Executing dynamic heterogeneous
workloads on Blue Waters with
RADICAL-Pilot

Mark Santcroos*, Ralph Castain®, Andre Merzky*, Iain Bethunet and Shantenu Jha*
* School of Electrical and Computer Engineering, Rutgers University, New Brunswick, New Jersey, USA
t Intel Corporation, USA
} EPCC, The University of Edinburgh, Edinburgh, UK

Research in Advanced Dlstributed Cyberinfrastructure &
Applications Laboratory (RADICAL)

Rutgers University
http://radical.rutgers.edu
http://radical-cybertools.github.io

http://radical.rutgers.edu
http://radical.rutgers.edu

Extreme Scale “Task-level Parallelism” on HPDC

Problems in computational science naturally amenable to “task level” parallelism
computing

Beyond HTC vs HPC

Given access to X cores/nodes — slice/dice or distribute as needed.

Resources and workloads are characterised by a range of properties:

IDEAL

Heterogeneous = .
Varying

_ Availability
Multiple

10 h TSEAL\
resources Performance 1)
size of ensemble (core)

————————————

sembles

number of en:

Blue Waters Job Size Distribution

100000 ¢ : . le+06 ‘ .
: total job count — I total wall hours —
I 100000 ¢
10000
I 10000 |
1000 |- 1000 -]
i 100 | i
100 = 10 ; =
i 1 J
10 |- a
’ i T
1 0.01 -

1 8 128 2084 8192 1 8 128 2084 8192

Requirements / goals

e \Workload with heterogeneous tasks
o Varying core count
o Varying application
o MPI/non-MPI
e Dynamic workload with workload unknown in advance
o Task N+1 depends on task N
e Control over concurrency of tasks
o Might be loosely coupled (e.g. replica exchange)

e ~10k concurrent tasks

(Why not) batch queue jobs

e Low throughput
o Every job needs to queue
o Breaks especially in dynamic workload situations

No control over concurrency

Limit on total concurrency

Maximum of one task per node

Job arrays are too inflexible (nor available on BW)
Too many flavours

Pilot Abstraction

Working definition: A system that generalizes a placeholder to allow
application-level control over acquired resources.

Pilot System
Pilot Pilot

User Application
Policies

User
Space

{ Resource M~hager |

OO

System
Space

Resource D

Resource A Resource B Resource C

Advantages of Pilot-Abstraction

» Decouples workload management

from resource ma nagement DIANE WISDOM Coaster System RADICAL Pilot

2001 2004 2009 2013

* Flexible Resource Management
— Enables the fine-grained “slicing

ToPoS
2009

Falkon
2007

I

Glideln
2002

Nimrod/G
2000

and dicing” of resources 1995
— Tighter temporal control and other
advantages of application-level AppLes MyCluster GWPilot
. 1996 2002 2005 2007 2012
Scheduling (avoid limitations of
. BOINC DIRAC GlideinWMS Co-Pilot
system-level scheduling) 2002 2000 2006 2011

 Build higher-level frameworks without
explicit resource management

RADICAL-Pilot Overview

Programmable interface, arguably unique:
— Well defined state models for pilots and units.

Supports research whilst supporting production
scalable science:
— Pluggable components; introspection.

Portability and Interoperability:
— Works on Crays, most known clusters,
XSEDE resources, OSG, and Amazon EC2.
— Modular pilot agent for different architectures.

Scalable:
— Agent, communication, throughput.

OO0OO0O0O0O
OO0OO00O0O0
OO0 0O

Application

Pilot-API

User Workstation

Pilot Manager

Unit Manager

Pilot Launcher

)| Unit Scheduler
O0O0C1O OCY)OOOOOO

SAGA MongoDB
Resource A Resource B
Pilot 4 Pilot
Agent Agent

Unit Execution

Unit Execution

create a pilot manage in the session

define an [n]-core local pilot that runs for [x] minutes
pdesc = rp.ComputePilotDescription({

‘resource’ : ncsa.bw,
‘cores' : 64, # pilot size
‘runtime’ : 10, # pilot runtime (min)
‘project’ = gkd“;
‘queue’ = deblgs
; = 42 # Number of units to run
for i in range(0,

create a new CU description, and fill it.

1101 N ComnintellnitDececrintion()
(E AW o2 1 ’ () WAL E R S W 1

LU]

~ '/pin/date’

create a unit manager, submit units, and wait for their completion

T ! | F ' ! e,] '@ \
_} s U Li'ld s '? \SE 32 LU =203 LU

Agent Architecture

Components:

Enact state transitions for Units

State Updater:

Communicate with client library and DB
Scheduler:

Maps Units onto compute nodes
Resource Manager:

Interfaces with batch queuing system,
e.g. PBS, SLURM, etc.

Launch Methods:

Constructs command line, e.g. APRUN,
SSH, ORTE, MPIRUN

Task Spawner:

Executes tasks on compute nodes

Y

Heartbeat
Monitor

SAGA 4 4* MongoDB
' Resource
SSH Tunnel
: Pilot

Agent

State Updater

Scheduler

'

'

Staging Input

Resource
Manager

{

?

