
Code Porting to Cray XC40
Lessons Learned

Jim McClean and Raj Gautam

jim.mcclean@pgs.com
raj.gautam@pgs.com

Abstract— We present a case study of porting seismic
applications from the Beowulf cluster using Ethernet
networking to the Cray XC40 cluster with Aries
networking. The applications in question are Tilted
Transverse Anisotropic Reverse Time Migration (TTI
RTM), Kirchhoff Depth Migration (KDMIG) and Wave
equation migration (WEM). The primary obstacle in this
port was that TTI RTM and WEM used local scratch disk
heavily, and imaging is performed one shot per node as
in map-reduce applications. The Cray nodes do not have
local scratch disks and depend on the remote file
system for storage. The primary obstacle in KDMIG was
its heavy IO usage from permanent disk due to the
constant reading of Travel Time Maps (TT). We briefly
explain how these algorithms were refactored to be less
dependent on scratch disk and to fully utilize the
advanced networking in the Cray XC40. In the case of
KDMIG, we explain how its IO load was reduced via a
memory pool concept. We also provide some details
concerning the management of striping issues on
Lustre file systems and other IO load management
issues.

I. INTRODUCTION
Years ago when PGS first started as a seismic acquisition
and processing company, its first large computer was based
on the Intel 860 chip. This was considered a large distributed
computer in its day, similar in concept to the CM2 or CM5.
Like most companies, PGS switched to the Beowulf concept
in the early 1990’s. This switch was due to the superior
performance relative to cost characteristics of the Beowulf
cluster compared to monolithic computers of the day.

Today, we see evidence of a trend toward more
monolithic computer architecture in order to achieve the
integration and reliability needed to achieve Exascale
computing. To solve new physics challenges, the HPC
community is seeing increased usage of fiber optics and
various other high-speed networking in order to achieve the
sustained performance needed across nodes. . This paper
relates our experiences in trying to switch from an
embarrassingly parallel paradigm to a more distributed
computing paradigm.

II. BACKGROUND
To acquire seismic data, PGS tows source and receiver

arrays behind marine seismic vessels. The receiver array

consists of many sensors and acts as a giant antenna
receiving the reflected sounds from the sub surface. These
reflected sound waves are received and recorded on the
surface boundary. The HPC challenge is to project these
sound waves recorded on the surface boundary back into a
simulated mathematical earth model using the wave equation
in order to form a useful image of the earth’s sub surface.

 PGS employs three common techniques to do this:

Kirchhoff depth imaging, one-way wave equation, and
reverse time migration. Industry practice is to use an acoustic
and not an elastic approximation to this physics problem.
This is largely due to the fact that the marine environment
does not support shear waves but only compressional sound
waves. Also the elastic approximation that might be used in
the onshore case is more computationally expensive.

In the marine environment, current industry practice is to

perform a one-shot experiment every 25 meters or so. A
single shot consists of one discharge of the compressed air
gun source array, and the collection of the reflected
subsurface data upon the receiver antenna. In a large marine
survey that is 100 kilometers squared in size, up to 1.6
million shot experiments can be recorded, each of which can
be up to ½ gigabyte of captured shot experiment data. The
total size of the collected data can run into the petabytes for a
large survey. The outputs from imaging this input data are
also of a similar size.

Past industry practice was to treat or image each shot

separately using one of the accepted algorithms mentioned.
This allowed us to use an embarrassingly parallel paradigm
for the most part, making it possible to compute the image
result using one node per shot experiment. However this
becomes challenging as the frequency increases, both from a
main memory and compute cycle point of view. Also the
industry is evolving to use continuous shooting which causes
cross talk in the received results, thereby making the
embarrassingly parallel paradigm more difficult to use in
practice. We will discuss in order our experiences in
restructuring reverse time migration, Kirchhoff, and one-way
wave equation to the XC40.

III. REVERSE TIME MIGRATION
Reverse Time Migration (RTM) is based on the idea of

sending the recorded sound energy back into the earth
model, using the wave equation from the surface boundary,

and correlating this energy with a synthetically generated
forward source model. The computation cost of RTM scales
as the 4th power of the maximum frequency imaged. The
main memory requirements of RTM scales as the 3rd power
of the maximum frequency imaged. This is due to the wave
equation’s three spatial dimensions and one time dimension,
and the relationship to the size of the computational bin/cell

bin_size ~ Vmin / (Fmax * points_per_wavelength) [1]

Bin_size decreases as Fmax increases, and also the time
stepping are inversely proportional to the maximum
frequency to be imaged. The implementation of TTI RTM
we are using is a spectral domain implementation and
requires the use of FFTs to perform differentiation.

