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Abstract—This paper describes an investigation of the per-
formance characteristics of high performance data analytics
(HPDA) workloads on the Cray XC40™, with a focus on
commonly-used open source analytics frameworks like Apache
Spark. We look at two types of Spark workloads: the Spark
benchmarks from the Intel HiBench 4.0 suite and a CX matrix
decomposition algorithm. We study performance from both
the bottom-up view (via system metrics) and the top-down
view (via application log analysis), and show how these two
views can help identify performance bottlenecks and system
issues impacting data analytics workload performance. Based
on this study, we provide recommendations for improving the
performance of analytics workloads on the XC40.
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I. INTRODUCTION

Big Data Analytics is rapidly becoming a critical ca-
pability required by organizations in our digital world.
Analysts expect the “digital universe” to grow from ap-
proximately 3.2 zettabytes (2.3 billion terabytes) in 2014
to over 40 zettabytes by 2020, with many organizations
expecting their data volumes to increase by 50x over that
time period [1]. Up to 85% of this growth is likely to
come from new data sources, including the “Internet of
Things”—wireless sensors remotely connected to public and
private networks [1]. The technology market intelligence
firm ABI research expects that over 30 billion sensors will
be wirelessly connected by 2020 [2].

Cray systems, with their high compute and memory
densities, fast parallel I/O, and highly scalable interconnects,
make excellent platforms for running data analytics appli-
cations. Thus, it is not surprising that many users of Cray
systems are becoming interested in running common data
analytics frameworks like Spark [3], [4] and Hadoop [5].
In particular, the widely-used Apache Spark open source
analytics framework is generating a great deal of interest
because its flexible, mostly in-memory computational model
is more amenable to performance and scaling. For example,
NERSC makes Spark available on their Edison and Cori
systems [6].

In this paper, we investigate the performance of Cray
XC40™systems running Spark. We focus on two workloads:

the Spark benchmarks from the Intel HiBench 4.0 suite [7],
[8], and the CX matrix decomposition algorithm Spark
implementation described by Gittens et al [9]. The HiBench
Suite is a representative suite of big data analytics bench-
marks. On the other hand, the CX algorithm represents an
interesting application of analytics frameworks to a scientific
computing problem. We study performance from both ends
of the spectrum: a bottom-up view of system metrics, IO, and
network performance; and a top-down application level log-
based look at where the analytics applications are spending
their time. Based on the results of our study, we suggest
methods to improve the performance of analytics workloads
on these systems.

A. Outline

The remainder of this paper is organized as follows:
• Section II provides background information on the

Cray systems and analytics frameworks we used in our
performance analysis.

• Section III describes the tools we used for our analysis.
• Section IV contains our analysis of the HiBench Suite.
• Section V details our analysis of the CX algorithm.
• Section VI details our analysis of TCP traffic patterns

and performance on the XC40.1

• Finally, Section VII suggests modifications to both the
analytics software stack and the underlying system
to improve the performance and scaling of analytics
workloads on Cray systems.

II. BACKGROUND

In this section, we first describe the Apache Spark analyt-
ics framework in more detail (Section II-A). We then provide
details on the Cray XC40 that we used for our benchmarking
and performance analysis (Section II-B).

A. Apache Spark

Apache Spark provides a framework for parallel, dis-
tributed, fault-tolerant data analytics [3], [4]. A running

1This is relevant due to the reliance of many analytics frameworks on
TCP sockets for communication.
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Figure 1. An illustration of a job running in the Spark framework. A driver
process runs on the master node, and executes the user’s main routine.
The application partitions the data into RDDs or DataFrames that reside on
the worker nodes. Executors on each worker node run tasks that compute
operations on these partitions.

