
Executing dynamic heterogeneous 
workloads on Blue Waters with 

RADICAL-Pilot

Research in Advanced DIstributed Cyberinfrastructure & 
Applications Laboratory (RADICAL)
Rutgers University
http://radical.rutgers.edu
http://radical-cybertools.github.io

http://radical.rutgers.edu
http://radical.rutgers.edu


Extreme Scale “Task-level Parallelism” on HPDC

Heterogeneous

Performance

Varying 
Availability

Multiple 
resources

• Problems in computational science naturally amenable to “task level” parallelism 
computing

• Beyond HTC vs HPC
• Given access to X cores/nodes – slice/dice or distribute as needed.
• Resources and workloads are characterised by a range of properties:



Blue Waters Job Size Distribution



Requirements / goals
● Workload with heterogeneous tasks

○ Varying core count
○ Varying application
○ MPI / non-MPI

● Dynamic workload with workload unknown in advance
○ Task N+1 depends on task N

● Control over concurrency of tasks
○ Might be loosely coupled (e.g. replica exchange)

● ~10k concurrent tasks



(Why not) batch queue jobs
● Low throughput

○ Every job needs to queue
○ Breaks especially in dynamic workload situations

● No control over concurrency
● Limit on total concurrency
● Maximum of one task per node
● Job arrays are too inflexible (nor available on BW)
● Too many flavours 



Pilot Abstraction

Working definition: A system that generalizes a placeholder to allow 
application-level control over acquired resources.

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

 
S

pa
ce

U
se

r 
S

pa
ce

Resource Manager

Pilot System
PoliciesPilot Pilot



Advantages of Pilot-Abstraction

• Decouples workload management 
from resource management

• Flexible Resource Management
– Enables the fine-grained “slicing 

and dicing” of resources 
– Tighter temporal control and other 

advantages of application-level 
Scheduling (avoid limitations of 
system-level scheduling)

• Build higher-level frameworks without 
explicit resource management 



RADICAL-Pilot Overview

• Programmable interface, arguably unique:
– Well defined state models for pilots and units. 

• Supports research whilst supporting production 
scalable science:

– Pluggable components; introspection.

• Portability and Interoperability:
– Works on Crays, most known clusters, 

XSEDE resources, OSG, and Amazon EC2.
– Modular pilot agent for different architectures.

• Scalable:
– Agent, communication, throughput.





Agent Architecture

● Components:
Enact state transitions for Units

● State Updater:
Communicate with client library and DB

● Scheduler:
Maps Units onto compute nodes

● Resource Manager:
Interfaces with batch queuing system, 
e.g. PBS, SLURM, etc.

● Launch Methods:
Constructs command line, e.g. APRUN, 
SSH, ORTE, MPIRUN

● Task Spawner:
Executes tasks on compute nodes



(Why not) RADICAL-Pilot + APRUN
● RP Agent runs on MOM node
● Uses aprun to launch tasks onto the worker nodes

● Low throughput (ALPS not designed for short/small tasks)
● Limit on total concurrency (1000 aprun instances)
● Maximum of one task per node



(Why not) RADICAL-Pilot + CCM
● Bootstrapper runs on MOM node
● Bootstrapper creates “cluster”
● Uses ccmrun to launch RP Agent into the “cluster”

● Not universally available



RADICAL-Pilot + ORTE-CLI (a bit better) 
● ORTE: Open RunTime Environment

○ Isolated layer used by Open MPI to coordinate task layout

○ Runs a set of daemons over compute nodes

○ No ALPS concurrency limits

○ Supports multiple tasks per node

● orte-submit is CLI which submits tasks to those daemons
○ ‘sub-agent’ on compute node that executes these
○ Limited by fork/exec behavior
○ Limited by open sockets/file descriptors
○ Limited by file system interactions



RADICAL-Pilot + ORTE-LIB (much better) 
● All the same as ORTE-CLI, but

○ Uses library calls instead of orte-submit processes
○ No central fork/exec limits
○ Shared network socket
○ (Hardly) no central file system interactions



RADICAL-Pilot + ORTE on Cray



Micro Benchmark: Scheduler

Scheduling only Scheduling and unscheduling



Micro Benchmark: Executor Scaling



Agent Performance: Full Node Tasks (3 x 64s)



Agent Performance: Concurrent Units (3x)



Agent Performance: Turnaround (3 x 4k x 64s)



Agent Performance: Resource Utilization



Conclusion
● There is no “one size fits all” in HPC
● With general tools extend functionality of Cray HPC systems
● Achieved 16k concurrent tasks
● Launch rate of ~100 tasks / second
● Efficiency large dependent on task count and duration
● Cray specific PMI excludes running Cray MPI linked applications



Future work
● RADICAL-Pilot

○ Bulks all the way
○ Agent scheduler overhaul
○ Topology aware task placement
○ Heterogenous node scheduling (I.e. GPU)

● ORTE
○ Fabrics-based inter-ORTE communication
○ Optimize ORTE communication topology



References
● RADICAL-Pilot: Scalable Execution of Heterogeneous and Dynamic 

Workloads on Supercomputers
○ http://arxiv.org/abs/1512.08194

● A Comprehensive Perspective on the Pilot-Job Systems
○ http://arxiv.org/abs/1508.04180

● RADICAL-Cybertools overview
○ http://radical-cybertools.github.io/

● RADICAL-Pilot Github
○ https://github.com/radical-cybertools/radical.pilot

● RADICAL-Pilot Documentation
○ http://radicalpilot.readthedocs.org/

http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1508.04180
http://arxiv.org/abs/1508.04180
http://radical-cybertools.github.io/
http://radical-cybertools.github.io/
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/radical.pilot
http://radicalpilot.readthedocs.org/
http://radicalpilot.readthedocs.org/






Micro Benchmark: Exec Rate + Concurrency (1x4k)


