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Extreme Scale “Task-level Parallelism” on HPDC

Problems in computational science naturally amenable to “task level” parallelism
computing

Beyond HTC vs HPC

Given access to X cores/nodes — slice/dice or distribute as needed.

Resources and workloads are characterised by a range of properties:
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Blue Waters Job Size Distribution
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Requirements / goals

e \Workload with heterogeneous tasks
o Varying core count
o Varying application
o MPI/non-MPI
e Dynamic workload with workload unknown in advance
o Task N+1 depends on task N
e Control over concurrency of tasks
o Might be loosely coupled (e.g. replica exchange)

e ~10k concurrent tasks



(Why not) batch queue jobs

e Low throughput
o Every job needs to queue
o Breaks especially in dynamic workload situations

No control over concurrency

Limit on total concurrency

Maximum of one task per node

Job arrays are too inflexible (nor available on BW)
Too many flavours



Pilot Abstraction

Working definition: A system that generalizes a placeholder to allow
application-level control over acquired resources.
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Advantages of Pilot-Abstraction

» Decouples workload management

from resource ma nagement DIANE WISDOM Coaster System RADICAL Pilot
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RADICAL-Pilot Overview

Programmable interface, arguably unique:
— Well defined state models for pilots and units.

Supports research whilst supporting production
scalable science:
— Pluggable components; introspection.

Portability and Interoperability:
— Works on Crays, most known clusters,
XSEDE resources, OSG, and Amazon EC2.
— Modular pilot agent for different architectures.

Scalable:
— Agent, communication, throughput.
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# Unit Execution




# create a pilot manage in the session

# define an [n]-core local pilot that runs for [x] minutes
pdesc = rp.ComputePilotDescription({

‘resource’ : ncsa.bw,
‘cores' : 64, # pilot size
‘runtime’ : 10, # pilot runtime (min)
‘project’ = gkd“;
‘queue’ = deblgs
; = 42 # Number of units to run
for i in range(0,

# create a new CU description, and fill it.
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# create a unit manager, submit units, and wait for their completion
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Agent Architecture

Components:

Enact state transitions for Units

State Updater:

Communicate with client library and DB
Scheduler:

Maps Units onto compute nodes
Resource Manager:

Interfaces with batch queuing system,
e.g. PBS, SLURM, etc.

Launch Methods:

Constructs command line, e.g. APRUN,
SSH, ORTE, MPIRUN

Task Spawner:

Executes tasks on compute nodes
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(Why not) RADICAL-Pilot + APRUN

e RP Agent runs on MOM node
e Uses aprun to launch tasks onto the worker nodes

e Low throughput (ALPS not designed for short/small tasks)
e Limit on total concurrency (1000 aprun instances)
e Maximum of one task per node



(Why not) RADICAL-Pilot + CCM

e Bootstrapper runs on MOM node
e Bootstrapper creates “cluster”
e Uses ccmrun to launch RP Agent into the “cluster”

e Not universally available



RADICAL-Pilot + ORTE-CLI (a bit better)

e ORTE: Open RunTime Environment

o Isolated layer used by Open MPI to coordinate task layout

o Runs a set of daemons over compute nodes

o No ALPS concurrency limits
o  Supports multiple tasks per node

e orte-submit is CLI which submits tasks to those daemons
o ‘sub-agent’ on compute node that executes these

Limited by fork/exec behavior

Limited by open sockets/file descriptors

Limited by file system interactions

O O O



RADICAL-Pilot + ORTE-LIB (much better)

e All the same as ORTE-CLI, but

o Uses library calls instead of orte-submit processes
o No central fork/exec limits

o  Shared network socket

o (Hardly) no central file system interactions



RADICAL-Pilot + ORTE on Cray
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Micro Benchmark: Scheduler
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Micro Benchmark: Executor Scaling
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Agent Performance: Full Node Tasks (3 x 64s)
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Agent Performance: Concurrent Units (3x)
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Agent Performance: Turnaround (3 x 4k x 64s)
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Agent Performance: Resource Utilization
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Conclusion

There is no “one size fits all” in HPC

With general tools extend functionality of Cray HPC systems
Achieved 16k concurrent tasks

Launch rate of ~100 tasks / second

Efficiency large dependent on task count and duration

Cray specific PMI excludes running Cray MPI linked applications



Future work

e RADICAL-Pilot

o Bulks all the way

o Agent scheduler overhaul

o Topology aware task placement

o Heterogenous node scheduling (l.e. GPU)
e ORTE

o Fabrics-based inter-ORTE communication
o  Optimize ORTE communication topology



References

e RADICAL-Pilot: Scalable Execution of Heterogeneous and Dynamic

Workloads on Supercomputers
o http://arxiv.org/abs/1512.08194
e A Comprehensive Perspective on the Pilot-Job Systems
o http://arxiv.org/abs/1508.04180
e RADICAL-Cybertools overview
o http://radical-cybertools.qgithub.io/
e RADICAL-Pilot Github
o https://github.com/radical-cybertools/radical.pilot
e RADICAL-Pilot Documentation
o http://radicalpilot.readthedocs.org/



http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1508.04180
http://arxiv.org/abs/1508.04180
http://radical-cybertools.github.io/
http://radical-cybertools.github.io/
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/radical.pilot
http://radicalpilot.readthedocs.org/
http://radicalpilot.readthedocs.org/







Executing Rate (Unit/s)

Micro Benchmark: Exec Rate + Concurrency (1x4k)
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