Spark job consists of a driver (the “master”) and a set of
executors (the “workers”). The driver executes the user’s
main function, and distributes work to the executors. The
executors operate on the data in parallel, and return results
back to the driver, as depicted in Figure 1. The driver
process and each executor process runs in a separate Java
Virtual Machine (JVM). The JVMs communicate via TCP
sockets. In some deployment modes, a single executor runs
on each compute node and achieves parallelism via using
multiple cores. In other deployment modes, parallelism is
achieved via a combination of multiple executors per node,
and multiple cores per executor.

To program Spark applications, developers use Java,
Scala, Python, or R APIs to create Resilient Distributed
Datasets (RDDs) or DataFrames that are partitioned across
the executors, and then operate on them in parallel with
a series of Spark operations. These operations come in
two flavors: transformations and actions. Transformations
modify the data in the RDDs, and actions return results to
the driver. The Spark scheduler operates lazily—it tracks
dependencies, and only executes transformations when they
are needed to generate the data returned by an action. For
example, the following lines create an RDD that spans 40
partitions, and contains the integers from 1 to 999,999:

val arr1M = Array.range(1,1000000)
val rdd1M = sc.parallelize(arr1M, 40)

Here, sc is a SparkContext object which represents the
Spark cluster and its configuration. Once an RDD is created
we can begin transforming the data, for example by filtering
out all of the odd elements:

val evens = rdd1M.filter(a => (a%2)== 0)

We can also perform actions that return values to the driver.
For example, the following action returns the first five
elements of the RDD:

evens.take(5)

If we execute these commands in a Spark shell (an interac-
tive Spark environment), it returns:

Array[Int] = Array(2, 4, 6, 8, 10)

We can also count the items in the filtered RDD:

scala> evens.count()
res4: Long = 499999

Due to Spark’s lazy execution model, no processing occurs
until the actions which return data to the driver (take and
count in this example) are executed.

When a Spark action is executed, the scheduler uses its
knowledge of dependencies to build a directed acyclic graph
(DAG) of the computation required to compute the results
of the action. The computation—referred to by Spark as a
job—is broken into a series of stages, where a stage consists
of a series of computations that can be performed locally
on each partition of the data. At the end of each non-final
stage, the Spark executors initiate an all-to-all data exchange,
referred to as a shuffle. At the end of the final stage of the
job, the executors return results to the driver. Each stage is
then split into tasks, where each task represents the work
of the stage on a single partition of the data. The scheduler
executes tasks on executors as executor resources become
available. Better load balancing is typically achieved when
the Spark application’s cores are oversubscribed—in other
words, when there are roughly 2-3x as many partitions (and
thus tasks) as allocated cores.

When a job’s DAG indicates that communication is re-
quired between two stages, a barrier is inserted between the
stages and a shuffle is initiated. Shuffles are divided into
two phases: the shuffle write (send), and the shuffle read
(receive). Borrowing Hadoop terminology, sending/writing
tasks are referred to as map tasks, and receiving/reading
tasks are referred to as reduce tasks. During the shuffle write,
each map task “sends” data to reduce tasks by writing it to
local intermediate files via the block manager thread on the
task’s local node.2 Once all of the map tasks have written
out their shuffle data, the shuffle read commences. During
the read, each reduce task requests its incoming data from
the block manager threads on the remote nodes. The block
managers in turn read the data from the intermediate files
and send it over the network to the requesting reduce task.
More recent versions of Spark have optimized this process
by sorting map-task output by its intended reduce task, and
aggregating data going to the same reduce task into a single
intermediate file.

2These intermediate files are often cached by the OS.



Spark also comes packaged with specialized modules
for graph analytics (GraphX [10]), machine learning (ML-
Lib [11], [12]), processing streaming data (Spark Stream-
ing [13]), and running SQL queries (Spark SQL [14]). All
of these modules build on Spark’s RDD and DataFrame
abstractions, and provide specialized abstractions and op-
erations.

