘-cc depth’ was used. The best
GFLOP/s rating reported was 182,562.

2) Ziatest

This test executes a new proposed standard benchmark

method for MPI startup that is intended to provide a realistic

assessment of both launch and wireup requirements.

Accordingly, it exercises both the launch system of the

environment and the interconnect subsystem in a specified

pattern. Details on how the test is designed and tar file with the

benchmark can be obtained from [9]. Ziatest was run on Trinity

on 9,334 nodes and it measured a launch time of 12 seconds with

32 MPI tasks per node.

3) Mpimemu

Benchmark mpimemu helps measure approximate MPI library

memory usage as a function of scale. It takes samples of

/proc/meminfo (node level) and /proc/self/status (process level)

and outputs the min, max and avg values for a specified period

of time. More information is provided by NERSC [9].

mpimemu was run on Trinity and Table 5 shows the MPI

library memory used with 64 MPI tasks-per-node (using the -j 2

option of aprun) as a function of scale. For smaller scales the

memory used was found to be less than 2% of the available 128

GB per node.

Table 5. mpimemu benchmark results

Trinity number of nodes 1024 2048 4096 9344

Avg. node memory used (GB) 2.6 3.5 5.2 8.9

4) PSNAP

PSNAP is a System Noise Activity Program from

the Performance and Architecture Laboratory at Los Alamos

National Laboratory. It consists of a spin loop that is calibrated

to take a given amount of time (typically 1 ms). This loop is

repeated for a number of iterations. The actual time each

iteration takes is recorded. Analysis of those times allows one

to quantify operating system interference or noise. Details on

how the test is designed and tar file with the benchmark can be

obtained from NERSC [9].

PSNAP was intended to run on the entire system and was

executed on all the available Trinity nodes on a run using 9,436

nodes, with 32 MPI tasks per node. It was run after the module

‘atp’ was unloaded and the environment variable

ATP_ENABLED was unset. The output was processed using the

script psnap_reduce provided with the benchmark to obtain a

histogram of the actual time taken to run the timing loop for

each MPI task. The resulting histogram showed acceptable

results of OS jitter. A summary of the noise characteristics

obtained from the run output with the provided “psnap_reduce”

script showed:

8

 NR: 9436

 Average Slowdown: 0.148236

 Min Slowdown: 0.131174

 Max Slowdown: 0.178586

To summarize, the maximum percentage slowdown at a core

was measured to be 0.178586%.

5) STREAM

STREAM is a simple, synthetic benchmark designed to

measure sustainable memory bandwidth (in MB/s) and a

corresponding computation rate for four simple vector kernels.

The version used for the Trinity benchmark is the OpenMP

enabled version of STREAM and can be downloaded from [9].

It was built with the Intel compiler options:

-O2 –xAVX -static -openmp -opt-streaming-stores always

The Array size was set to 3,435,973 which correspond to 78 GB

of total memory required. It was run on a Trinity node with:

aprun -j 1 -n1 -cc none -d 32 ../stream_c.exe

The measured STREAM performance is shown in Table 6.

 Table 6. STREAM benchmark results

Function Copy Scale Add Triad

Rate (MB/s) 108,014 108,653 118,850 119,077

6) OSU MPI Message Benchmarks

The OSU MicroBenchmark suite is a collection of

independent MPI message passing performance

microbenchmarks developed and written at the Ohio State

University. It includes traditional benchmarks and performance

measures such as latency, bandwidth and message rate.

 Figure 9. OMB node-to-node MPI bandwidth

Pont-to-point bandwidth, latency and message rate benchmarks

were run. Figure 9 shows the uni-directional and bi-directional

bandwidth between a pair of tasks on two nodes (node numbers:

2,336 and 2,464) and Figure 10 shows the MPI collective

Allreduce latency as function of message size on a run using

300,480 MPI tasks on 9,390 nodes. This shows that on the full

system frequently used 8 byte MPI_Allreduce completes in 28

microseconds.

Figure 10. MPI_Allreduce Latency on 9,390 nodes

The OSU multi-latency benchmark showed that inter-node

latency for small messages was less than 2 microseconds.

The omb_mbw_mr, message rate benchmark performance

between two nodes has been of interest to us because, small

message size messaging-rate impacts scalability and

performance of our implicit codes with multi-level solvers.

Figure 11 helps explain the better scaling seen on many of our

applications on Trinity when compared to our commodity

InfiniBand clusters.

Figure 11. omb_mbw_mr message rate performance

IV. CONCLUSIONS

A wealth of data on the performance of a large Cray XC40
has been collected as part of the Trinity procurement and
acceptance tests. This paper documents the many man-months of
effort to run and optimize the benchmarks. Many of these runs
are the first time that these benchmarks have been run at scales
using in excess of 300,000 cores. We also compared Trinity
performance to our current capability system Cielo. Our
investigation confirms that Cray XC40 has good scalability and
as expected should give us the needed performance and
throughput gain for the Tri-Lab’s growing simulation needs.
Based on benchmark results we anticipate production Trinity
applications would see a performance gain of 2x to 6x over Cielo

9

depending upon potential gains from AVX2, use of threads and
optimal MPI task mapping. The use of Cray’s grid_order utility
and hugepages should be explored as codes are ported to Trinity.
We are hopeful that the lessons learned from this exercise are
helpful to our users as Trinity begins to fully support production
applications in early 2016.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department of

Energy. Sandia is a multi-program laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States

National Nuclear Security Administration and the Department of

Energy under contract DE-AC04-94AL85000. We thank all the

Cray, LANL and SNL staff for their invaluable support during

Trinity acceptance tests.

REFERENCES

[1] https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement

[2] D. Doerfler, M. Rajan, C. Nuss, C.Wright, and T.Spelce, “Application-
Driven Acceptance of Cielo, an XE6 Petascale Capability Platform,” CUG
2011, May 23-26 2011, Fairbanks, Alaska

[3] M. Rajan, C.T. Vaughan, D.W. Doerfler, R.F. Barrett, P.T. Lin,
K.T.Pedretti, and K.S. Hemmert. ”Application-driven Analysis of Two
Generations of Capability Computing Platforms: Purple and Cielo,”
Computation and Concurrency: Practice and Experience, 2012.

[4] http://www.sandia.gov/asc/integrated_codes.html

[5] https://github.com/spdomin/Nalu

[6] Randal S. Baker and Kenneth R. Koch,"An Sn Algorithm for the
Massively Parallel CM--‐200 Computer", Nucl. Sci. and Eng., Vol. 128,
pp. 313-320 (1998)

[7] http://qboxcode.org.

[8] https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/

[9] https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement
http://www.sandia.gov/asc/integrated_codes.html
https://github.com/spdomin/Nalu
http://qboxcode.org/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