Scheduling

Launch Methods

v

f

Execution

Task Spawner

{

Staging Output |

4
1
1
1
1

el

(Why not) RADICAL-Pilot + APRUN

e RP Agent runs on MOM node
e Uses aprun to launch tasks onto the worker nodes

e Low throughput (ALPS not designed for short/small tasks)
e Limit on total concurrency (1000 aprun instances)
e Maximum of one task per node

(Why not) RADICAL-Pilot + CCM

e Bootstrapper runs on MOM node
e Bootstrapper creates “cluster”
e Uses ccmrun to launch RP Agent into the “cluster”

e Not universally available

RADICAL-Pilot + ORTE-CLI (a bit better)

e ORTE: Open RunTime Environment

o Isolated layer used by Open MPI to coordinate task layout

o Runs a set of daemons over compute nodes

o No ALPS concurrency limits
o Supports multiple tasks per node

e orte-submit is CLI which submits tasks to those daemons
o ‘sub-agent’ on compute node that executes these

Limited by fork/exec behavior

Limited by open sockets/file descriptors

Limited by file system interactions

O O O

RADICAL-Pilot + ORTE-LIB (much better)

e All the same as ORTE-CLI, but

o Uses library calls instead of orte-submit processes
o No central fork/exec limits

o Shared network socket

o (Hardly) no central file system interactions

RADICAL-Pilot + ORTE on Cray

A

SAGA-API MongoDB
Resource
y Login L/ MOM
qsub Node L Agent Node
L
ORTE HNP
/
— Compute Y Compute

ORTE Daemon Node ORTE Daemon Node

Micro Benchmark: Scheduler

400

350

w
o
o

Scheduling Rate (Unit/s)
8

— 1024
2048
4096

— 81927

00:00:15 00:00:30 00:00:45
Time (s)

00:01:15 00:01:30

Scheduling only

Scheduling Rate (Unit/s)

100

80

60

40

20

00:01

00202
Time (s)

00:03

00:04

Scheduling and unscheduling

Micro Benchmark: Executor Scaling
25000 I | I T I T T
o 20000 -
b=
=
E 15000 —
=
O
=
= 10000 - =
)
-
Q
O 5000 — 8192 L
16384
32768
— 65536
0 | | | | | .
0 200 400 600 800 1000 1200 1400 1600

Time (s)

Agent Performance: Full Node Tasks (3 x 64s)

Time to Completion (s)

235

230 H

225 H

220 H

215

210

205 H

200

195 B

190

CCM
ORTE CLI
ORTE LIB
ALPS
Optimal

Agent Performance: Concurrent Units (3x)

Concurrent Units

18000

16000

14000

12000

10000

8000

6000

4000

2000

2048

Agent Performance: Turnaround (3 x 4k x 64s)

250 T |] L) 1
— Scheduling
%a.unclhiI}g
—= ompletin
200 |- s
—~~
w2
~
B 150 lﬂ‘ —
- ‘
- | Lr}pH
S ¥
L 100
=
e
50
R LY e NP
O 1 1 1 L
00:08 00:09 00:10 00:11 00:12 00:13

Time (s)

Agent Performance: Resource Utilization

100 — r
o
X 80
p
-
.9
= 60
N
= =
40 — 128 -
- 256
© 512
S 5048
20 1
O — 4096
— 8192
— Optimal
0 i 1] | I I
20 ol 22 23 24 25 26 27 28 29

Unit Duration (s)

Conclusion

There is no “one size fits all” in HPC

With general tools extend functionality of Cray HPC systems
Achieved 16k concurrent tasks

Launch rate of ~100 tasks / second

Efficiency large dependent on task count and duration

Cray specific PMI excludes running Cray MPI linked applications

Future work

e RADICAL-Pilot

o Bulks all the way

o Agent scheduler overhaul

o Topology aware task placement

o Heterogenous node scheduling (l.e. GPU)
e ORTE

o Fabrics-based inter-ORTE communication
o Optimize ORTE communication topology

References

e RADICAL-Pilot: Scalable Execution of Heterogeneous and Dynamic

Workloads on Supercomputers
o http://arxiv.org/abs/1512.08194
e A Comprehensive Perspective on the Pilot-Job Systems
o http://arxiv.org/abs/1508.04180
e RADICAL-Cybertools overview
o http://radical-cybertools.qgithub.io/
e RADICAL-Pilot Github
o https://github.com/radical-cybertools/radical.pilot
e RADICAL-Pilot Documentation
o http://radicalpilot.readthedocs.org/

http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1508.04180
http://arxiv.org/abs/1508.04180
http://radical-cybertools.github.io/
http://radical-cybertools.github.io/
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/radical.pilot
http://radicalpilot.readthedocs.org/
http://radicalpilot.readthedocs.org/

Executing Rate (Unit/s)

Micro Benchmark: Exec Rate + Concurrency (1x4k)
: TMW i
00:01 - (S) 00:03 00:04 % wonn | 1

g
% 2000 + _
<
3
:H= 1000 + -

Time (s)