B. Cray XC40 and Spark Configuration

We performed our performance analysis on a two cab-
inet internal XC40 development system. The system was
composed of 351 dual socket Haswell nodes, each node
containing 256 GB DDR-4 memory and 16 cores per socket
(32 cores per node). We installed Spark 1.5 on this system,
and ran it using Cray Cluster Compatibility Mode (CCM)
and Spark’s standalone cluster manager (for details, see
our paper from last year’s CUG conference [15]). The
Cray XC40 system uses the Aries interconnect which is
implemented with a high-bandwidth, low-diameter network
topology called Dragonfly. The Dragonfly network topology
is constructed from a configurable mix of backplane, copper
and optical links, providing scalable global bandwidth.

In a typical Spark installation, each cluster node has local
storage space available for Spark’s local scratch directory.
This directory is utilized by Spark for storing data to be
sent to other nodes during a shuffle (see Section II-A), and
for spilling data partitions when there is insufficient memory.
On the XC40, however, there is no local persistent storage.
Possible options to replace this include utilizing a directory
on the shared Lustre file system, or utilizing a directory in
the DRAM-based tmpfs file system in /tmp. We found that
exclusively using Lustre for scratch space led to very high
metadata overheads and caused the Lustre Metadata Server
(MDS) to become the bottleneck in shuffle performance, a
finding corroborated by the work of Chaimov et al [16]. For
most of the applications we ran, there was sufficient DRAM
on the nodes to host the scratch directories entirely in /tmp.
When there was not, we used a combination of /tmp and
Lustre, biased towards /tmp.3 If using Lustre is necessary,
the impacts can be partially mitigated by leaving sufficient
memory for the OS to cache some of the remote writes
to Lustre. In addition to increased bandwidth and reduced
latency to locally-cached data, caching allows some of the
writes to Lustre to be aggregated; reducing the metadata load
on the Lustre MDS.

III. ANALYSIS TOOLS

In this section, we describe the analysis tools used to study
the performance of our benchmark workloads. We performed
three types of analyses:

3Spark allows you to specify multiple directories, and it will alternate
between them in a round robin fashion. So, for example, if we list two
directories under /tmp and one on Lustre, 2/3 of the scratch blocks will be
written to the tmpfs.

Workload KBReadAll Reads/sec ReadKB/sec

Wordcount Run 1 1608457044 3487 47

Wordcount Run 2 1610252818 3528 47

Wordcount Run 3 1609668696 3526 57

PageRank Run 1 20011109 224 5

PageRank Run 2 19964128 164 6

PageRank Run 3 20083990 167 6

Table I
AGGREGATED LUSTRE READ METRICS FOR THREE RUNS OF

WORDCOUNT AND PAGERANK

1) Collectl-based analysis of system metrics on the
compute nodes

2) Log-based Spark event profiling of application stages
3) Analysis of network traffic with tcpdump and

iperf3

The remainder of this section discusses our collectl-
based profiling and the Spark event logs. We describe the
network traffic analysis later, in Section VI.

A. Analytics Workload Analysis with Collectl

Collectl is a well-known tool for collecting system-
level performance data on HPC systems. We used
collectl to profile the performance characteristics of
data analytics workloads on the XC40. To analyze the large
amount of data collected, we developed a set of scripts and
an R interface built on top of pbdMPI R that allow us to
quantify and plot system metrics including:

• Memory usage by the analytics application and the
operating system

• Load imbalance
• Processor cores used by the application and OS, and

their distribution
• Interconnect and file system usage

The performance information can be extracted at different
levels of detail, including individual executors/nodes, groups
of executors, or all executors in a job. We have found that the
overhead associated with the use of collectl for analytics
workloads is negligible.