When we started our investigation into porting RTM
from a Beowulf cluster to the Cray XC30, we started from
the somewhat naive view of simply recompiling the code for
the Cray and check its performance. At the time we had
access to a two cabinet XC30 cluster. The program ran
successfully using 9 nodes and produced a valid result. We
then proceeded to try to scale up to 100 nodes and
discovered that a job with 100 nodes ran much slower than
the corresponding job on a Beowulf cluster.

We determined the slowness was due to IO on the Lustre

disk. Our initial starting point was the embarrassingly
parallel paradigm where one shot is imaged in one node, and
we were saving the forward modeled wave field to scratch
disk. The Cray XC does not have scratch disk on each node,
so the main Lustre file system had to be used instead. So jobs
running on hundreds of nodes, each of which is saving the
forward modeled wave fields to Lustre disk, did not scale
well.

Making note of the fact that in our implementation of

pseudo analytic TTI RTM, most of the fourth derivatives just
depend on two space axes only. Only 3 of the fourth
derivatives depend on all three space axes. So most of the
derivatives just require the use of 2D FFTs only and not 3D
FFTs. This caused us to use the concept of slabs in this
algorithm.

Having seen the disk I/O scalability issue, we were also
up against the Cray’s 128 gigabyte-per-node memory
limitation in some of our business projects, so we decided to
restructure the algorithm. Since most of the FFTs in use were
2D FFTs, the pressure wave field could be divided into slabs,
and each slab distributed to different nodes. Further, since
we did not want to put undue stress on the Lustre file system,
we decided to keep all the forward extrapolated wave fields
in memory. In the collection of nodes processing a single
shot, each node would keep its corresponding pressure slabs.
The same is true for the forward extrapolated model and also
the output image – only slabs appropriate for that node are
kept in that node’s memory. Using this technique, we had
access to terabytes of memory to process a single shot
experiment.

The only serious problem with this approach was the 3 or

4 of the 3D FFTs required to perform each time step of the
algorithm. We tried a distributed 3D cluster-based FFT that
used MPI but found it was too slow for this purpose. So in
collaboration with Cray, we developed a 3D cluster-based
FFT based on the shared memory protocol. Since SHMEM is
a one-sided protocol, not a two-sided protocol like MPI, this
SHMEM FFT turned out to be faster than the normal 3D
FFT based on MPI.

Once this framework was in place, we discovered that the

new algorithm in Cray was scaling better than N, the number
of nodes used in older code running in Beowulf cluster. It
means that compared with one node per shot, the N nodes
per shot in the new algorithm run faster than 1 / N time. The
speed increase was because we were not storing the forward
wave fields on scratch disk.

Additionally, the old implementation used numerous

master nodes to contain the output image for the job, and this
often introduced a large overhead in resources needed for
each job. This master node overhead was also eliminated in
the new scheme as the new peer-to-peer MPI job was an
improvement over the old master-slave MPI job, where the
master(s) contained the output image(s). This proved to be
very fortuitous as the new scheme exhibits strong scaling. So
as long as the problem fits in certain number of N nodes,
then N can vary over a fairly wide range and the run time per
shot will change proportionally.

The new scheme is a truly distributed solution and

effectively frees us from limitations on the maximum
frequency of a problem that can fit in the memory of one
node.. For example, if 25 Hz problems could be processed
with 12 nodes, then the corresponding 50 Hz problem would
require 96 nodes to solve. We have tested such scenarios and
see that they do scale properly. When we double the
maximum frequency to be processed, each of the spatial
dimensions decreases by half and also the time stepping
decreases by half. So the amount of compute work to be
done goes up by a factor of 16.

So in practice there is sufficient compute work to keep

the SIMD units busy. Also, the slabs do not get too thin in
each node due to the decreased bin sizes. There is intermodal
communication overhead in order to perform the 3D
distributed FFT that is needed in every time stepping of the
algorithm. We measured the speed of a 3D distributed FFT
on a regular Beowulf cluster with 1 gigabit leaf switches
versus the same test on the Cray XC30. We found that this
type of scheme would run wholly inadequately on a regular
Beowulf cluster but has strong scaling on a Cray with the
Aries networking.

 Numerous commercial projects have now been run on

our production Cray XC40, and we also retain a small XC30
system for testing and development. The new distributed TTI

RTM implementation running on the Cray XC40 is now our
production workhorse.

IV. KIRCHHOFF DEPTH IMAGING
The Kirchhoff Depth imaging algorithm we have

implemented operates as a master-slave MPI program that
also uses OPENMP. In the original implementation, the
master rank would broadcast both the bulk input data and its
associated travel time information. Each slave rank has
ownership of a portion of the output space. These portions
are staggered. So each subordinate rank receives the bulk
data. Then each subordinate rank examines whether it should
generate a response in the output space over which it has
ownership. This is done for each trace in the group of traces
that was broadcasted to it. If a response is to be generated in
the output space, then the travel time information is used to
do so.