Due to Spark’s dynamic execution model and the granu-
larity of the sampling used by collectl for collecting
the system metrics data, we expect some variability in
measured performance run to run. In order to quantify
this variability, and validate the accuracy of our tool, we
compared profiles of the I/O activities in three repeated runs
of six benchmarks. Since the size of the initial input from
Lustre should be consistent from run to run, we used the
aggregated Lustre metrics associated with reading input data
to validate our data collection. For this validation, we ran the
WordCount and PageRank benchmarks three times using 41
compute nodes. One compute node ran the Spark master and



Benchmark Classification Description

Sort Microbenchmark Sorts input data

WordCount Microbenchmark Counts occurance of each word in input data

TeraSort Microbenchmark Standard TeraSort Benchmark by Jim Gray

Sleep Microbenchmark Tests framework scheduler

PageRank Web Search Tests Spark MLlib implementation of PageRank

Bayes Machine Learning Naive Bayesian Classification, Spark MLlib implementation

Kmeans Machine Learning K-means clustering, Spark MLlib example code

Table II
THE HIBENCH WORKLOADS SELECTED FOR OUR SPARK PERFORMANCE ANALYSIS.

the remaining 40 compute nodes ran Spark executors. We
launched each executor with 30 cores. For each benchmark,
we ran the Java, Scala, and Python versions. Table I shows
the aggregated Lustre metrics for the six Scala runs (the
results for the other APIs were similar). KBReadAll is an
aggregated sum over all executors for the entire run. The
other metrics are averaged values per node per second.
These tests showed only a small variability in the total
data read metrics for the sets of WordCount and PageRank
benchmarks, and closely matched the known input data
sizes.

B. Spark Event Log Analysis

Spark application executions can optionally produce event
logs which track application configuration data, and the start
and end times of all jobs, stages, and tasks. This data can be
viewed, sorted, and analyzed in the Spark history server. The
history server also allows users to view a number of metrics
about each task, including garbage collection, scheduler
delay, shuffle read and write, network fetch, deserialization,
and compute times. It displays the distribution of these
metrics between the tasks of each stage, and makes it easy
to sort and identify outliers.

The event log can be parsed by other tools. For example,
the trace analysis tool from Kay Ousterhout [17], [18]
analyzes the event logs produced by Spark, and outputs a
waterfall diagram. The waterfall diagram depicts when each
task starts and finishes, and what they are doing at any given
time. Some of this functionality has been integrated into the
Spark History server. However, it will only display a portion
of the tasks, rather than the entire waterfall. We produced
scripts to parse the event logs of the CX application runs,
and used them to generate the data in Section V.

IV. HIBENCH SPARK WORKLOAD ANALYSIS

This section describes our performance analysis of a sub-
set of the HiBench 4.0 suite workloads. We have selected the
workloads shown in Table II for our performance evaluation.
The selected set includes the micro-benchmarks which have
Spark implementations, the Spark-MLLib implementation
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Figure 2. A perfomance comparison using the HiBench workloads on 48
nodes of XC40 versus a 48 node Infiniband FDR cluster (Urika-XA).

Figure 3. Scaling results from varying the node/executor count from 4 to
64 for the Scala, Java, and Python versions of the Wordcount, PageRank,
and KMeans workloads.

of PageRank as a representative for Search Indexing, and
two machine learning algorithms: Bayesian Classification
and K-Means Clustering. The set does not include the SQL
Analytics Queries (Scan, Join, and Aggregate), as these
require Hive to be installed.

A. Performance and Scaling

We first looked at the raw performance of our HiBench
workloads, and compared them to a Cray Urika-XA™. The
Urika-XA is a 48 node analytics platform running Hadoop
and Spark with an Infiniband FDR interconnect. It uses fast
local SSDs for Spark and Hadoop local temporary files.
For a fair comparison, we also used a 48 node allocation



Figure 4. The minimum, maximum, and mean memory utilization by executor nodes during the execution of the Wordcount and PageRank workloads.

on our XC40. Performance on the XA appeared to peak at
around 12 cores per node, so we used that setting on both
platforms. Our results are shown in Figure 2. Sort, TeraSort,
Wordcount, and Bayes all showed a clear advantage on
the XC40. The other three workloads (Sleep, KMeans, and
PageRank) had similar results on both platforms.

Next, in Figure 3, we show the scaling perfomance of our
HiBench workloads. We varied the executor (node) count
from 4 to 64, and used 30 cores per node. Most workloads
tested continued to scale up to 64 nodes. Beyond that,
scaling was limited due to the problem size and framework
overheads.

B. Memory Usage

To better characterize the memory requirements for
each of these benchmarks, and to show the benefits of
collectl-based profiling, we also looked at the system
memory metrics for the Wordcount and PageRank work-
loads. Figure 4 shows the memory usage for the Wordcount
and PageRank workloads. The three graphs are aligned tem-
porally. The top graph displays the workload being executed
at each time, as well as its average throughput (input data
size divided by execution time). The middle graph shows
the mapped memory used by Spark while executing the
workload, and the bottom graph shows the memory used by
the OS file cache (which is used to buffer file I/O of input

and output data, as well as temporary files used for spills
and shuffles). For the mapped and cache memory graphs,
we collect data from every executor node, and calculate and
display the minimum, maximum, and mean node value. Our
scripts are also able to provide the alternate view of mapped
memory shown in Figure 5. This plot shows the memory
usage of each executor (along the vertical axis) over time
(the horizontal axis). As in the previous plot, the left half
represent Wordcount and the right half represents PageRank.

We see in these plots that the PageRank benchmark
has much more variability in mapped memory usage. This
variability is indicative of an imbalance in the sizes of the
partitions, due to the uneven distribution of links in the input
data. We also see that Wordcount has significantly higher
OS cache usage, which is indicative of more file system
activity. That activity can in turn be tracked down by looking
at the TCP activity shown in Figure 6. Here we see that
Wordcount has significantly larger internode communication
spikes. Recall that in Spark, all communication between
executors occurs during shuffle stages, and the shuffle data
is first written to disk by the sending nodes (thus explaining
the high file cache utilization).

This ability to track the per-node memory usage over
time, as well as non-application memory usage, shows the
benefit of tools like collectl. The storage tab of the
Spark History Server, in contrast, only provides a view of



Figure 5. Executor memory usage over time for Wordcount (left) and PageRank (right). The vertical axis represents executor nodes, and the horizontal
axis represents time. The color indicates application memory usage in gigabytes on a log10 scale.

the size of persisted RDDs and DataFrames. The Spark event
logs and history server do not track usage variations over
time, buffer cache usage, or the sizes of non-persisted data
partitions.

V. CX FOR SPARK ALGORITHM

CX is a matrix factorization technique used to find a low
rank (rank k) approximation of a matrix A using a subset
of columns of A as opposed to a linear combination of A’s
columns, like in PCA. CX at a high level approximates the
top k right singular vectors of A using a randomized SVD
method and then uses those k vectors to define a probability
distribution to sample the columns of A from. The Spark
implementation of of CX we used is described in detail in
Gittens et al [9]. For the purposes of our analysis, it can be
divided into four phases:

• Load Matrix Metadata: The dimensions of the matrix
are read from the filesystem to the driver.

• Load Matrix: A distributed read is performed to load
the matrix entries into an in-memory cached RDD
containing one entry per row of the matrix.

• Power Iterations: A series of five matrix multiplication
iterations.

• Finalization (Post-Processing): Collecting the data
and performing a final SVD computation.

A. CX Scaling Results

Figure 7 shows how the distributed Spark portion of our
code scales. We considered 240, 480, and 960 cores. An
additional doubling (to 1920 cores) would be ineffective
as there are only 1654 partitions in the dataset, so many
cores would remain unused. When we go from 240 to 480
cores, we achieve a speedup of 1.6x: 233 seconds versus
146 seconds. However, as the number of partitions per core
drops below two, and the amount of computation-per-core
relative to communication overhead drops, the scaling slows
down (as expected). This results in a lower speedup of 1.4x
(146 seconds versus 102 seconds) from 480 to 960 cores.

B. Multi-Platform CX Comparison

Table III shows the total runtime of CX for a 1 TB
bioimaging dataset on the three platforms described in
Table IV. Table III also provides selected timings obtained
by parsing the Spark event logs. We give two sets of
results for the XC40. The first set describes our results with
a configuration where we direct Spark’s shuffle and spill
temporary files to a mixture of tmpfs (in DRAM) and Lustre.