All such output responses reside in the memory space of

the collection of subordinate nodes. So in this sense
Kirchhoff Depth migration is a distributed MPI program. It
turns out that there was a bottleneck when reading travel
time information from disk and broadcasting it to all nodes in
the job, and the job would not scale after some point. This
was true on both the regular Beowulf clusters and the Cray
XC40 cluster. The behavior on the Cray XC40 was better
due to the faster networking in the XC40.

The solution to this problem was to stripe the travel time

file across all the Lustre file system’s object storage targets
(OST) and to read all the travel time information into a
shared memory (SHMEM) pool. From this shared memory
pool, any node could access the travel times on demand
using the networking in the Cray XC40. The travel times are
only read once when the job starts, and thereafter they are
accessed from any node in the job from shared memory
using SHMEM one-sided communication. The amount of
memory dedicated to the shared memory pool for travel
times is about 10% of each subordinate rank.

V. ONE-WAY WAVE EQUATION IMAGING

Wave equation migration (WEM) also used a model

where one seismic shot was imaged per node on a Beowulf

cluster. The intermediate imaged depth slices and the TTI
earth model were kept on scratch disk if there was not
sufficient memory. Whether there was sufficient memory
depended on the maximum frequency to be imaged. The
memory requirements also varied as the third power of the
maximum frequency, which caused considerable efficiency
loss when scratch disk was used. To remove this limitation,
we decided to eliminate the utilization of scratch disk
altogether by using more than one node to image a single
seismic shot. Typically only 2 or 3 nodes are required to
completely contain the problem in memory if the nodes have
128 gigabytes of memory. In this new model, we divided up
the problem by depth slices. So the first node is tasked with
imaging the early depth slices and later nodes in a group
processing a shot are responsible for processing the later
depth slices. Frequency slices are passed between nodes as
processing occurs. There is some overhead in doing so, but
in practice this is far less overhead than reading and writing
to scratch disk, as the networking is fast enough to
accommodate this.

VI. FILE SYSTEM LESSONS LEARNED
In the process of restructuring algorithms to run

efficiently in Cray XC 30/40, we observed that it is better to
stripe the earth model and travel time parameter files. This is
because there could be hundreds of jobs accessing the same
earth model parameters, and unless the files are striped it
would put an excessive burden on a single OST. Some
output files from an accumulation process are also being
striped over two OSTs to better distribute the IO load.

ACKNOWLEDGMENT
We would like to acknowledge the effort of Cray in

devising a 3D FFT based on shared memory.

REFERENCES
[1] Sean Crawley, Sverre Brandsberg-Dahl, and Jim McClean (2010) 3D

TTI RTM using the pseudo-analytic method. SEG Technical Program
Expanded Abstracts 2010: pp. 3216-3220.

[2] John T. Etgen (2012) 3D Wave Equation Kirchhoff Migration. SEG
Technical Program Expanded Abstracts 2012: pp. 1-5.

[3] A. A. Valenciano, C. C. Cheng, N. Chemingui, and S.
Brandsberg-Dahl (2009) Implicit wave-equation migration in TTI
media using high order operators. SEG Technical Program Expanded
Abstracts 2009: pp. 3005-3009..

[4] W. A. Mulder and R.-E. Plessix (2004). ”A comparison between
one-way and two-way wave-equation migration.” GEOPHYSICS,
69(6), 1491-1504.

[5] Phil Kitchenside, Uwe Albertin, Wenfong Chang, Clement Kostov,
Alexandre Kleitz, Nick Moldoveanu, Ananthanaraya Sugavanum, and
David Yingst (2001) Comparing finite-difference and Kirchhoff
prestack depth migration. SEG Technical Program Expanded
Abstracts 2001: pp. 917-920.

[6] Becker, Donald J and Sterling, Thomas and Savarese, Daniel and
Dorband, John E and Ranawak, Udaya A and Packer, Charles V,
"BEOWULF: A parallel workstation for scientific computation", in
Proceedings, International Conference on Parallel Processing vol. 95,
(1995).

[7] Poole, Stephen (2011). "OpenSHMEM - Toward a Unified RMA
Model". Encyclopedia of Parallel Computing: 1379–1391. Retrieved
2013-01-15.

[8] Costian, Calin r. and Marinescu, Dan C., "A Distributed Memory
Algorithm for 3-D FFT" (1993). Computer Science Technical
Reports. Paper 1071