Figure 6. The minimum, maximum, and mean received packets by executor nodes during the execution of the Wordcount and PageRank workloads.

Platform Total Load Time Per Average Average Average
Runtime Time Iteration Local Aggregation Network

(5 total) Task Task Wait

Amazon EC2 r3.8xlarge w/ 10GbE 24.0 min 1.53 min 2.69 min 4.4 sec 27.1 sec 21.7 sec

Cray XC40 w/ Lustre and tmpfs 23.1 min 2.32 min 2.09 min 3.5 sec 6.8 sec 1.1 sec

Cray XC40 w/ tmpfs 18.2 min 2.28 min 1.56 min 3.0 sec 7.3 sec 1.5 sec

Aries-based cluster 15.2 min 0.88 min 1.54 min 2.8 sec 9.9 sec 2.7 sec

Table III
CX RANK 16 PERFORMANCE BREAKDOWN ON A 1 TB DATASET.

Platform Total Cores Used Core Frequency Interconnect DRAM SSDs

Amazon EC2 r3.8xlarge w/ 10GbE 960 2.5 GHz 10 GbE 244 GB 2 x 320 GB

Cray XC40 960 2.3 GHz Aries 252 GB None

Aries-based cluster 960 2.5 GHz Aries 126 GB 1 x 800 GB

Table IV
PLATFORMS USED IN THE CX PERFORMANCE COMPARISON.

This type of configuration may be necessary if the size of the
shuffled data is too large to fit into the node’s local memory.
The second set of XC40 results show the improvement when
we are able to fit all of the data into tmpfs. All platforms
were able to successfully process the 1 TB dataset in under
25 minutes. Most of the variation between the platforms
occurred during the power iterations and, to a lesser extent,
the data loads. The data load variation can be explained by
the presence of node-local SSDs on the compute nodes of
the EC2 instance and the Aries-based cluster. In both of
those cases, we loaded the input data set from a file system
backed by the SSDs.

To better understand the remainder of the performance
variations, we now consider how the Spark framework

implements the power iterations. Spark divides each iteration
into two stages. The first local stage computes each row’s
contribution, sums the local results (the rows computed by
the same worker node), and records these results. The sec-
ond aggregation stage combines all of the workers locally-
aggregated results using a tree-structured reduction. Most of
the variation between platforms occurs during this aggrega-
tion phase, where data from remote worker nodes is fetched
and combined. In Spark, all inter-node data exchange occurs
via shuffle operations. In a shuffle, workers with data to send
write the data to their local scratch space. Once all data
has been written, workers with data to retrieve from remote
nodes request that data from the senders block manager,
which in turns retrieves if from the senders local scratch



Figure 7. Scaling results on XC40 for the CX application on a 100GB
dataset.

space, and sends it over the interconnect to the receiving
node. Examining our three platforms (Table IV), we notice
two key hardware differences that impact shuffle operations:

1) First, both the EC2 instance and the Aries-based clus-
ter have fast SSD storage local to the compute nodes
that they can use to store Spark’s shuffle data. The
XC40 system’s nodes, on the other hand, have no local
persistent storage devices. Thus, we must emulate
local storage with a tmpfs in local DRAM and/or a
global Lustre file system. The more performant XC40
results use exclusively tmpfs, while the other XC40
results use a combination of tmpfs and Lustre.

2) Second, the Cray XC40 and the experimental Cray
cluster both communicate over the HPC-optimized
Aries interconnect, while the EC2 nodes use 10 Gi-
gabit Ethernet. We can see the impact of differing
interconnect capabilities in the Average Network Wait
column in Table III. The XC40 has slightly lower wait
times than the Aries-based cluster due to limits on the
maximum TCP bandwidth in the cluster configuration.
Both are significantly faster than the 10Gb ethernet
instance.

VI. ANALYTICS WORKLOAD NETWORK TRAFFIC
PATTERNS

Most commonly used analytics frameworks (like Hadoop
and Spark) communicate over TCP sockets. This adds over-
head, but also allows for portability across many architec-
tures. In order to study the impact of the Aries network on
TCP performance, we utilized the iperf3 [19] tool devel-
oped by ESNet (the Energy Sciences Network). Iperf3
allows us to measure the maximum achievable bandwidth
via TCP on various networks. We ran the tool over the
Aries network on our XC40 running CLE5.2 (SLES11-
based), and over the Infiniband FDR network on a Urika-XA
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Figure 9. A plot of TCP packet size distribution for the CX benchmark.

(CentOS 6.5-based). We also reran the test on a different
XC40 running CLE6.0 (SLES12-based), due to significant
improvements in the TCP stack in newer linux kernels.
Figure 8 shows these results. For all systems, maximum
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Figure 10. A plot of TCP packet size distribution for the GraphX PageRank
benchmark.

bandwidth was highly dependent on packet size. However,
we see that Aries significantly outperforms FDR infiniband
for most packet sizes. The performance is even more striking
with the new kernel. Packet sizes over 16K saw roughly
twice the bandwidth with the new kernel.

In order to relate this data to analytics performance,
we also did a breakdown of packet sizes (via sampling
of tcpdump data) during two communication-intensive
Spark workloads: the Spark implementation of CX matrix
decompostion [9] on a one terabyte data set (Figure 9), and
the GraphX PageRank algorithm on the Twitter dataset [10],
[20] (Figure 10). The CX algorithm sends uniformly sized
large blocks of data (matrix columns), leading to the commu-
nication pattern seen in Figure 9, where 58% of the packets
sent are 21KB or larger. The large spike at 64KB represents
the Aries Maximum Transmission Unit (MTU). The smaller
spike at 21KB represents the remainder after dividing the
transmitted data blocks into MTU-sized chunks. The smaller
packets appear to be a mix of metadata, heartbeats, and
other framework-associated communication. The PageRank
algorithm, on the other hand, sends numerous small mes-
sages, whose distribution is determined by the nature of the
graph. These are aggregated on a per-executor basis by the
Spark sort-based shuffle, leading to the much less uniform
communication pattern seen in Figure 10. However, we still
see that 46% of packets are 16KB or larger.

VII. IMPROVING ANALYTICS PERFORMANCE ON THE
CRAY XC40

Because of Spark’s pull-based communication model (see
Section II-A), where every piece of data sent over the net-
work is first written to and then read back from a local disk
or other scratch space, the efficiency of local data movement
is critical if we hope to take advantage of the network
throughput provided by the high-speed Aries network. This
leads us to the following configuration observations and
proposals for potential future optimizations:

• Favor high-bandwidth, low-latency storage

when setting Spark’s scratch space directories
(spark.local.dir or SPARK LOCAL DIRS): This
configuration parameter determines the location
where Spark writes and reads its shuffle data. It also
determines the location where any spilled data is
stored (Spark spills data when there is insufficient
heap space to store the entire data set). If insufficient
bandwidth is available to this location, we will be
unable to saturate the interconnect. If possible, storing
this data in a local DRAM-based filesystem (e.g.,
/tmp on the XC40 compute nodes) provides the best
performance. If there is insufficient space available in
the DRAM-based filesystem, Spark allows users to
configure a list of multiple directories. Blocks will be
placed in these directories in a round-robin fashion.
Thus it is preferable to bias the data towards faster
storage by including multiple directories on the faster
devices (e.g., SPARK LOCAL DIRS=/tmp/spark1,
/tmp/spark2, /tmp/spark3, /lus/scratch/sparkscratch/).
We have also found that, if global filesystems must be
used for scratch space, we see much better performance
if they support client-side caching (as this allows some
of the data to remain local, and also provides some
aggregation of the data that does have to go to the
global file system).

• Metadata matters: Spark shuffles tend to produce
large numbers of small files, and many file opens
and closes: This is a very poor access pattern for
Lustre due to the large number of metadata operations.
One potential fix for this would be to create a layer
underneath Spark that aggregates the many small files
into a single large file which remains open until all
map tasks have completed their writes. This shim layer
would need to maintain a mapping between the abstract
small files and offsets into the actual large file.

• Add more efficient cleanup to Spark: Spark cleans
its local scratch space inefficiently. In particular, shuffle
data is not immediately cleaned up after a shuffle
completes. This makes fault recovery more efficient, but
results in higher storage requirements for scratch space.
Another possible improvement for Spark on the XC40
would be to modify Spark to provide a more efficient
cleaning strategy. This would make it feasible to fit the
scratch data entirely in a local DRAM-based filesystem
at larger problem sizes than currently possible.

• Enable use of hierarchical scratch space directories
in Spark: Spark does not currently allow you to con-
figure primary and backup scratch directories. Instead
users must list all scratch directories in a single list, and
Spark will distribute the data in a round round fashion
between them as long as space is available. Another
possible Spark improvement would be to allow users
to provide a hierarchical listing of storage locations.
For example, this would allow users to specify that



shuffle data should reside entirely in the /tmp ramdisk
if possible, and only go out to Lustre if there is
insufficient space in the /tmp filesystem.

• Provide global directory awareness to Spark: Spark
does not allow you to specify that a scratch directory
is globally accessible. Thus non-cached data is stored
to the global Lustre file system by the sender, and then
later retrieved by the sender and sent to the receiver.
This wastes a step, since the receiver could easily fetch
the data directly from the global file system.

In addition to the data movement issues described above,
the pull-based, globally-synchronized stages model of com-
putation and communication in Spark can create scaling
issues in the presence of straggler tasks. When a small
number of tasks take significantly longer to complete, many
executor nodes end up stuck idling at the barrier. At larger
node counts, this problem is exacerbated. To remediate this
issue, we have tried two strategies, and propose investigating
a third:

• Turning on Spark speculation: Spark contains
an optional task speculation configuration parameter
(spark.speculation). When this is enabled, Spark will
attempt to re-execute tasks that take more than a
configurable multiplier longer than the median task. We
found that this helps in cases where we consistently see
long stragglers pushing out the stage completion time.
However, it does add overhead—and so for applications
where stragglers only appeared occasionally our best
times were obtained with speculation disabled.

• Increasing the partitioning of datasets: Increasing the
partitioning of Spark RDDs and DataFrames allows for
more effective load balancing, and can thus sometimes
mitigate the impact of stragglers. However, increasing
the partitioning too much may result in numerous small
and inefficient tasks. The Spark scheduler also has
limited throughput, and may become a bottleneck if
too many partitions (and thus tasks) are created.

• Enabling a push-based model of computation and
communication: One potential method to address the
issue of stragglers in the future would be to enable an
alternative push-based model of computation in Spark,
where each map task directly sends its data to the
reduce tasks. Reduce tasks would then be allowed to
start whenever they receive data from any map task.
Synchronization would still be required to ensure that
no stage completes until it has received and processed
all of its inputs—however this would allow additional
overlapping of stages and potentially reduce time spent
idling at barriers.

VIII. CONCLUSIONS

This paper demonstrated several techniques which can
be used for analyzing the performance of data analytics
frameworks on Cray XC systems. We looked at a bottom-up

view of system metrics generated during HiBench runs, and
a top-down view of Spark event logs generated during CX
runs. We also looked at the TCP performance and the TCP
traffic generated during CX and GraphX PageRank execu-
tions. We showed that with proper configuration choices,
workloads that depend on the communication fabric can
achieve performance boosts from the Aries interconnect.
We believe that Spark will continue to be an important
framework for future analytics applications, and as such
suggested some techniques and modifications that could
improve scaling on large systems.
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